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Abstract

Using only elementary properties of the McShane integral for vector-valued
functions, we establish a convergence theorem which for the scalar case of the
integral yields the classical Beppo Levi (monotone) convergence theorem as
an immediate corollary. As an application, the convergence theorem is used
to prove that the space of McShane integrable functions, although not usually
complete, is ultrabornological.

1 Introduction

The gauge-type integral of E.J. McShane has been extended to vector-valued func-
tions and the resulting space of integrable functions has been studied by several
authors ([F1-3], [FM], [G2]). For Banach space valued functions the space of Mc-
Shane integrable functions is contained in the space of Pettis integrable functions
and under certain conditions coincides with the space of Pettis integrable functions
([F1-3], [FM], [G2]). It is well-known that the space of Pettis integrable functions is
usually not complete ([P], [T2]) so, in general, the space of Banach valued McShane
integrable functions is also not a complete space. However, it has recently been
shown that the space of Pettis integrable functions is a barrelled space ([DFP1],
[DFP2], [Sw3]); indeed, in [DFFP] it has been shown that the space of McShane
(Pettis) integrable functions defined on a bounded interval is ultrabornological, a
property which implies barrelledness. The results in [DFFP] employ some sophisti-
cated results of Fremlin and Mendoza relating the McShane and Pettis integrals and
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general convergence theorems. In this note we use only elementary properties of the
McShane integral for vector-valued functions to establish an interesting convergence
theorem for the vector-valued McShane integral which for the scalar case of the
integral yields the Beppo Levi (monotone) convergence theorem as an immediate
corollary. As an application of the convergence theorem, we show that the space
of McShane integrable functions has several properties which imply that the space,
while usually not complete, is barrelled and ultrabornolgical.

2 The integral

We now give a description of the McShane integral in R. Let R∗ be the extended
reals (with ± ∞ adjoined to R). Let X be a (real) Banach space. Any function
f : R → X is assumed to be extended to R∗ by setting f(± ∞) = 0. A gauge
on R∗ is a function γ which associates to each t ∈ R∗ a neighborhood γ(t) of t. A
partition of R is a finite collection of left-closed intervals Ii, i = 1, . . . , n, such that

R =
n⋃
i=1

Ii (here we agree that (−∞, a) is left-closed). A tagged partition of R is a

finite collection of pairs {(Ii, ti) : 1 ≤ i ≤ n} such that {Ii} is a partition of R and
ti ∈ R∗; ti is called the tag associated with Ii. Note that it is not required that the
tag ti belong to Ii; this requirement is what distinguishes the McShane integral from
the Henstock-Kurzweil integral ([Mc], [G1], [LPY], [DeS], [M]). If γ is a gauge on
R∗, a tagged partition {(Ii, ti) : 1 ≤ i ≤ n} is said to be γ-fine if Īi ⊂ γ(ti) for every
i = 1, . . . , n. If J is an interval in R∗, we write m(J) for its length and make the
usual agreement that 0 · ∞ = 0. If D = {(Ii, ti) : 1 ≤ i ≤ n} is a tagged partition

and f : R → X, we write S(f,D) =
n∑
i=1

f(ti)m(Ii) for the Riemann sum of f with

respect to D.

Definition 1. A function f : R→ X is (McShane) integrable over R if there exists
v ∈ X such that for every ε > 0 there exists a gauge γ on R∗ such that ‖S(f,D)− v‖
< ε for every γ-fine tagged partition D of R.

The vector v is called the (McShane) integral of f over R and is denoted by∫
R
f. We refer the reader to [Mc], [G1] or [G2] for basic properties of the McShane

integral. We emphasize that we use only basic properties of the McShane integral.

For later use we record one important result for the McShane integral usually
referred to as Henstock’s Lemma. If (Ii, ti), i = 1, . . . , n, is any pairwise disjoint
collection of half-closed subintervals of R and ti ∈ R∗, the collection {(Ii, ti) : i =

1, . . . , n} is called a partial tagged partition of R (it is not required that
n⋃
j=1

I = R),

and such a collection is called γ-fine if Īj ⊂ γ(tj) for 1 ≤ j ≤ n.

Lemma 2. (Henstock) Let f : R→ X be McShane integrable and let ε > 0.

Suppose the gauge γ on R∗ is such that

∥∥∥∥∥
n∑
i=1

f(ti)m(Ii)−
∫
R
f

∥∥∥∥∥ < ε for every γ-fine

tagged partition {(Ii, ti) : 1 ≤ i ≤ n} of R. If {(Ii, ti) : 1 ≤ i ≤ n} is any γ-fine
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partial tagged partition of R, then

∥∥∥∥∥
n∑
i=1

{
f(ti)m(Ii)−

∫
Ii
f
}∥∥∥∥∥ ≤ ε.

See [G2] for Lemma 2.

Let M(R, X) be the space of X-valued McShane integrable functions; if X = R,
we abbreviate M(R,R) = M(R). The space M(R) is complete under the semi-norm

‖f‖1 =
∫
R
|f | ([Mc] VI.4.3; the proof of this fact does not use any measure theory

except the definition of a null set). Let f ∈ M(R, X). Then for each x′ ∈ X ′, x′f
belongs to M(R) and < x′,

∫
R
f > =

∫
R
x′f ([G2]) so we can define a linear map

F : X ′ → M(R) by Fx′ = x′f . It is easily checked that F has a closed graph and
is, therefore, continuous by the Closed Graph Theorem (use VI.4.3 p. 455 of [Mc]).

Hence, we may define a semi-norm on M(R,X) by ‖f‖1 = sup
{∫

R
|x′f | : ‖x′‖ ≤ 1

}
;

this quantity is finite by the continuity of the map F . It is convenient in some of
the computations which follow to use a semi-norm which is equivalent to ‖ ‖1.

In what follows let A be the algebra of subsets of R generated by the half-closed
intervals [a, b) of R; thus, the elements of A are finite pairwise disjoint unions of
half-closed subintervals of R ([Sw1] 2.1.11). We extend the length function m to
A in the natural way to obtain an additive function, still denoted by m, on A
([Sw1] p.25). If f ∈ M(R,X), then f is integrable over every A ∈ A, and we set

‖f‖′1 = sup
{∥∥∥∥∫

A
f
∥∥∥∥ : A ∈ A

}
. We show that ‖ ‖1 and ‖ ‖

′

1 are equivalent. For this

we require a lemma for scalar-valued integrable functions.

Lemma 3.Let ϕ ∈ M(R) and let Φ : A → R be the indefinite integral of ϕ defined

by Φ(A) =
∫
A
ϕ . Then v(Φ)(R) =

∫
R
|ϕ|. [Here, v(Φ) denotes the variation of Φ

computed with respect to the algebra A([Sw1] p. 30).]

Proof: If {Ai : 1 ≤ i ≤ n} is any partition of R with Ai ∈ A, then
n∑
i=1

|Φ(Ai)| ≤
n∑
i=1

∫
Ai
|ϕ| =

∫
R
|ϕ| so v(Φ)(R) ≤

∫
R
|ϕ|.

For the reverse inequality, first assume that ϕ is a step function ϕ =
n∑
k=1

tkCAk ,

where Ak ∈ A and {Ak : 1 ≤ k ≤ n} is a partition of R and CA denotes the char-

acteristic function of A. Then
n∑
k=1

|Φ(Ak)| =
n∑
k=1

|tk|m(Ak) =
∫
R
|ϕ| ≤ v(Φ)(R) so

v(Φ)(R) =
∫
R
|ϕ| for step functions.

Now assume ϕ ∈ M(R). Pick a sequence of step functions {ϕk} such that∫
R
|ϕk − ϕ| → 0 ([Mc] Th. 13.1, p. 155). Note

∫
R
|ϕk| →

∫
R
|ϕ|. Set Φk(A) =∫

A
ϕk for A ∈ A. By the inequality in the first part of the proof, we have

|v(Φk) (R)− v (Φ) (R)| ≤ v(Φk−Φ) (R) ≤
∫
R
|ϕk − ϕ| so by the equality established

above for step functions, we obtain lim v(Φk)(I) = lim
∫
R
|ϕk| = v (Φ) (R) =

∫
R
|ϕ|.
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Remark 4. The equality in Lemma 3 is “well-known” for the Lebesgue integral, at
least when the variation is computed with respect to the σ-algebra of Lebesgue mea-
surable sets. Since for scalar-valued functions M (R) is just the space of Lebesgue
integrable functions, the equality follows fairly easily from the equality for Lebesgue
integrable functions. However, we were not able to find a statement and proof of
the equality which used only basic properties of the McShane integral.

We now establish the equivalence of ‖ ‖1 and ‖ ‖
′

1.

Proposition 5. ‖ ‖′1 ≤ ‖ ‖1 ≤ 2 ‖ ‖′1.
Proof: Let f ∈M (R, X). Then

‖ f‖′1 = sup
{∣∣∣∣∫

A
x′f

∣∣∣∣ : A ∈ A, ‖x′‖ ≤ 1
}
≤ sup


∫
R

|x′f | : ‖x′‖ ≤ 1

 = ‖ f‖1 .

For x′ ∈ X ′, ‖x′‖ ≤ 1, using Lemma 3 and Theorem 2.2.1.7, p. 30, of [Sw1],

we obtain ‖ f‖1 = sup
{∫

R
|x′f | : ‖x′‖ ≤ 1

}
= sup

{
v
(∫

x′f
)

(R) : ‖x′‖ ≤ 1
}
≤

2 sup
{∣∣∣∣∫

A
x′f

∣∣∣∣ : A ∈ A, ‖x′‖ ≤ 1
}

= 2 ‖ f‖
′

1.

Remark 6. The two semi-norms above are “well-known” to be equivalent for the
space of Pettis integrable functions ([P]) and since any McShane integrable function
is Pettis integrable ([FM]), the semi-norms are equivalent on M (R, X). However,
the proof above uses only basic properties of the McShane integral and no properties
of the Pettis integral.

We now establish a convergence theorem for the McShane integral which for the
scalar case of the integral implies the Beppo Levi (monotone) convergence Theorem.
Since we are integrating functions defined on R we will use a technique employed
by McLeod ([M]); for this we require a lemma.

Lemma 7. There exists a positive McShane integrable function ϕ : R→ (0,∞) and
a gauge γ(= γϕ) such that 0 ≤ S(ϕ,D) ≤ 1 for every γ-fine partial tagged partition
D.

Proof: Pick any positive McShane integrable function ϕ such that
∫
R
ϕ =

1/2. There exists a gauge γ such that |S(ϕ,D) − 1/2| < 1/2 whenever D is γ-
fine. Suppose D = {(Ii, ti) : 1 ≤ i ≤ n} is a γ-fine partial tagged partition and set

I =
n⋃
i=1

Ii. By Henstock’s Lemma
∣∣∣∣S(ϕ,D) −

∫
I
ϕ
∣∣∣∣ ≤ 1/2 so S(ϕ,D) ≤ 1 as required

because
∫
I
ϕ ≤ 1/2 since ϕ is positive.

Theorem 8. For each k let gk belong to M (R, X) and suppose g =
∞∑
k=1

gk point-

wise on R with
∞∑
k=1

‖gk‖1 < ∞. Then g ∈ M (R, X),
∫
R
g =

∞∑
k=1

∫
R
gk and∥∥∥∥∥

n∑
k=1

gk − g
∥∥∥∥∥

1

→ 0 as n→∞.
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Proof: Let ε > 0 and set Gn =
n∑
k=1

gk. Observe that since
∞∑
k=1

∥∥∥∥∫
A
gk

∥∥∥∥ ≤
∞∑
k=1

‖gk‖′1 < ∞ (Proposition 5), the series
∞∑
k=1

∫
A
gk is (absolutely) convergent by

the completeness of X. For convenience, set v =
∞∑
k=1

∫
R
gk. For each k let γk be

a gauge for Gk such that

∥∥∥∥S(Gk,D) −
∫
R
Gk

∥∥∥∥ < ε/2k when D is γk−fine. Pick

n0 such that
∞∑

k=n0

‖gk‖1 < ε. For every t ∈ R there exists n(t) ≥ n0 such that

k ≥ n(t) implies |Gk(t)− g(t)| < εϕ(t), where ϕ is the function in Lemma 7. Define
a gauge γ by setting γ(t) = γn(t)(t) ∩ γϕ(t) for t ∈ R and γ (± ∞) = R∗. Suppose
D = {(Ii, ti) : 1 ≤ i ≤ n} is a γ-fine partition of R∗. Then

(1) |S(g,D)− v| =
∥∥∥∥∥

n∑
i=1

{ ∞∑
k=1

gk(ti)m(Ii)−
∞∑
k=1

∫
Ii
gk

}∥∥∥∥∥

≤
∥∥∥∥∥∥

n∑
i=1

∞∑
k=n(ti)+1

gk(ti)m(Ii)

∥∥∥∥∥∥ +

∥∥∥∥∥∥
n∑

i=1


n(ti)∑
k=1

gk(ti)m(Ii)−
n(ti)∑
k=1

∫
Ii
gk


∥∥∥∥∥∥

+

∥∥∥∥∥∥
n∑

i=1

∞∑
k=n(ti)+1

∫
Ii
gk

∥∥∥∥∥∥ = T1 + T2 + T3,

with obvious definitions for the Ti. We estimate each Ti. First,

T1 ≤
n∑

i=1

∥∥∥∥∥∥
∞∑

k=n(ti)+1

gk(ti)

∥∥∥∥∥∥m(Ii) ≤
n∑

i=1

εϕ(ti)m(Ii) = εS(ϕ,D) ≤ ε

by Lemma 7. Next for estimating T2 let s = max {n(ti), . . . , n(tn)}. Then, by
Henstock’s Lemma,

T2 =

∥∥∥∥∥
n∑

i=1

{
Gn(ti)(ti)m(Ii)−

∫
Ii
Gn(ti)

}∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
s∑

k=1

∑
i

n(ti)=k

{
Gn(ti)(ti)m(Ii)−

∫
Ii
Gn(ti)

}∥∥∥∥∥∥∥∥
≤

s∑
k=1

∥∥∥∥∥∥∥∥
∑
i

n(ti)=k

{
Gn(ti)(ti)m(Ii)−

∫
Ii
Gn(ti)

}∥∥∥∥∥∥∥∥ ≤
s∑

k=1

ε/2k < ε.

For T3, note that the series in T3 converges (absolutely) by the observation above.
Then

T3 = sup
‖x′‖≤1

∣∣∣∣∣∣
n∑

i=1

∞∑
k=n(ti)+1

∫
Ii
x′gk

∣∣∣∣∣∣ ≤ sup
‖x′‖≤1

n∑
i=1

∞∑
k=n0+1

∫
Ii
|x′gk|
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≤ sup
‖x′‖≤1

∞∑
k=n0+1

∫
R
|x′gk| ≤

∞∑
k=n0+1

‖gk‖1 < ε.

From (1), ‖S(g,D) − v‖ < 3ε and g is McShane integrable with integral equal to v.

For the last statement, by the first part of the theorem, if A ∈ A, then

∥∥∥∥∫
A

(g −Gn)
∥∥∥∥ =

∥∥∥∥∥∥
∫
A

∞∑
k=n+1

gk

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

k=n+1

∫
A
gk

∥∥∥∥∥∥ ≤
∞∑

k=n+1

∥∥∥∥∫
A
gk

∥∥∥∥ ≤ ∞∑
k=n+1

‖gk‖′1

which implies that ‖g −Gn‖′1 → 0 as n→∞.

Fremlin and Mendoza ([F1-3],[FM]) give general convergence theorems for the
McShane integral. Their proofs use properties of vector-valued measures and Pettis
integrals whereas the proof of Theorem 8 uses only basic properties of the McShane
integral.

Theorem 8 can be viewed as an analogue of the Monotone Convergence Theorem
for vector-valued McShane integrable functions. Indeed, it is easy to see that the
(scalar) Monotone Convergence Theorem follows immediately from Theorem 8. For
example, suppose that fk ∈ M (R) satisfies 0 ≤ f1 ≤ f2 ≤ . . ., f = lim fk and

sup
∫
R
fk <∞. Set gk = fk − fk−1, where f0 = 0. Then the conditions of Theorem

8 are satisfied so
∞∑
k=1

gk = f is integrable and
n∑

k=1

∫
R
gk =

∫
R
fn →

∫
R
f .

Theorem 8 also has the following corollary which is useful in establishing the
completeness of M (R).

Corollary 9. Let fk ∈ M (R, X) and suppose lim fk = f pointwise on R. If {fk}
is ‖ ‖1-Cauchy, then f is integrable and ‖fk − f‖1 → 0.

Proof: Pick a subsequence {nk} satisfying
∥∥∥fnk+1

− fnk
∥∥∥ < 1/2k and set gk =

fnk+1
−fnk . Then

k∑
j=1

gk = fnk+1
−fn1 → f−fn1 pointwise and

∞∑
k=1

‖gk‖1 <∞ so Theo-

rem 8 implies that f−fn1 is integrable and

∥∥∥∥∥∥
k∑
j=1

gk − (f − fn1)

∥∥∥∥∥∥
1

=
∥∥∥fnk+1

− f
∥∥∥

1
→ 0.

Since the same argument can be applied to any subsequence of {fk}, it follows that
‖fk − f‖1 → 0.

Upon the introduction of null sets, Corollary 9 can be applied directly to establish
the completeness of M (R) as in [Mc] VI.4.3.

We now prove two absolute continuity properties of the integral which are inter-
esting in their own right but which will also be used later to establish topological
properties of the space M (R, X).

Theorem 10. Let f ∈ M (R, X) and let F : A → X be the indefinite integral

of f , i.e., F (A) =
∫
A
f . Then lim

m(A)→0
‖F (A)‖ = 0, i.e., F is m-continuous, and

lim
m(A)→0

‖CAf‖1 = 0.



Beppo Levi’s Theorem for the Vector-Valued McShane Integral and Applications595

Proof: Let ε > 0. There exists a gauge γ on R∗ such that∥∥∥∥∥∥
n∑
i=1

f(ti)m(Ii)−
∫
R

f

∥∥∥∥∥∥ < ε/2 when D0 = {(Ii, ti) : i = 1, . . . , n}

is a γ-fine tagged partition of R. Fix such a D0 and set

M = max {‖f(ti)‖ : i = 1, . . . , n} .

Set δ = ε/2M . Suppose A ∈ A and m(A) < δ. Then A is a pairwise disjoint union of
half-closed intervals {Kj : j = 1, . . . , m}, where we may assume, by subdividing each
Kj if necessary, that each Kj is contained in some Ii. Let πi = {j : Kj ⊂ Ii}. Then
{(Kj ,ti) : j ∈ πi, i = 1, . . . , n} is a γ-fine partial tagged partition of R so Henstock’s

Lemma implies that

∥∥∥∥∥∥
n∑
i=1

∑
j∈πi

{
f(ti)m(Kj)−

∫
Kj
f

}∥∥∥∥∥∥ ≤ ε/2. Hence,

∥∥∥∥∫
A
f

∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

∫
Kj
f

∥∥∥∥∥∥ ≤ ε/2 +

∥∥∥∥∥∥
n∑
i=1

∑
j∈πi

f(ti)m(Kj)

∥∥∥∥∥∥ ≤ ε/2 +Mm(A) < ε.

The last statement follows from the first part and Proposition 5.

Theorem 11. Let f ∈ M (R, X). Then lim
b→∞

∥∥∥C[b,∞)f
∥∥∥

1
= 0. In particular,

lim
b→∞

∥∥∥∥∫ ∞
b
f
∥∥∥∥ = 0.

Proof: Let ε > 0. There exists a gauge γ with γ(z) bounded for every z ∈
R such that

∥∥∥∥S(f,D)−
∫
R
f
∥∥∥∥ < ε whenever D is a γ-fine tagged partition. Fix

such a partition D = {(Ii, ti) : 1 ≤ i ≤ n} and assume I1 = [b,∞), t1 = ∞. If

a > b, let K ∈ A, K ⊂ [a,∞) with K =
k⋃
i=1

Ji, {Ji} pairwise disjoint half-closed

intervals. Then K = {(Ji,∞) : 1 ≤ i ≤ k} is γ-fine so Henstock’s Lemma implies

that
∥∥∥∥∫

K
f − S(f,K)

∥∥∥∥ =
∥∥∥∥∫

K
f
∥∥∥∥ ≤ ε so

∥∥∥C[a,∞)f
∥∥∥

1
≤ ε when a > b.

3 Topological Properties of M(R, X)

We now show that the convergence result in Theorem 8 and Theorems 10 and 11
can be used to show that the space M (R, X) is barrelled and ultrabornological. For
this we use results of [Sw2], [Sw3] and [DFFP]; these papers contain general results
based on continuous versions of the gliding hump property which imply that spaces
are either Banach-Mackey spaces ([Sw1], [Sw2]) or ultrabornological ([DFFP]). Of
course, an ultrabornological space is barrelled, but a comparison of the two methods
and the corresponding properties of M (R, X) may be of some interest.

We begin by discussing the gliding hump property employed in [Sw2], [Sw3].
For A ∈ A let PA be the projection operator defined on M (R, X) by PAf = CAf ,
f ∈ M (R, X). The family of projections {PA : A ∈ A} = P is said to have the
strong gliding hump property (SGHP) if for every pairwise disjoint sequence {Aj}
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from A and every null sequence {fj} from M (R, X), there is a subsequence {nj}

such that the series
∞∑
j=1

PAnj fnj converges in M (R, X) ([Sw2], [Sw3]; the description

of SGHP in these papers is given in a more abstract setting). We begin by noting
that Theorem 8 can be used to show that M (R, X) has SGHP.

Theorem 12. M (R, X) has SGHP.
Proof : Let fj → 0 in M (R, X) and let {Aj} ⊂ A be pairwise disjoint. Pick a

subsequence such that
∥∥∥fnj∥∥∥1

≤ 1/2j and let f be the pointwise sum of the series
∞∑
j=1

PAnj fnj . By Theorem 8 f is McShane integrable and the series converges to f

in ‖ ‖1. Hence, SGHP is satisfied.
We next consider a decomposition property for the family P that is necessary to

apply the results of [Sw2], [Sw3].

(D) For every y′ ∈ M (R, X)′, f ∈ M (R, X) and ε > 0 there is a partition
{B1, . . . , Bk} of R with Bi ∈ A such that v(y′PBif) < ε for i = 1, . . . , k, where
v(y′P•f) denotes the variation of the finitely additive set function
A →< y′, PAf >. [Rao and Rao refer to this property as “strongly con-
tinuous” ([RR] 5.1.4); again there is a more abstract definition of property
(D) in [Sw2], [Sw3].]

Theorem 13. P has property (D).
Proof : Let ε > 0, f ∈ M (R, X), y′ ∈ M (R, X)′. It follows from Theorems 10

and 11 that lim
m(A)→0

y′PAf = 0 and lim
b→∞

y′P[b,∞)f = 0.

Hence, from 2.2.1.7 of [Sw1], lim
m(A)→0

v(y′PAf) = 0 and lim
b→∞

v
(
y′P[b,∞)f

)
= 0.

Pick a < b such that v(y′P[b,∞)f) < ε and v
(
y′P(−∞,a)f

)
= 0. Now partition [a, b]

into intervals {Ii : i = 1, · · · , n} such that v (y′PIif) < ε. Then {(−∞, a), [b,∞), Ii}
is a partition of R satisfying the condition in (D).

If a space has a family of projections satisfying properties SGHP and (D), it is
shown in [Sw2], [Sw3] that the space is a Banach-Mackey space, and since M (R, X)
is a normed space, from Theorems 12 and 13, we have

Corollary 14. M (R, X) is barrelled.
It is shown in [DFFP] that the space of vector-valued McShane integrable func-

tions defined on a compact interval is an ultrabornological space, a condition which
implies that the space is barrelled. This result is also obtained from an abstract
gliding hump theorem. We will use their results along with Theorem 8 to show that
M (R, X) is also ultrabornological.

Let
∑

be the power set of N and µ the counting measure on
∑

. For f ∈M(R, X),
set Q1f = f C[−1,1) and Qnf = fC[−n,−n+1)∪[n−1,n) for n ≥ 2. For A ∈ ∑

and
f ∈ M (R, X) define QAf =

∑
n∈A

Qnf (pointwise sum). Then Q = {QA : A ∈ ∑}
is an equicontinuous family of projections on M (R, X), and from Theorem 3 of
[DFFP], it follows that Qn (M (R, X)) is ultrabornological for every n ∈ N. To
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show that M (R, X) is ultrabornological we use Corollary 1 of [DFFP]; in order to
apply this result we need to check the following gliding hump property:

(*) if {Ωn} is a decreasing sequence in
∑

with µ
( ∞⋂
n=1

Ωn

)
= 0, {fn} is a bounded

sequence such that QΩnfn = fn, and {αn} ∈ `1, then the series
∞∑
n=1

αnfn

converges in M (R, X).

(Again, there is an abstract definition of property (*) given in [DFFP].)

Theorem 14. M (R, X) has property (*).
Proof: Using the notation in (*), it follows from Lemma 1 of [DFFP] that the

series
∞∑
n=1

αnfn converges pointwise to a function f . It then follows immediately

from Theorem 8 that the series converges to f in ‖ ‖1 so (*) is satisfied.
Thus, from Corollary 1 of [DFFP], we have

Corollary 15. M (R, X) is ultrabornological.
There are further examples of ultrabornological function spaces given in [Gi].
The author would like to thank the referee for numerous useful suggestions; in

particular the proof of Theorem 14 is due to the referee.
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