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Abstract

Random elements of non-Euclidean spaces have reached the forefront

of statistical research with the extension of continuous process monitoring,

leading to a lively interest in functional data. A fuzzy set is a generalized

set for which membership degrees are identified by a [0, 1]-valued function.

The aim of this review is to present random fuzzy sets (also called fuzzy

random variables) as a mathematical formalization of data-generating pro-

cesses yielding fuzzy data. They will be contextualized as Borel measur-

able random elements of metric spaces endowed with a special convex cone

structure. That allows one to construct notions of distribution, indepen-

dence, expectation, variance, and so on, which mirror and generalize the

literature of random variables and random vectors. The connections and

differences between random fuzzy sets and random elements of classical

function spaces (functional data) will be underlined. The paper also in-

cludes some bibliometric remarks, comments on the statistical analysis of

fuzzy data, and pointers to the literature for the interested reader.
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1. Why random fuzzy sets?

Random elements taking on values in metric spaces were introduced by
Fréchet (1948, 1950). He pointed out the valuable implications derived from
the introduction of a distance between elements in the considered space. In
accordance with their current usage, a random element is defined to be a mea-
surable function between a sample space and a metric space equipped with its
Borel σ-algebra.

1This paper is dedicated in his 65th birthday to our former Head of the Department and
scientific father/grandfather/great-grandfather, Professor Pedro Gil, who introduced us in the
knowledge of Fuzzy Sets.
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Fréchet anticipated that future mathematics would have to incorporate new
and unexpected sorts of objects quite beyond numbers, vectors, curves and func-
tions. Therefore it was worth developing a theory of random variables in a space
of elements ‘of an arbitrary nature’. Maybe half-jokingly, he envisaged an even-
tual mathematical formalization of such magnitudes as those related to moral
opinions, political spirit and aesthetic judgements. The only requirement is the
definition of a distance between the elements of such spaces.

Despite Fréchet’s unifying drive, it is clear that a theory of random elements
of a given kind must also include notions and methods particular to the specific
context being considered. Zadeh (1965) introduced fuzzy sets as a way to model
vague or poorly defined properties for situations in which it is not possible to
fully discriminate between having and not having said properties (incidentally,
one can find in Kosko (1999), Chapter 3, a fuzzy formalization of Fréchet’s
‘political spirit’).

A fuzzy set, a set with unclear boundaries, is formalized as a [0, 1]-valued
mapping on the reference set or universe X. More specifically, a fuzzy subset
Ũ ⊂ X is a mapping

Ũ : X → [0, 1]

so that for each x ∈ X the value Ũ(x) means the degree of membership of x to Ũ
(or, more intuitively, the degree of compatibility of x with the property Ũ stands
for, or degree of truth of the assertion “x has the defining property of Ũ”). This
definition corresponds to what is called the ‘vertical view’ of fuzzy sets.

Alternatively, one can define fuzzy sets by means of the ‘horizontal view’
which is determined by their level sets. The α-level set of Ũ is given by the set

Ũα = {x ∈ X : Ũ(x) ≥ α}

for any α ∈ [0, 1], and the nondecreasing set-valued mapping LŨ : [0, 1] → P(X)
such that LŨ (α) = Ũα characterizes the fuzzy set Ũ . Often, Ũ0 denotes, instead
of X, the closure of the support set cl(supp Ũ) = cl{x ∈ Rp : Ũ(x) > 0}.

Fuzzy sets have been used in many different fields (Social and Health Sciences,
Engineering, etc.). Many real-life situations and problems involve ratings, judge-
ments, perceptions, etc. (mostly related to human valuations) which are hard to
quantify in terms of precise numbers or vectors but can be suitably described as
fuzzy subsets of R or Rp (p ∈ N). The mathematical advantage of using such a
description is mainly due to the fact that the mathematical ‘language’ of fuzzy
sets is more expressive, flexible and richer than natural languages. Furthermore,
statistical techniques can be generally better and more widely adapted to deal
with real-valued functions than to deal with categories or linguistic labels.

When random experiments involve elements which can be properly described
by means of fuzzy values, the mechanisms generating such elements can be
treated as fuzzy-valued random elements in accordance with Fréchet’s approach.
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With the purpose of formalizing random elements taking on fuzzy values and fol-
lowing some former ideas by Féron (1976a), Puri and Ralescu (1986) introduced
the concept of random fuzzy set that they coined as fuzzy random variables.

2. When random fuzzy sets?

In the literature one can distinguish two main approaches to establish fuzzy
set-valued random attributes. The two approaches were rather contemporary
and they are rigourously stated within the probabilistic setting. We now briefly
explain the essential differences and analogies between both approaches.

On one hand, Kwakernaak (1978, 1979) introduced the so-called fuzzy random
variable (for short FRV) to model the fuzzy perception or description of a real-
valued random variable. In this respect, for any FRV in Kwakernaak’s sense
there exists an underlying real-valued random variable (that is referred to as the
original). Since the actual values of the variable are not observed, this has a
connection to coarse data (made explicit e.g. by Nguyen and Wu, 2006) and
censored data. Kwakernaak’s ideas were formalized in a clearer mathematical
way by Kruse and Meyer (1987).

This approach is used when precise values exist but the corresponding ob-
served/reported information (often in natural language) is written in the form
of fuzzy intervals. In other words, FRV is an appropriate model for fuzzy-valued
random elements when the ‘epistemic’ perspective is considered.

In Kwakernaak’s approach, the distribution of the FRVs and the related
summary measures are based on Zadeh’s extension principle, and the statistical
analysis is generally focused on drawing conclusions about the original on the
basis of the available fuzzy information (Kruse and Meyer, 1987). Note that this
notion of distribution conveys the fuzzy information about the original distribu-
tion and is not a probability distribution in the usual mathematical sense.

On the other hand, Féron (1976ab, 1979) introduced the notion of a random
fuzzy set (RFS) to model a random mechanism generating fuzzy set values (a
rather general type of fuzzy sets of Rp, p ∈ N, or even of a more general metric
space). Two different definitions were proposed, namely,

• the definition formalizing RFSs as random elements taking on values on
spaces of fuzzy sets endowed with certain Borel σ-fields (i.e., by following
Fréchet’s theory),

• the definition formalizing RFSs as extending levelwise the notion of random
sets.

Féron’s ideas were reprised by Puri and Ralescu (1985, 1986), who considered
the specific metrics missing in Féron’s papers and introduced key notions like
expectation, conditional expectation, and so on.

Although concurrent with Féron’s notion of a random fuzzy set, Puri and
Ralescu kept using the terminology ‘fuzzy random variables’ from Kwakernaak.
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This may have introduced some confusion between both approaches at the con-
ceptual level. Formally, when both definitions apply they are equivalent, as we
will show.

RFSs are used when the imprecise data are assumed to have been generated
without regard to an underlying precise random variable or vector. This is
usually referred to as the ‘ontic’ view. Fuzzy sets are then used as a means
to model real entities. For a recent and clarifying discussion on the epistemic
and ontic fuzzy sets, readers are referred to Dubois and Prade (2012). Note
the shift in the intent of the analysis, which is no longer to identify features of
an underlying classical distribution (e.g. parameter estimation) but to identify
features of a probability distribution in a space of fuzzy sets. This distribution
arises naturally from the formalization of random fuzzy sets as Borel measurable
mappings.

The theory of random fuzzy sets extends the existing theories of random vari-
ables/vectors and random sets and is connected with that of random functions,
as will be shown in the next section. RFSs allow us to develop statistical meth-
ods for fuzzy data within an appropriate probabilistic setting and to preserve
the key ideas and notions from the real/vectorial-valued case.

To illustrate the concept of RFS, which will be formally presented later,
most of the real-life examples one can think about involve human valuations
which frequently arise in Social Sciences, Medicine, Decision Making, Control
Engineering, and so on.

The following situation exemplifies an application of RFSs. It corresponds
to a psychometrical study, and although RFSs were not explicitly mentioned in
it, they can be definitely applied for further statistical analysis. Most of the
content have been directly extracted from the referenced study.

Example 2.1. A fuzzy rating scale, as referred to by Hesketh et al. (1988, 1992,
1994, 1995, 2011), is a method of eliciting a ‘preference’ that allows for a degree
of vagueness or uncertainty, but with the possibilities that the uncertainty may
be gradual and symmetric/asymmetric around an assumed ‘preferred’ point or
interval (actually, the 1-level, i.e., the singleton or interval of real values which
are considered to be fully compatible with the preference or answer).

The fuzzy rating may be used as a way of capturing flexibility of require-
ments/perceptions/responses/.... The concept of fuzzy rating allows for state-
ments such as ‘someone who is high on X, and moderate on Y , while not being
low on Z is likely to have a moderately high level of coping performance’. The
fuzzy sets modelling the words high, moderate, and low can be somehow
elicited graphically, providing a measurement approach which is more manage-
able from a mathematical perspective (and, ultimately, for statistical purposes).
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Verbal anchors used on the five prestige and three sex-type scales 
 
1. 
Not very well paid                |………………|………………|                 Very well paid  
 
2. 
This occupation                                                                           This occupation 
      requires no education          requires a high level  
      for entry                          |………………|………………|        of education    
 
3. 
Most people think this                                                                Most people think this                                              
      occupation has low                      occupation has high 
      status                              |………………|………………|         status 
 
4. 
Most people think this                                                                Most people think this                                              
      occupation does not                      occupation has much 
      have much power           |………………|………………|         power 
 
5. 
Most people do not                                                                      Most people think                                              
      think highly of people           highly of people in            
      in this occupation           |………………|………………|         this occupation 
 
6. 
Most people think this                                                                Most people think this                                              
      occupation suits                      occupation suits 
      men                                  |………………|………………|        women 
 
7. 
Men usually choose this                                                             Women usually choose                                              
      occupation                       |………………|………………|         this occupation 
 
8. 
Generally considered                                                                  Generally considered                                              
      men’s work                      |………………|………………|         women’s work 
                                               0.……………….……………..100          
                                             Left                                        Right 

 
 
 
 Figure 1: Example of a fuzzy rating scale-based psychometric study by Hesketh

et al. (1988)

In psychometric studies the semantic differential (Osgood et al., 1975) has
been widely used to rate a variety of stimuli and attitudes. That can be adapted
to provide a fuzzy rating scale which may be graphically represented on Cartesian
axes. For instance, a study carried out by Hesketh and collaborators (Hesketh
et al., 1988) was as follows.

Several occupations were chosen to represent levels of prestige and levels of
sex-type. For each of them, five anchors were developed to measure prestige and
three to measure sex-type (Figure 1 reproduces these anchors).
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The combination of the eight scales and the occupations was randomized,
so that respondents were asked how they thought people generally viewed each
occupation in relation to the scales. An interactive computerized fuzzy graphic
rating scale was designed to get the responses.

In this particular study respondents were asked to consider triangular fuzzy
numbered responses by indicating where the ‘∨’ pointer (i.e., the upper vertex)
might fall between the two anchors, and then which the spread to the left and
the right were by using left and right arrow keys. The responses were referred
to the interval [0, 100] (see Figure 2).

The computerized graphic rating procedure was explained to respondents
using a trial occupation not included in the stimuli. The opportunity was used
to ensure that respondents understood that the fuzzy rating represented their
estimate of how people generally view occupations.

In summary, the fuzzy rating scale provides a mathematical language which,
in a rather friendly way, allows capturing and managing the imprecision associ-
ated with many experimental data (say, those related to perceptions, opinion,
ratings, etc.). The quantitative, though not numerical, management using the
fuzzy rating scale is richer and more expressive than natural language, since it
allows for a continuum of modifiers and nuances. Further, the fuzzy rating lends
itself better than the linguistic scale to statistical handling.

0                                                                                          100 

1 

Figure 2: Representation of a triangular response by Hesketh et al. (1995)

3. How random fuzzy sets?

As we have indicated, random fuzzy sets were introduced by Féron (1976ab,
1979) in a double way: as a Borel-measurable function (i.e., following Fréchet’s
approach), and as a levelwise extension of random sets. Féron sketched the guid-
ing idea in the notion, but without specifying some key terms like the involved
metrics. This specification was made by Puri and Ralescu (1986).

Let F(Rp) be the class of fuzzy subsets Ũ : Rp → [0, 1] such that Ũα is
compact for each α ∈ [0, 1] and Ũ1 ̸= ∅. In other words, F(Rp) is the class of
normalized upper semicontinuous elements of [0, 1]R

p

with bounded 0-level (i.e.,
with bounded ‘support set’).
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Definition 3.1. Let (Ω,A, P ) be a probability space. A random fuzzy set (or
fuzzy random variable in Puri and Ralescu’s sense) associated with (Ω,A, P ) is
a mapping X : Ω → F(Rp) such that for each α ∈ [0, 1] the set-valued mapping
Xα : Ω → P(Rp) (with Xα(ω) =

(
X (ω)

)
α
) is a random compact set.

Random sets were rigorously formalized as random elements of a space of
sets by Matheron (1975), although informal instances of the notion go back
several decades to Kolmogorov and Robbins. In this way, Matheron stated the
fundamentals of the theory of random closed sets, as well as the appropriate
model and basic tools within the probabilistic setting. In Molchanov (2005) one
can find a wide and quite updated monograph on random sets.

If K(Rp) is the class of the nonempty compact subsets of Rp and (Ω,A, P ) is a
probability space, then a mappingX : Ω → K(Rp) is said to be a random compact
set associated with the probability space if the graph G(X) = {(ω, x) : x ∈
X(ω)} is in the product σ-algebra A ⊗ BRp . Equivalently (see, for instance, Hiai
and Umegaki (1977)), X is said to be a random compact set if X is measurable
with respect to the Borel σ-algebra of the Hausdorff metric on K(Rp) given by

dH(A,B) = max

{
sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥a− b∥
}
,

where ∥ · ∥ is the Euclidean norm in Rp.

Remark 3.1. Particular cases of random sets/fuzzy sets frequently considered
in practice are those taking on convex values. More concretely, when K(Rp) is
replaced by Kc(Rp) = {A ∈ K(Rp) : A convex set} we refer to random convex
compact sets. The convexity of fuzzy sets is defined in terms of the convexity
of their α-levels (and thus coincides with quasiconcavity, not with the usual
convexity of functions), so that the class of the convex compact normal fuzzy
values is

Fc(Rp) = {Ũ ∈ F(Rp) : Ũα ∈ Kc(Rp) for allα ∈ [0, 1]}.

Many of the developments on random fuzzy sets, especially those related to
Statistics, assume their convexity.

Remark 3.2. Although Euclidean spaces are most commonly used, the concept
of a random fuzzy set can be established in more general spaces, like separable
Banach spaces (see, for instance, Puri and Ralescu (1991), Colubi et al. (2001),
Li et al. (2002)) or metric spaces (Terán, 2013). The compactness assumption
has been removed in some studies too (e.g. Li and Ogura (1999), Ogura and Li
(2001)).
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In addition to the levelwise measurability in Definition 3.1, Puri and Ralescu
considered also to define random fuzzy sets as Borel measurable functions, as
suggested also by Féron and in agreement with Fréchet’s approach. Thereby,
notions like the induced distribution, independence and others are inherited
from those in the sample space. In this respect, Puri and Ralescu (1985) define
a random fuzzy set associated with the probability space (Ω,A, P ) as a mapping
X : Ω → F(Rp) which is measurable with respect to the Borel σ-algebra of the
metric

d∞(Ũ , Ṽ ) = sup
α∈[0,1]

dH(Ũα, Ṽα)

in F(Rp) (see, also, Klement et al. (1986)).
(F(Rp), d∞) is a complete non-separable metric space (Klement et al., 1986).

Colubi et al. (2001, 2002), Kim (2002) and Terán (2006) established that d∞
measurability implies levelwise measurability, with equivalence if and only if the
range of the RFS is essentially d∞-separable. Based upon results by Colubi et
al. (2001, 2002) and Kim (2002), one can characterize RFSs using a complete
separable metric space as those measurable with respect to the Borel σ-field of
the Skorohod metric

dS(Ũ , Ṽ ) = inf
λ∈Λ

max

{
sup

α∈[0,1]
|λ(α)− α| , sup

α∈[0,1]
dH(Ũα, Ṽλ(α))

}
,

where Λ is the class of increasing bijections from [0, 1] to [0, 1].
When we deal with convex fuzzy values (i.e. we work on Fc(Rp)), other

equivalences to the levelwise measurability can be stated in terms of metrics like
e.g. Krätschmer (2001) and Trutschnig et al. (2009) (see González-Rodŕıguez et
al. (2012) for a detailed study on this equivalence and some interesting implica-
tions).

Let Sp−1 denote the unit sphere of Rp. The support function of Ũ ∈ Fc(Rp)
(see Puri and Ralescu, 1985) extends levelwise the notion of the support function
of a set (see, for instance, Castaing and Valadier (1977)) and is given by the
mapping sŨ : Sp−1 × (0, 1] → R defined by

sŨ (u,α) = sup
v∈Ũα

⟨u, v⟩

for all u ∈ Sp−1,α ∈ (0, 1], ⟨·, ·⟩ denoting the inner product on Rp. In general,
sŨ (u,α) represents the signed (i.e., oriented) distance from 0 ∈ Rp to the sup-
porting hyperplane of Ũα which is orthogonal to u. Figures 3 and 4 show the
graphical interpretation of the support function of a level set in dimension p = 1
and p = 2, respectively.
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Figure 3: Support function of a level set. Case p = 1, S0 = {−1, 1}

Figure 4: Support function of a level set. Case p = 2, S1 = circumference (center
= (0, 0), radius = 1)

The support function of any Ũ ∈ Fc(Rp) can be expressed in accordance with
its mid/spr decomposition, given by

sŨ = mid sŨ + spr sŨ

where, for all u ∈ Sp−1 and α ∈ (0, 1], Πu Ũα is the projection of Ũα over the
direction u ∈ Sp−1 and

mid sŨ (u,α) =
sŨ (u,α)− sŨ (−u,α)

2
= mid-point/center of Πu Ũα,

spr sŨ (u,α) =
sŨ (u,α) + sŨ (−u,α)

2
= spread/radius of Πu Ũα.

On the basis of this representation, Trutschnig et al. (2009) introduced in a more
general space (allowing unbounded 0-level for the fuzzy values) the following
metric:

Definition 3.2. Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous proba-
bility measure on ([0, 1],B[0,1]) with the density function being positive in (0, 1).
Then, the (θ,ϕ)-metric on Fc(Rp) is the mapping Dϕ

θ : Fc(Rp) × Fc(Rp) →
[0,+∞) given by

Dϕ
θ (Ũ , Ṽ ) =

√(
∥mid sŨ −mid sṼ ∥ϕ

)2
+ θ

(
∥spr sŨ − spr sṼ ∥ϕ

)2
,
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where

∥f − g∥ϕ =

√∫

(0,1]

∫

Sp−1

[f(u,α)− g(u,α)]2 dλp(u) dϕ(α),

where λp denotes the uniform distribution on Sp−1.

Remark 3.3. The Dϕ
θ metric on Fc(Rp) is defined so that, for each level, the

choice of θ allows us to weight the effect of the deviation between spreads (which
could be intuitively translated into the difference in ‘shape’ or ‘imprecision’) in
contrast to the effect of the deviation between mid’s (which can be intuitively
translated into the difference in ‘location’).

Trutschnig et al. (2009) and González-Rodŕıguez et al. (2012) proved

Theorem 3.1. The metric Dϕ
θ satisfies

i) (Fc(Rp), Dϕ
θ ) is a separable metric space.

ii) An F(Rp)-valued mapping is an RFS if, and only if, it is measurable with
respect to the Borel σ-field of the metric Dϕ

θ on Fc(Rp).

Observe that Dϕ
θ identifies each element of Fc(Rp) with an element of the

Hilbert space

H = L2(Sp−1 × (0, 1],λp ⊗ ν)⊕2 L2(Sp−1 × (0, 1], θ · (λp ⊗ ν)),

where ν denotes the uniform distribution on (0, 1]. Krätschmer (2001) also pre-
sented a similar approach, although not through the mid/spread decomposition.

Remark 3.4. In case the 0-level of the fuzzy values is allowed to be unbounded,
as in Trutschnig et al. (2009) or González-Rodŕıguez et al. (2012), the metric
space in Theorem 3.1 i) becomes complete.

On the other hand, one can consider on F(Rp) the usual fuzzy arithmetic
based on Zadeh’s extension principle (Zadeh, 1975).

Definition 3.3. Given Ũ , Ṽ ∈ F(Rp) and γ ∈ R, the sum of Ũ and Ṽ is defined
as the fuzzy set Ũ + Ṽ ∈ F(Rp) such that

(Ũ + Ṽ )(t) = sup
y+z=t

min
{
Ũ(y), Ṽ (z)

}

or, equivalently and based on Nguyen (1978), for each α ∈ [0, 1]

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα =
{
y + z : y ∈ Ũα, z ∈ Ṽα

}
.

The product of Ũ by the scalar γ is defined as the fuzzy value γ · Ũ ∈ F(Rp)
such that

(γ · Ũ)(t) = sup
y∈Rp : y=γt

Ũ(y) =

⎧
⎪⎨

⎪⎩

Ũ
(

t
γ

)
if γ ̸= 0

1{0}(t) if γ = 0
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or, equivalently and based on Nguyen (1978), for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
.

Figures 5 and 6 display graphically the sum and the product by a scalar when
p = 1.

 

 

 

 

 

 

  

  

Ũ Ṽ

α

Ũα Ṽα (Ũ + Ṽ )α

Ũ + Ṽ

Figure 5: Sum of two elements in Fc(R)

⎪⎪⎩ ˜ ˜

 

 

 

 

 

 

 

  

  

Ũ

α

Ũα

−1.5 · Ũ

(−1.5 · Ũ)α

Figure 6: Product by a real number of an element in Fc(R)

Remark 3.5. As is clear from the figures, the arithmetic above differs from
the usual arithmetic with functions. In general, the application of the function
arithmetic in Fc(Rp) would lead to elements out of this space and the fuzzy set
semantics would be lost. This is why developments in Functional Data Analysis
have not been applied directly to fuzzy data.

Remark 3.6. The space F(Rp) of fuzzy values, endowed with the operations
above, (F(Rp),+, ·), has not a linear space (only a convex cone) structure, since
in general fuzzy sets cannot be subtracted. This is due to the fact that the sum
extends level-wise the Minkowski sum of sets which is not linear: {0, 1}+ (−1) ·
{0, 1} ≠ {0}.

When we constrain again to the convex case, the following results can be
obtained (González-Rodŕıguez et al., 2012).

Theorem 3.2. Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous probability
measure on ([0, 1],B[0,1]) with the density function being positive on (0, 1).
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i) The mapping s : Ũ ∈ Fc(Rp) 0→ (mid , spread) ∈ H states an isometrical
embedding of Fc(Rp) (with the fuzzy arithmetic and Dϕ

θ ) onto a convex
cone of the Hilbert space H.

ii) X is an RFS if, and only if, sX = s ◦ X : Ω → H is a random element of
H.

iii) For each α ∈ (0, 1] and u ∈ Sp−1, the real functions mid sX (u,α) and
spr sX (u,α) are real random variables.

Remark 3.7. In case the 0-level of the fuzzy values is allowed to be unbounded,
the closeness of the convex cone in Theorem 3.2 holds (see Trutschnig et al.
(2009), and González-Rodŕıguez et al. (2012)).

Remark 3.8. An immediate and crucial implication is that data in the set-
ting of fuzzy convex values with the fuzzy arithmetic and the metric Dϕ

θ can
be systematically translated into the setting of functional data with the usual
arithmetic and a Hilbert norm (see also Krätschmer, 2004, for related work).

When analyzing fuzzy data, or the corresponding RFSs, the two most usual
summary measures are the mean and variance. The notions have often been
based on Fréchet’s abstract approach. The mean value of an RFS can be pre-
sented in three equivalent ways, either (Puri and Ralescu, 1986) as a levelwise
extension of the set-valued expectation of Aumann (1965), or (in the convex case)
as the Fréchet mean (Körner, 1997) or as induced from the Bochner expectation
in a Banach space via an appropriate embedding. Thus,

Definition 3.4. Given a probability space (Ω,A, P ) and an associated RFS X :
Ω → F(Rp), the (Aumann type) mean value or expected value of X is the fuzzy
value Ẽ(X ) ∈ F(Rp), if it exists, such that for all α ∈ (0, 1]

(
Ẽ(X )

)

α
=

{
E(X) | X : Ω → Rp, X ∈ L1

Rp(Ω,A, P ), X ∈ Xα a.s. [P ]
}
.

If X : Ω → Fc(Rp), then the mean value can be equivalently defined as the fuzzy
value Ẽ(X ) ∈ Fc(Rp) such that

sẼ(X ) = E(sX ),

where the right-hand side is a Bochner integral. And, also, as the Fréchet mean

Ẽ(X ) = arg min
Ũ∈Fc(Rp)

E

([
Dϕ

θ (X , Ũ)
]2)

(provided the expectation in the right-hand side is finite).

The mean value of an RFS is well-defined when the RFS is integrably bounded
(see Puri and Ralescu, 1986), i.e. there exists h ∈ L1(Ω,A, P ) such that
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sup
x∈X0

∥x∥ ≤ h almost surely. The mean value of an RFS satisfies several valuable

properties similar to those in the classical case.

Proposition 3.1. Ẽ is equivariant under affine transformations: if γ ∈ R,
Ũ ∈ F(Rp) and X is an integrably bounded RFS, then

Ẽ(γ · X + Ũ) = γ · Ẽ(X ) + Ũ .

Proposition 3.2. Ẽ is additive: for RFSs X and Y on the same probability
space and such that Ẽ(X ) and Ẽ(X ) exist,

Ẽ(X + Y) = Ẽ(X ) + Ẽ(Y).

Proposition 3.3. Ẽ is coherent with the usual fuzzy arithmetic, so that if X is
a convex-valued RFS and X (Ω) = {x̃1, . . . , x̃m} ⊂ Fc(Rp), then if pi = P

(
{ω ∈

Ω : X (ω) = x̃i}
)
we have

Ẽ(X ) = p1 · x̃1 + . . .+ pm · x̃m.

The above mentioned definition for the mean value is supported by Strong
Laws of Large Numbers for FRS’s (cf., Colubi et al., 1999, Molchanov, 1999,
Proske and Puri, 2003, Li and Ogura, 2006, Terán, 2010, etc.). The mean value
is the almost sure limit of the ‘sample fuzzy mean’. Further limit theorems
include the Central Limit Theorem (Li et al., 2003, Terán, 2007), the Law of the
Iterated Logarithm (Colubi, 2002) and the Large Deviation Principle (Terán,
2006, Ogura and Setokuchi, 2009).

Proposition 3.4. Let (Ω,A, P ) be a probability space, X : Ω → F(Rp) an
integrably bounded RFS and

{
Xn

}
n
a sequence of independent RFSs identically

distributed as X . If Xn denotes the ‘sample fuzzy mean’ Xn =
1

n
·(X1 + . . .+ Xn) ,

then
lim
n→∞

d∞
(
Xn, Ẽ(X )

)
= 0 a.s. [P ].

Conversely, if
{
Xn

}
n
, with Xn : Ω → Fc(Rp), is a sequence of pairwise inde-

pendent RFSs which are identically distributed as an RFS X , and there exists

Ũ ∈ F(Rp) so that lim
n→∞

d∞
(
Xn, Ũ

)
= 0 a.s. [P ], then, X is integrably bounded

and Ũ = Ẽ(X ).
In formalizing the variance of an RFS in the convex case, Fréchet’s ap-

proach was considered (see Körner (1997), Lubiano et al. (2000), Körner and
Näther (2002), González-Rodŕıguez et al. (2012))). With this approach the
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variance can be interpreted as a measure of the ‘least squares error’ in approx-
imating/estimating the values of the RFS by a non-random fuzzy set. When
considering the metric space (Fc(Rp), Dϕ

θ ) in the Fréchet approach, one defines

Definition 3.5. Given a probability space (Ω,A, P ) and an associated integrably
bounded convex-valued RFS X , the (θ,ϕ)-Fréchet variance of X is the real num-
ber, if it exists, given by

σ2
X = E

([
Dϕ

θ

(
X , Ẽ(X )]

)]2)

or, equivalently,

σ2
X = Var(sX ) = Var(mid sX ) + θVar(spr sX ).

As suggested by the last expression in terms of variances of real random
variables, the (θ,ϕ)-Fréchet variance satisfies the usual properties. In this way,

Proposition 3.5. σ2
X ≥ 0 with σ2

X = 0 if, and only if, there exists Ũ ∈ Fc(Rp)
such that X = Ũ a.s. [P ].

Proposition 3.6. If γ ∈ R, Ũ ∈ Fc(Rp) and X is an RFS associated with the
probability space (Ω,A, P ) and such that σ2

X exists, then

σ2
γ·X+Ũ

= γ2 · σ2
X .

Proposition 3.7. For independent RFSs X and Y associated with the same
probability space (Ω,A, P ) and such that σ2

X and σ2
Y exist, we have that

σ2
X+Y = σ2

X + σ2
Y .

To illustrate some of the key ideas in this section we will consider a real-life
example.

Example 3.1. A wide study about the progress of a reforestation performed
around two decades ago in Huerna Valley (between the provinces of Asturias
and León, in the North of Spain) is being carried out by the Research Institute
INDUROT (University of Oviedo). In this study, experts were interested in
rating, among others, the quality of trees. The quality varies from tree to tree,
rating can even vary from expert to expert, and quality assessments are naturally
imprecise.
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Traditionally, the way to proceed was to consider a Likert 1-5 (or 1-7) scale
and the associated integer codings. Recently, environmental experts were in-
formed of the possibility of rating using fuzzy numbers with (for instance) 0-level
[0,100] (0 meaning the lowest quality, 100 the highest).

To facilitate the graphical representation, they were recommended to draw
trapezoidal fuzzy numbers, by stating for each tree the 1-level (or closed interval
of values which are viewed as being ‘fully compatible’ with their rating of the
quality of the tree), the 0-level (or closed interval of values such that all those in
the corresponding open interval are viewed as being ‘compatible to some extent’
with their rating of the quality of the tree), and finally the two closed intervals
are linearly ‘interpolated’ to build a trapezoidal fuzzy set. Figure 7 displays a
dataset of quality ratings of 10 birches (Betula celtiberica) from an expert.

Figure 7: Above, graphical dataset rating the quality of 10 birches in a refor-
estation in Valle del Huerna (Asturias, Spain). Below, their sample mean.

If we assume Ω to be the sample of 10 birches, then the rating of quality of
the trees can be formalized as an RFS taking on 10 different values with prob-
abilities (actually, sample frequencies) equal to 1/10. The mean value of this
RFS (actually, the sample mean quality rating) is graphically displayed on the
bottom of Figure 7, and the Fréchet variance for ϕ the uniform distribution and
θ = 1/3 equals

σ2
X =

1

10

10∑

i=1

[
Dν

1/3(X (ωi),X10)
]2

= 525.5576.

Notice that for Ũ , Ṽ ∈ Fc(R)

Dν
1/3(Ũ , Ṽ ) =

√∫

(0,1]

∫

[0,1]

[
Ũ [τ ]
α − Ṽ [τ ]

α

]2
dν(τ) dν(α),
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where Ũ [τ ]
α = τ · sup Ũα + (1− τ) · inf Ũα.

Other summary measures/parameters associated with the distribution of an
RFS or several RFSs have been introduced (see, among others, the covariance
of two RFS defined by Körner and Näther (2002), González-Rodŕıguez et al.
(2009), Blanco-Fernández et al. (2013, 2014), or the inequality of an RFS Gil et
al. (1998), Alonso et al. (2001)).

4. Literature on random fuzzy sets

This section undertakes a brief bibliometric description of the literature on
RFSs. To this purpose, a thorough literature search of papers published be-
fore 2013 (actually, before the 15th of December 2013) on the topic has been
conducted by using Thomson–Reuters’s Web of Science (WoS) and Elsevier’s
SCOPUS.

For the first source, the search is constrained to articles in JCR-SCI jour-
nals for which the topic appears as “random fuzzy set(s)” or “fuzzy random
variable(s)” (minority variants like “fuzzy valued random variable(s)”, “fuzzy set
valued random variable(s)”, “random upper semicontinuous function(s)”, “fuzzy
random set(s)”, “fuzzy random element(s)” or “random fuzzy variable(s)” have
been added to the search). For the second one, the search used the same inputs
within the title, abstract or keywords but referred to different types of documents
(including conference proceedings and others).

Regarding the global chronological evolution of the topic, by looking at Fig-
ures 8 and 9 one can conclude that the research on RFSs, although still dealing
with a rather specialized subject, is becoming more and more active.

Figure 8: Chronological evolution of articles published in JCR-SCI journals on
the topic of RFSs. Information Source: Web of Science



Random fuzzy sets: why, when, how 21

For a more detailed analysis on the scientific evolution, we have considered
a rather personal nonfuzzy classification of the articles from the WoS search,
the classes being the following: probabilistic aspects of RFSs (mostly referring
to measurability, limit theorems, embedding results, etc.); statistics with RFSs
(mostly referring to statistical inferences on the means, and regression analysis);
applications of RFSs to other fields (like optimization, reliability, etc.); oth-
ers (concerning related concepts, tools and developments but referring to non-
probabilistic approaches). The evolution of the first three categories is shown in
Figure 10.

Figure 9: Chronological evolution of documents on the topic of RFSs. Informa-
tion Source: SCOPUS

Probabilistic aspects (around 37% of the articles) have received an earlier at-
tention starting by 1976 with Féron’s contributions and continuing along the late
seventies and eighties with Kwakernaak’s (1978, 1979), Puri and Ralescu (1985,
1986), Kruse and Meyer (1987), etc. Statistics and Applications (around 25%
and 38% of the articles, respectively) start receiving attention by mid nineties
and are gradually rising since 2000. It should be clarified that, in accordance
with our subjective classification, applications include a very wide range of top-
ics, such as Mathematical Programming, Renewal Processes, Portfolio Selection
and so on.
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Figure 10: Separate chronological evolution of articles published in JCR-SCI
journals on the main subjects related to RFSs. Information Source: Web of
Science

In the WoS data, the top five countries by number of papers have been China
(≃ 29.8%), Spain (≃ 14.8%), Japan (≃ 10.8%), USA (≃ 8.5%) and Germany
(≃ 6.5%), a Spanish institution leading the list of research organizations on the
topic.

RegardingWeb of Science categories, Statistics & Probability is first (32.1%),
Mathematics-Applied second (29.6%), the third and fourth positions correspond
to different sections of Computer Science (Theory and Methods, and Artificial
Intelligence with 21.7% and 20.8%, respectively) and the fifth position is associ-
ated with Operation Research & Management Science (11.9%).

Finally, concerning source titles the top five journals are Fuzzy Sets and
Systems, Information Sciences, the European Journal of Operational Research,
the International Journal of Approximate Reasoning, and IEEE Transactions on
Instrumentation and Measurement, all of them on the top 25 % of their JCR-SCI
categories.

5. Remarks on the statistical analysis of fuzzy data based
on random fuzzy sets

As we have commented in Section 1, results, methods and conclusions related
to random elements must often be established ad hoc depending on the type of
values random elements take on. In this respect, in managing fuzzy data and
random fuzzy sets several key distinctive features should be taken into account:

• because of the nonlinearity of the space F(Rp), it is not possible to state an
always well-defined ‘difference’ between fuzzy values preserving the main
properties of the difference between real numbers (more concretely, with
Ṽ + (Ũ − Ṽ ) = Ũ);

• fuzzy values cannot be totally ordered in a way meaningful for all applica-
tions;
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• there are not realistic general parametric models for RFSs (although some
attempts have been made in this matter, like the normal definition stated
by Puri and Ralescu, 1985, they become unrealistic or too restrictive in
practice);

• the lack of Central Limit Theorems for RFSs which are directly applicable
for inferential purposes (some CLTs for RFSs have been established, in
which the normalized distance between the sample and the population
means converges in law to the norm of a Gaussian random element of a
larger Banach space including the support functions).

To overcome the difficulties arising from these distinctive features, a crucial
role is played by appropriate metrics between fuzzy data, like the (θ,ϕ)-distance
and, for the inferential developments, by the existence of CLTs for Hilbert space-
valued random elements, particularly the bootstrapped CLTs ones (see, for in-
stance, Giné and Zinn (1990)).

Anyway, sometimes (see, for instance, González-Rodŕıguez et al. (2012)),
techniques developed for Functional Data Analysis can be particularized through
the support function connection to handling fuzzy data.

Blanco-Fernández et al. (2013, 2014) survey many of the discussed problems
and the methods for statistical analysis of fuzzy data based on random fuzzy sets.
Most of the concepts and methods described in these reviews can be applied by
using a recently developed R-package called SAFD (Statistical Analysis of Fuzzy
Data), which has been designed by Trutschnig and Lubiano (2012) to perform
statistical computations with RFSs. It is being updated periodically.

Former review papers, with different emphases, include those of Gil et al.
(2006), López-Dı́az and Ralescu (2006), Ogura and Li (2004), and Colubi et al.
(2007). Four books have been written which are primarily about random fuzzy
sets: Kruse and Meyer (1987), Bandemer and Näther (1992), Li et al. (2002),
and Möller and Beer (2004).
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[32] Körner, R. and Näther, W. (2002). On the variance of random fuzzy vari-
ables. In: Statistical Modeling, Analysis and Management of Fuzzy Data
(Bertoluzza, C., Gil, M.A. and Ralescu, D.A., eds.), 22–39. Physica-Verlag,
Heidelberg.

[33] Kosko, B. (1999). The fuzzy future: from society and science to heaven in
a chip. Harmony, New York.
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