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Abstract

The aim of this paper is to present an acceleration procedure based on pro-
jection and preconditioning for iterative methods for solving systems of linear
equations. A cycling strategy leads to a new iterative method. These proce-
dures are closely related to Richardson’s method and acceleration. Numerical
examples illustrate the purpose.

For solving the system of linear equations Ax = b, we consider any convergent
method which produces the sequence of iterates (xn). Quite often the convergence
is too slow and it has to be accelerated. There exist many processes for that purpose
whose references can be easily found. They are either quite general extrapolation
methods as described, for example, in [5] or particular ones as those studied in
[2]. The aim of this paper is to present a new acceleration procedure based on
projection and preconditioning. Cycling with this procedure will lead to a new
iterative method.

1 The procedure

Let us consider the sequence (yn) given by

yn = xn − λnzn (1)

where zn is an (almost) arbitrary vector called the search direction or the direction
of descent and λn a parameter called the stepsize. Setting rn = b − Axn and ρn =
b− Ayn, we have

ρn = rn + λnAzn. (2)
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We shall now choose for λn the value which minimizes ‖ρn‖ = (ρn, ρn)
1/2, that is

[20]

λn = − (Azn, rn)

(Azn, Azn)
. (3)

The minimum value of (ρn, ρn) is then given by

(ρn, ρn) = (rn, rn)−
(Azn, rn)

2

(Azn, Azn)
= (rn, rn) sin2 θn (4)

where θn is the angle between the vectors rn and Azn. Thus, obviously, ‖ρn‖ ≤ ‖rn‖.
Replacing λn by its value, we have

ρn = (I − Pn)rn

with

Pn =
Azn(Azn)

T

(Azn, Azn)
.

It is easy to see that Pn represents an orthogonal projection (Pn
2 = Pn and Pn

T = Pn)
and so I − Pn also. Indeed we have (Azn, ρn) = 0 and it follows

(ρn, ρn) = (rn, rn)− (rn,Pnrn).

If zn = ATun, where un is an arbitrary vector, the usual projection methods are
recovered (see [15, p. 163ff] for example). Such methods are discussed in details in
[3]; see also [4].

It must be noticed that formula (2) allows to obtain ρn at no extra cost.

2 Choice of the search direction

Let us now see how to choose the vector zn. From (4) we see that ρn = 0 if and
only if the vectors rn and Azn are colinear, that is if zn = αA−1rn. But ρn does not
change if zn is replaced by αzn and, thus, we can take α = 1. Obviously, this choice
of zn cannot be made in practice and, thus, we shall assume that an approximation
(in a sense to be defined below) Cn of A−1 is known and we shall take

zn = Cnrn.

Thus, the procedure (1)–(2) becomes

yn = xn +
(ACnrn, rn)

(ACnrn, ACnrn)
Cnrn,

ρn =

[
I − (ACnrn, rn)

(ACnrn, ACnrn)
ACn

]
rn. (5)

So, this procedure appears as a combination of projection and right preconditioning.
It is a generalization of Richardson’s acceleration which is recovered for the choice
Cn = I . Let us study its properties.
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We first define the vectors qn by

qn = rn − Azn.

Since the value of λn minimizes ‖ρn‖, we have

‖ρn‖ ≤ ‖rn − Azn‖ = ‖qn‖.

Let Rn = I − ACn. Then, qn = Rnrn, and ‖qn‖ ≤ ‖Rn‖ · ‖rn‖. We finally have

‖ρn‖
‖rn‖

≤ ‖Rn‖

and thus we proved the

Theorem 1
If ∃K < 1 such that ∀n, ‖Rn‖ ≤ K, then ∀n, ‖ρn‖ ≤ K‖rn‖.
If limn→∞Rn = 0, then limn→∞ ‖ρn‖/‖rn‖ = 0.

This theorem shows that, in order to accelerate the convergence of the initial
iterative method, one has to be able to construct a sequence of variable precondi-
tioners Cn so that Rn = I − ACn tends to zero when n goes to infinity. Obviously,
this can never be achieved by a constant preconditioner Cn = C0, ∀n. This is the
case, in particular, if iterations for obtaining a good preconditioner are made be-
fore starting (1)–(2). However, if K is sufficiently small, the residual vectors will
be greatly reduced. The procedure (5) will be called PR2 acceleration where the
letters PR first stand for projection and then for preconditioning. In fact, this PR2
acceleration is identical to the application of the hybrid procedure of rank 2 to the
vectors rn and qn [6].

If we use a restarting (also called cycling) strategy with our procedure (1)–(2),
we obtain the following iterative method

xn+1 = xn +
(ACnrn, rn)

(ACnrn, ACnrn)
Cnrn,

rn+1 =

[
I − (ACnrn, rn)

(ACnrn, ACnrn)
ACn

]
rn. (6)

This method will be called the PR2 iterative method. It is a generalization of
Richardson’s method which is recovered if ∀n, Cn = I . The PR2 ietrative method
is quite close to the EN method introduced in [12] and its variants discussed in [21].
Let us also mention that iterative methods of the form (1) but with λn not neces-
sarily chosen by (3) have been widely studied. In our case, we immediately obtain,
from the preceding theorem

Theorem 2
If ∃K < 1 such that ∀n, ‖Rn‖ ≤ K, then ‖rn‖ = O(Kn).
If limn→∞Rn = 0, then ‖rn+1‖ = o(‖rn‖).
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This theorem shows that a constant preconditioner is enough to ensure the con-
vergence of the PR2 method. In that case, the convergence is linear and the speed
depends on the value of K = ‖R0‖. The choice zn = ATrn corresponds, in fact,
to a projection method (see [2]) and to Cn = AT . Thus, it is a good choice if the
matrix A is almost orthogonal. If Rn tends to zero then a superlinear convergence
is obtained.

Other results on the PR2 acceleration and on the PR2 iterative method can be
found in [4].

3 Choice of the preconditioner

So, we are now faced to the problem of finding an efficient and cheap method for
computing the sequence (Cn) of preconditioners. By efficient, we mean that the
convergence of Cn to A−1 must be as fast as possible, and, by cheap, we mean that
it must require as few arithmetical operations and storage as possible. General con-
siderations about the qualities of approximate inverses can be found in [9]. However,
the literature does not seem to be very rich on this topics. Some procedures, such
as rank–one modifications with a finite termination and iterative methods, can be
found in the book of Durand [11, vol. 2, pp. 144ff] but they have not attracted much
attention and they still remain to be studied from the theoretical point of view. One
can also think of using the Broyden’s updates [7], or those of Huang [19], or those
used in the ABS projection algorithms [1]. As proved in [16, 17], although Broyden’s
methods converge in a finite number of iterations for linear systems, the updates do
not always converge to A−1. For reviews of update methods, see [23] and [22]; on
preconditioning techniques, see [8, 13, 14]. We shall now explore another possibility.

Let us consider the two following sequences of variable preconditioners

Cn+1 = CnUn +Dn (7)

and
C ′n+1 = U ′nC

′
n +Dn (8)

where (Dn) is an arbitrary sequence of matrices, Un = I −ADn and U ′n = I −DnA.
We have

Rn+1 = RnUn

R′n+1 = U ′nR
′
n

with Rn = I −ACn and R′n = I −C ′nA. Thus ‖Rn+1‖ ≤ ‖Un‖ · ‖Rn‖ and ‖R′n+1‖ ≤
‖U ′n‖ · ‖R′n‖ and it immediately follows

Theorem 3
Let (Cn) be constructed by (7).

1. If ‖Un‖ = O(1), then ‖Rn+1‖ = O(‖Rn‖).

2. If ‖Un‖ = o(1), then ‖Rn+1‖ = o(‖Rn‖).

3. If ‖Un‖ = O(‖Rn‖), then ‖Rn+1‖ = O(‖Rn‖2).
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4. If ‖Un‖ = o(‖Rn‖), then ‖Rn+1‖ = o(‖Rn‖2).

Similar results hold for the sequence (C ′n) constructed by (8).

Let us remark that, in the case 1, ‖Rn‖ ≤ Kn‖R0‖ and thus (Cn) tends to A−1

if K < 1.

We shall now consider several choices for the sequence (Dn)

3.1 Constant preconditioner

If ∀n,Dn = 0, then ∀n, Un = U ′n = I and it follows that ∀n, Cn = C0 and C ′n = C ′0.
So, we are in the case 1 of theorem 3 and ∀n,Rn = R0 and R′n = R′0. If the matrix
A is strictly diagonally dominant and if C0 is the inverse of the diagonal part of A,
then ‖R0‖ < 1 for the l1 and the l∞ norms.

3.2 Linear iterative preconditioner

If ∀n,Dn = D0, then ∀n, Un = U0 and U ′n = U ′0. Thus, we are again in the case
1 of theorem 3 and it follows that ‖Rn‖ ≤ ‖U0‖n‖R0‖. So, if ‖U0‖ < 1, we have
‖Rn+1‖ ≤ ‖U0‖ ·‖Rn‖ and ‖Rn‖ = o(1) and similar results for (C ′n). Both sequences
of preconditioners converge linearly to A−1. This is, in particular, the case ifD0 = C0

with ‖R0‖ < 1.
Let us consider another procedure which is a generalization of a method due to

Durand [11, vol. 2, p. 150], or a modification of the procedure given in [10]. Starting
from the splitting A = M −N and replacing A by its expression in AA−1 = I leads
to

A−1 =
(
M−1N

)
A−1 +M−1

and to the iterative procedure

Cn+1 =
(
M−1N

)
Cn +M−1 (9)

with C0 arbitrary. Since we have

Cn+1 − A−1 = M−1N
(
Cn −A−1

)
we immediately obtain the

Theorem 4
The sequence (Cn) constructed by (9) with C0 arbitrary, converges to A−1 if and
only if ρ (M−1N) < 1. In that case

‖Cn − A−1‖ = O
(
ρn(M−1N)

)
.

So, if the sequence (xn) is obtained by xn+1 = M−1Nxn + c with c = M−1b,
then the sequence (Cn) can be obtained by the same first order stationary iterative
process and it is easy to see that xn = Cnb. It follows that the convergence behavior
of the sequences (xn) and (Cn) is the same. Moreover, we have Rn+1 = NM−1Rn.
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Another procedure consists of replacing A by its expression in A−1A = I . Thus
it follows

A−1 = A−1
(
NM−1

)
+M−1

which leads to the iterative procedure

Cn+1 = Cn
(
NM−1

)
+M−1 (10)

with C0 arbitrary. Since we have

Cn+1 − A−1 =
(
Cn − A−1

)
NM−1

we immediately obtain the

Theorem 5
The sequence (Cn) constructed by (10) with C0 arbitrary, converges to A−1 if and

only if ρ (NM−1) < 1. In that case

‖Cn − A−1‖ = O
(
ρn(NM−1)

)
.

It is easy to see that Rn+1 = Rn (NM−1). So, if the sequence (xn) is obtained
by xn+1 = M−1Nxn + c with c = M−1b, then rn+1 = (NM−1) rn which shows
that the behavior of the sequences (rn) and (Rn) is the same. Moreover, we have
Rn+1 = RnM

−1N where now Rn = I − CnA.

3.3 Quadratic iterative preconditioner

For obtaining a sequence (Rn) converging faster to zero, we shall make use of the
method of iterative refinement. Assuming that ‖R0‖ < 1, we construct the sequence
(Cn) by

Cn+1 = Cn(I +Rn) Rn+1 = I −ACn+1. (11)

It is easy to see that this method corresponds to the choice Dn = Cn and that
Rn+1 = R2

n. Thus

‖Cn − A−1‖ ≤ ‖R0‖2n

1− ‖R0‖
‖C0‖

and thus the convergence of (Cn) to A−1 is quadratic. It follows that ‖ρn‖ =

O
(
‖R0‖2n‖rn‖

)
which shows that the convergence of the PR2 acceleration is ex-

tremely fast and that (ρn) can converge even if (rn) does not tend to zero. A similar
result holds for the PR2 iterative method.

4 Numerical examples

Let us illustrate the preceding procedures. We consider the system of dimension
p = 50 whose matrix is given by aii = 3, ai+1,i = 1, ai,i+1 = −1 and a1p = 2. The
vector b is then computed so that ∀i, xi = 1. We take for C0 the inverse of the
diagonal of A. The sequence (rn) is obtained by the method of Jacobi with x0 = 0.
In Figure 1, the highest curve refers to the method of Jacobi, the curve very close
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to it is obtained by the PR2 acceleration with ∀n, Cn = C0, while the lowest one
corresponds to the PR2 acceleration with the sequence (Cn) given by the formulae
(11).

In Figure 2, the results given by the PR2 iterative method for the same system
are displayed. Let us mention that, in both cases, the results obtained for the
dimension p = 300 are almost the same.

For the same example and when (Cn) is constructed by (10), we obtain the
results displayed in Figure 3 for the PR2 acceleration of the method of Jacobi, and
the results of Figure 4 for the PR2 iterative method.

Usually the procedures described above (and, in particular, the quadratic it-
erative preconditioner) are not easily feasible for large values of p (the dimension
of the system) because of the almost immediate fill–in of the matrices Cn (even
if A is sparse) and the number of matrix–by–matrix multiplications. So, our nu-
merical examples are only given to illustrate the preceding theorems. However, if
Dn = anb

T
n where an and bn are arbitrary vectors, then the fill–in of the matrices Cn

can be more easily controlled. In particular, the sequence (Cn) can be constructed
by Cn+1 = Cn + anb

T
n where the vectors an and bn are chosen to control the spar-

sity of Cn+1 and so that C−1
n+1 be a good approximation of A. Usually, in update

methods, such as those mentioned above, approximations of A are constructed by
rank–one modifications and then inverted by the Sherman–Morrison formula [18].
In that case, it is much more difficult to control the sparsity of Cn+1. Here, the re-
verse strategy is adopted since the approximations Cn of A−1 are directly computed.



40 C. Brezinski

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50 60

iteration

lo
g_

10
 (

no
rm

 o
f 

re
si

du
al

)
Figure 2

However, in general, it is impossible simultaneously to control the sparsity and to
have convergence of (Cn) to A−1.

5 Another choice for the search direction

In the formulae (1), (3), (5) and (6), the products ACnrn and Cnrn are needed.
For obvious considerations, the separate computation of the matrices ACn is not
recommended. As far as possible, the storage of Cn has also to be avoided. On the
other hand, the recursive computation of the vectors Cnrn is not so easy since both
Cn and rn depend on n. This is why another choice of the vectors zn, avoiding these
drawbacks, will now be proposed.

In Section 2, we saw that the best choice for zn is a vector colinear to A−1rn.
But A−1rn = A−1b− xn. Thus, we shall take

zn = Cnb− xn

where Cn is again an approximation of A−1. So, now, we have to compute recursively
matrix–by–vector products where the vector no longer depends on the iteration n.

With the quadratic iterative preconditioner discussed in Subsection 3.3, the prod-
ucts Cnb cannot be computed recursively. So, we shall now consider the case of a
linear iterative preconditioner as given in Subsection 3.2 by

Cn+1 = UnCn +Dn.
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Setting

vn = Cnb and wn = Dnb

we immediately obtain

vn+1 = Unvn + wn

with u0 = C0b and w0 = Dnb. We also have zn = vn − xn.
If, as in (9), ∀n, Un = M−1N and Dn = M−1 then ∀n, wn = w0 and the products

Unvn are easily computed.
Let us remark that, if (Cnb) tends to a limit different from x (as in the case of a

constant preconditioner), (λn) given by (3) nevertheless tends to zero and, so, (yn)
tends to x.

Numerical examples with this choice of the search direction still have to be
performed.

6 A generalization

Both the PR2 acceleration and the PR2 iterative method can be generalized by
considering

yn = xn − Znλn
where Zn is a p × k matrix, λn ∈ IRk and k ≥ 1 an integer which can depend on
n. The vector λn can again be computed so that (ρn, ρn) is minimized that is such
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that
∂(ρn, ρn)

∂(λn)i
= 0

for i = 1, . . . , k, where (λn)i denotes the ith component of the vector λn. In other
words, λn is given by the least–squares solution of the system AZnλn = −rn, that is

λn = −
[
(AZn)

TAZn
]−1

(AZn)
Trn.

Such a generalization still has to be studied.
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[16] D.M. Gay, Some convergence properties of Broyden’s methods, SIAM J. Numer.
Anal., 16 (1979) 623–630.

[17] R.R. Gerber, F.T. Luk, A generalized Broyden’s method for solving simultane-
ous linear equations, SIAM J. Numer. Anal., 18 (1981) 882–890.

[18] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins Uni-
versity Press, Baltimore, 2nd ed., 1989.

[19] H.Y. Huang, A direct method for the general solution of a system of linear
equations, J. Optimization Theory Appl., 16 (1975) 429–445.

[20] M.R. Hestenes, The conjugate–gradient method for solving linear systems, in
Proceedings of the Sixth Symposium in Applied Mathematics, J. Curtiss ed.,
American Mathematical Society, Providence, 1956, pp. 83–102.



44 C. Brezinski

[21] U. Meier Yang, K.A. Gallivan, A new family of preconditioned iterative solvers
for nonsymmetric linear systems, Appl. Numer. Math., to appear.

[22] M. Minoux, Mathematical Programming, Theory and Algorithms, Wiley, Chich-
ester, 1986.

[23] W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM,
Philadelphia, 1974.

Laboratoire d’Analyse Numérique et d’Optimisation
UFR IEEA – M3
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