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Dpto. Matemáticas para la Economı́a y la Empresa
Facultad de Economı́a
Universitat de Valencia

! francisco.ballestin@uv.es

Rosa Blanco

Dpto. de Estad́ıstica e Investigación Operativa
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Abstract

This paper deals with two resource-constrained project scheduling prob-

lems with due dates in the activities, the TardinessRCPSP and the Dead-

lineRCPSP. In the TardinessRCPSP the objective is total tardiness min-

imisation, whereas the DeadlineRCPSP tries to minimise the project length

while fulfilling the due date for each activity. In the first part of the paper,

an algorithm called hybrid genetic algorithm with transmitted justification

(HGATJ) is developed for both problems. This algorithm is based on an

algorithm for the classical Resource Constrained Project Scheduling Prob-

lem (RCPSP), but uses an extra gene in the codification to control the use

of a key technique called justification. Computational results show that

the new approach outperforms the heuristics proposed for these problems

in a recent paper. The second part of this article adapts the HGATJ to

(heuristically) solve the multi-objective problem combination of the Tardi-

nessRCPSP and the DeadlineRCPSP. A path-relinking phase is introduced

in the algorithm to produce a better Pareto front.
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1. Introduction

When executing a project, resources have to be allocated to precedence-
related activities so that one or several objectives are met. More often than not,
some tasks should or must be finished by a certain time, a due date or deadline.
This paper proposes an algorithm for two project scheduling problems involv-
ing due dates, the TardinessRCPSP and the DeadlineRCPSP. In both problems,
precedence relations are of the type finish to start and activities consume several
types of renewable resources, i.e., resources that are available at a constant and
fixed rate throughout the project duration. In the TardinessRCPSP, the objec-
tive is total tardiness minimisation, whereas in the DeadlineRCPSP the due dates
are strict (deadlines) and the objective is makespan minimisation. The second
problem is much harder than the first, in the sense that finding a feasible solution
is already NP-hard (Garey and Johnson, 1979). The DeadlineRCPSP is a gen-
eralisation of the well-known Resource Constrained Project Scheduling Problem
(RCPSP), with the fulfilment of the due dates as extra restrictions. There are
many other extensions of the RCPSP, we refer to the surveys of Özdamar and
Ulusoy (1995), Herroelen et al. (1998) and the books by Neumann et al. (2003)
and Józefowska and Weglarz (Eds.) (2006). Although being an essential char-
acteristic of real projects, little attention in relation with the RCPSP has been
paid to due dates. Few researches have studied due dates in related problems
like Vanhoucke et al. (2001) in the RCSPWET (resource-constrained project
scheduling problem with weighted earliness-tardiness) or Viana and Pinho de
Sousa (2000) in a problem with multiple modes per activity, non-renewable re-
sources and three objective functions. In Kis (2005), the resource usage of each
activity may vary over time proportionally to its varying intensity, whereas in
Drezet and Billaut (2008), activity requirements are time-dependent and em-
ployees (resources) have different skills. Klein and Scholl (2000) develop an
exact procedure for the generalized RCPSP by considering non-negative mini-
mum time lags and time-varying resource availabilities apart from release and
due dates.

The large number of referenced papers in the review of Gordon et al. (2002)
show that machine scheduling problems including due dates are of permanent
interest. All these factors support the further study of due dates in the RCPSP.

TardinessRCPSP and DeadlineRCPSP are denoted by PS | prec | T and PS
| temp | Cmax respectively in the notation of Brucker et al (1999) or m,1 | cpm
| T and m,1 | cpm,δj | Cmax in the notation of Herroelen et al (1998), with T
given by

T =
n−1∑

j=2

max (0, sj+dj−ddj)

where n-2 is the number of real activities and 1 and n are the dummy source
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and sink of the project. Besides, sj , dj and ddj are the starting time, duration,
and due date of activity j, respectively. S is the solution or schedule formed by
the starting times si. We suppose that there are no due dates assigned to the
dummy activities 1 and n.

In Ballest́ın et al. (2006), the TardinessRCPSP and DeadlineRCPSP were
studied. The performance of well-known RCPSP heuristics – priority rules,
sampling procedures and metaheuristics – was compared with the results of new
versions that took due dates into consideration. One of the techniques that
exhibited good results was the justification. The justification of an activity to
the right (left) consists in scheduling the activity as late (early) as feasible, taking
into consideration precedence and resource restrictions. The justification to the
right (left) of a schedule S calculates a new schedule S’ by justifying the activities
to the right (left) in a certain order. A schedule S can be first justified to the
right, obtaining S’ and then S’ can be justified to the left, obtaining S”. S” is
then called the Double Justification of S, DJ(S). The justification, also called
forward-backward pass or improvement, was introduced in 1964 by Wiest and
has been used, among others, by Li and Willis (1992) and Tormos and Lova
(2001). Valls et al. (2005) showed the potential of DJ by incorporating it into a
wide range of algorithms for the RCPSP, increasing their solution quality while
maintaining the number of schedules calculated. Nowadays many of the best
heuristic algorithms for the RCPSP apply some kind of justification. One of
these top algorithms is HGA (Hybrid Genetic Algorithm), presented in Valls et
al. (2005).

There are several types of justification, depending on the order chosen for the
activities to be justified (Valls et al., 2006). The justification used in the RCPSP
is the justification by extremes. At each of the n iterations of the procedure to
the right (left), the activity with the largest finish time (smallest start time) is
selected to be justified. In the justification by eligibles, Valls et al. (2006), other
priority rules to select the activity to be shifted are allowed. Once due dates
are defined, new rules can be defined to take advantage of the new information.
Ballest́ın et al. (2006) compared several tailored rules and showed that the use
of the best rules outperformed using the justification by extremes.

The contribution of this paper is threefold. First of all, to create a new form
of justification, called justification with due dates, that goes further in the use of
the information given by the due dates than the justification by eligibles (section
2). Secondly, to incorporate this technique in an adaptation of HGA (section
3), creating HGA with transmitted justification (HGATJ). Section 4 contains
the results of this algorithm and the comparison with the best algorithms in the
literature. Finally, in many real applications, the manager still wants to minimise
the makespan even if not all due dates can be fulfilled. I.e., we are dealing with
a multiobjective problem where we want to minimise the total tardiness and
the makespan. The third goal of the paper is to develop a heuristic algorithm
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based on HGATJ capable of providing (an approximation of) the Pareto front
for this problem. Several enhancements have been introduced in a standard
adaptation. Section 5 describes the standard and improved algorithm, whereas
section 6 compares their approximations of the Pareto front.

2. The justification with due dates

The justification has been adapted to other generalisations of the RCPSP,
e.g. the RCPSP with preemption (Ballest́ın et al., 2009) and the multi-mode
RCPSP with maximal time lags, the MRCPSP/max (Barrios et al., 2009). In
each case, the additional characteristics of the problems could be used to modify
the justification and produce a better improvement method. As commented
upon above, the justification by eligibles with specific rules proved in Ballest́ın
et al. (2006) its superiority in both TardinessRCPSP and DeadlineRCPSP to the
usual justification by extremes. However, due dates information can be further
exploited to achieve an even bigger improvement. In this section we create a
new way of justification, the justification with due dates.

Let S be a schedule of the problem and i an activity starting in si. We
say that i is delayed in S if si + di > ddi. Non-delayed activities are then those
activities that finished no later than their due dates in S (si + di ≤ ddi). We will
omit the “in S” if the solution we are referring to is clear. Clearly, if an activity i
is non-delayed in S, it does not affect (negatively) the objective function of S in
the TardinessRCPSP, since (si + di - ddi)+ = 0. In the process of justifying S
to the right, obtaining S’, there is an iteration in which we justify i to the right.
In that moment, in all types of justification considered up to now, we schedule i
as late as possible, let us say to si’. If si’+di > ddi, and S and S’ share the same
makespan, i will negatively affect T(S’). This setback may be overcome when we
justify S’ to the left and obtain S”, because i may start in S” before it does in S’
or even in S. However, this is not always the case, and we can end up with T(S”)
>T(S). This was already noted in Ballest́ın et al. (2006), where an example was
shown. Analogously, the usual justification may transform feasible solutions in
the DeadlineRCPSP into unfeasible ones.

But the goal/restriction of the problem, si + di ≤ ddi, suggests a way to
avoid this drawback. When we justify a non-delayed activity to the right, we
will force the activity i to be justified only until its due date, so that si’+ di = ddi
at the most. We will call these restrictions non-delayed restrictions. They do not
apply to delayed activities because they already finish after their due dates. But
moving a delayed activity to the right affects negatively the objective function
or the feasibility in our problems, too. We can also impose restrictions on the
delayed activities for the justification to the right, called delayed restrictions:
when justifying to the right, do not shift delayed activities at all. Summing
up, we can introduce n restrictions in the justification, one for each activity, no
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Figure 1: Project for the justification with due dates

matter which schedule we are working with. We define the justification with due
dates as the justification that works with these n restrictions. As far as we know,
this is the first time that restrictions are imposed in the justification.

The following result holds: if the justification with due dates is applied, then
T(DJ(S)) ≤ T(S’) ≤ T(S) ∀S. So, this procedure is an improvement function in
the TardinessRCPSP and an improvement function that transforms feasible solu-
tions into feasible solutions in the DeadlineRCPSP. As commented upon above,
this contrasts with the non-adapted justification, which may worsen solutions in
the former problem or make them unfeasible in the latter.

The new justification is able to improve schedules that cannot be improved
by the other commented justification types. The schedule S of Figure 2 is active
in the project depicted in Figure 1. We consider the problem with dd6 = 7
and dd11 = 8 as the only non-trivial due dates. With these due dates we have
T(S) = 1. If we use the justification with due dates and justify S according to
the activities’ ends, we justify 6 until its due date, finishing it in 7. Then we
can justify 12 to [5,8], 4 to [3,5] and 2 to [1,2], obtaining S’ (Figure 3). Since
the first activity of S’ begins in 1, we can subtract 1 from the beginning from
every activity. We obtain a schedule where the end of 11 is 8 (and activity 6
remains non-delayed), so its objective function in the TardinessRCPSP is 0. In
the DeadlineRCPSP, S is unfeasible whereas S’ is feasible. The only schedule
S” attainable by the non-adapted justification to the right (Ballest́ın, 2002) is
depicted in Figure 4. No solution better than S can be reached from S’ when
justifying to the left.

Nevertheless, the justification with due dates also presents some drawbacks,
as shown in the following example. We consider the project in Figure 5, with
dd2 = 2, dd4 = 1 and dd5 = 2 as the only non-trivial due dates. The sequence
S2 of figure 6 is active for this project. If we apply the justification by extremes
to S we obtain S2’, the schedule of Figure 7. The objective function of S2’ in
the TardinessRCPSP is 0 < 1 = T(S2), once we have subtracted one from the
beginning of every activity. In the DeadlineRCPSP, S2’ is feasible while S2 is not.



130 F. Ballest́ın, R. Blanco

Figure 2: Active schedule S for the project of Fig. 1

Nonetheless, the justification with due dates is not able to move any activities in
S2, due to resource, non-delayed or delayed restrictions. Hence, the justification
with due dates is not able to improve S2.

This exemplifies the major drawback of the new procedure. The restrictions
on the activities restrain, sometimes too much, the movements of activities to the
right, and consequently the new schedule and DJ(S) may not be very different
from the original. In these cases an improvement in the objective function is very
unlikely. To take advantage of the due dates but without being too restricted
we introduce the concept of justification with due dates with k restrictions. It
consists in applying the delayed and/or the non-delayed restrictions only to
k out of the n activities, whereas the rest of the activities are fully justified.
We will suppose that the k activities to which we impose the restrictions are
randomly chosen. Regretfully, the best k depends on the instance we are working
with, usually being a small (large) k better for instances with tight (loose) due
dates. Therefore we are going to use a self-adapting justification, which will be
introduced in section 3.

A new justification for the DeadlineRCPSP

The problem of finding feasible solutions is simple in the TardinessRCPSP
but NP-hard in the DeadlineRCPSP. Therefore we have introduced a new feature
in the justification with due dates to facilitate the finding of feasible solutions.
Let S be an unfeasible schedule. Until now, the justification never justifies the
last activity, n. This is equivalent to fix n in makespan(S) and to justify the rest
of the activities in the interval [0, makespan(S)]. This method is inherited from
the RCPSP, but the makespan is not so important while S is unfeasible. The
novelty we propose is to fix dd(n) : = max{makespan(S), max{ddi , i < n}} and
to justify the activities with the justification with due dates (with a given k) in
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Figure 3: Justification with due dates of S to the right

Figure 4: Usual justification of S to the right

[0, dd(n)]. The dummy activity n does not have a due date ddn and therefore
we work with dd(n). We will call this justification maxdd-justification, because
it justifies activities until the maximum of due dates (if it is greater than the
makespan). When dd(n) is equal to makespan(S), the new strategy is the same
as the justification with due dates. In the rest of the cases we have a bigger
interval to shift activities, thus creating gaps to shift activities that did not exist
previously.

We consider the project in Figure 8, with dd2 = 3 and dd3 = 1. The schedule
S3 of Figure 9 is unfeasible for the DeadlineRCPSP. S3 cannot be changed by
any of the justification types we have seen until now. So, DJ(S3) = S3 for
every justification. However, if we justify to the right according to the new
strategy, we fix n = 4 in t = 3 = max{ddi, i < n} = dd2. Thus, we can move
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Figure 5: Project for showing drawbacks of justification with due dates

Figure 6: Active Schedule S2 for project in Fig. 5

2 to [2,3], obtaining the schedule of Figure 10. Subtracting 1 unit from the
beginning of both activities, we obtain a feasible (and optimal) schedule for the
DeadlineRCPSP.

This new technique also has its drawbacks. The justification to the right
often shortens the makespan of a schedule and this may lead to a decrease
in the delay of the delayed activities. If we use the justification with k due
dates, justifying in [0,dd(n)] instead of [0,makespan(S)] decreases the possibility
of shortening the makespan of a given schedule S, even taking into account the
posterior justification to the left. So, this new technique is not very effective
if we want to minimise the makespan and we have already found a feasible
solution. Therefore we have incorporated the new technique in the algorithm
for the DeadlineRCPSP, but only until it finds a feasible solution. HGATJ
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Figure 7: Justification by extremes of S2

Figure 8: Project for maxdd-justification

for the DeadlineRCPSP works as follows. It applies the justification with due
dates (with the k transmitted via the solutions) fixing n in dd(n) until it finds a
feasible solution. Afterwards, it uses the usual justification with due dates (with
the correspondent k), fixing n in makespan(S).

3. HGA with transmitted justification

3.1. Description of HGA

Since HGA is already described in Valls et al. (2007), we are only going to
summarise it here. First we present the global scheme in Figure 11.

In each generation of the first phase, the size of the population is constant
and equal to POPsize where POPsize is an even integer. In each generation of
the second phase, the size of the population is constant and equal to POPsize/2
if this number is even, equal to POPsize/2 –1 otherwise. The number of sched-
ules generated in each phase is upwardly limited by nsche/2. Given nsche and
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Figure 9: Unfeasible Schedule S3 for project of Fig. 8

Figure 10: Maxdd-justification applied to S3

POPsize, it is easy to calculate niter so that this limit is not exceeded.

We are going to describe the essential aspects of HGA in the following sub-
sections.

Codification and S-SGS

To simplify the exposition of the algorithm, we will assume that HGA works
with so-called activity lists, although it works with a special type of them. An
activity list is a permutation of the activities that fulfils the precedence relation-
ships. The serial schedule generation scheme (S-SGS, Kolisch, 1995) transforms
an activity list λ in a schedule S(λ) by scheduling the activities in the order
of the list λ at their earliest precedence and resource-feasible start time. This
procedure generates active schedules. As happens in the RCPSP, there is always
an optimal active schedule for the TardinessRCPSP and the DeadlineRCPSP (if
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Figure 11: The HGA scheme

there are feasible solutions). Consequently, it is enough to work with activity
lists and the S-SGS to search in the correct solution space.

Peak crossover

The objective of the peak crossover operator is to exploit the knowledge of the
RCPSP to identify and combine those good parts of the solutions that have really
contributed to its quality. There is a clear relationship between a higher/lower
utilisation of resources throughout the project and the makespan of a solution.
A low utilisation of resources usually means scheduling the activities almost in
a serial way, something which lengthens the end of the project. The high use of
resources is therefore a desirable characteristic in a schedule. Each time interval
with a high use of resources (peak) corresponds to a set of activities that are
scheduled together, or equivalently, to a part of the activity list, a subactivity
list. The peak crossover selects a mother and a father. Then it detects the peaks
in the mother and introduces them in the empty activity list of the daughter.
The father determines the position of the remaining activities that are put before
and after each peak. The son is created exchanging the roles of the mother and
the father.

Initial population

We employ the regret based biased random sampling method, Drexl (1991),
together with the LFT (Latest Finish Time) priority rule and α = 1 to obtain
POPsize schedules. The DJ is applied to each of the schedules.

The 2-phase strategy

Given an activity list λ, the procedure we have implemented to construct a
population of nearby activity lists is a simplified version of that used in Valls et al.
(2003). The procedure generates POPsize/2 (or POPsize/2 - 1) schedules with
β = 1 - 20/n by applying the β-biased random sampling method , β-BRSM, to λ.
The neighbour’s population is obtained by first applying the double justification
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operator to each of the generated schedules and then obtaining their activity list
representations.

β-BRSM can be described as follows. Given an activity list λ, the method
makes use of the S-SGS. The following strategy is employed to select, in each
iteration, the next activity j to be scheduled. A random number p∈(0,1) is
generated. If p < β, then j is the eligible activity with the lowest position. An
activity is eligible if all its predecessors have been chosen. Otherwise, j is one
of the other eligible activities selected by biased random sampling (Kolisch and
Hartmann (1999)), and employing the positions as priority values in order to
obtain the selection probabilities. Note that the parameter β controls the extent
to which the new vector differs from the original.

3.2. Changes in the original algorithm

We have introduced two changes in the HGA to cope with the problems
with due dates, two elements that proved their usefulness in Ballest́ın et al.
(2006): the priority rule used in the calculation of the initial population and the
justification.

Calculation of the initial population

As we have commented upon above, LFT is the priority rule employed in
the sampling method in the first step of HGA to calculate the initial population.
This rule may be useful for the RCPSP, but does not take into account due dates.
The priority Earliest Due Date EDD schedules first those activities with smallest
due date. We have applied it with the Parallel SGS, another SGS different from
the Serial SGS. At each iteration of the Parallel SGS (Kolisch, 1995), a decision
time t is considered. The procedure starts as many activities as possible at t,
following some priority rule – in our case the EDD rule. The first decision time
is 0 and the rest of the decision times are the finish times of the activities. In
step 1 of HGATJ, half of the solutions are created with LFT + Serial SGS, the
rest of them with EDD + Parallel SGS.

Justification

HGATJ applies the justification with due date with k restrictions instead of
the justification by extremes of HGA. During the first computational tests, we
noted that for some instances it is better to use the justification with due dates
with big k’s – instances with loose due dates – and for others it is better low
k’s – instances with tight due dates. Summing up, the k is instance dependent.
We want an algorithm capable of adjusting the k to the instance it is working
with, without any previous information of the instance. To solve this difficulty
the codification of each solution in the HGATJ carries an extra gene, called the
justification gene. This gene contains, in general, the k with which the solution S
has been obtained after a double justification. Every time a solution S is created,
it is assigned a certain k; we’ll explain later on how. When the justification is
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applied to S, the justification with due dates with k restrictions is applied, thus
obtaining S’ = DJ(S). If T(S’) < T(S), the justification gene of S’ is set up to k.
So, as we have said, in general the justification gene corresponds to the k with
which the solution has been obtained. If T(S’) ≥ T(S), the justification gene
of S is randomly calculated. With this action we dismiss the original k. The
justification gene given to a solution S not obtained by justification depends on
how it is built. If S is the son (daughter) of a crossover between a father and a
mother, S inherits the justification gene from the father (mother). In the initial
population of the first and second phase, it is randomly calculated. We say
that the number of restrictions in the justification is transmitted through the
solutions and call the algorithm HGATJ, HGA with transmitted justification.

If a very good solution is obtained with a certain k, it is usually because
the justification with due dates with this k works well in the instance. With
our method, this k is transmitted to the children of the solution, as long as it
survives in the population. Since it is a very good solution, it will survive many
iterations. If a k does not produce good results, it will soon disappear from
the population, because we store another gene instead. In order to avoid the
prevalence of one or a few k’s, we have also implemented a mutation. It consists
in changing the extra gene with a certain probability before applying the S-SGS.
In the computational results we use 0.05.

Another way to implement the justification

In HGATJ, “only” the level of tightness in the justification is transmitted
from parents to children. We could go further and also transmit the specific
activities which can be shifted freely and which ones should not go further than
their due dates. To study this option, we have run a version of HGATJ with an
extra binary vector η for each codification. This vector has n components; η(i,
S) is the i-th component of the vector associated to solution S. If η(i, S) = 1,
when we justify S to the right, we will impose a delayed/non-delayed restriction
on i if i is delayed/non-delayed. If η(i, S) = 0, activity i will be shifted freely.

We have tried two versions of the algorithm. In the first one, the daughter
inherits η from the mother and the son inherits η from the father. In the second
version, we apply a two-point crossover to the vectors η of the mother and the
father, obtaining the vectors for the daughter and son. In both cases, we ran-
domly calculate these justification vectors at the start of the algorithm. Besides,
we apply a mutation that changes some of the genes of η with a certain probabil-
ity. Preliminary results showed that no better results were obtained with these
versions with regards to HGATJ, and therefore we have not incorporated these
versions in the next section.
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4. Computational results

In Ballest́ın et al. (2006) a procedure was developed to introduce due dates
in RCPSP instances. The goal was to produce instances with different levels
of difficulty in the fulfilling of the due dates. Concretely, three sets based on
the standard set j120 were created: the loose, medium and tight set. The set
j120 consists of 600 projects with 120 activities, generated under a full factorial
experimental design with several problem parameters (Kolisch and Sprecher,
1997). In the loose set, it is easy to fulfil most of the due dates at the same time
and only a limited subset of activities are going to be tardy in any schedule.
In the tight set, on the contrary, many activities are going to be tardy in any
schedule. The medium set contains instances in between. We have worked with
a total of 1670 instances.

All algorithms of this section will be run until 5000 schedules are generated.
This is the most usual upper limit imposed when comparing state-of-the-art
heuristic algorithms for the RCPSP. To compare algorithms in the TardinessR-
CPSP, we use the average of the total tardiness over each of the three instance
sets (“loose set”, “medium” and “tight set”). For the comparison in the Dead-
lineRCPSP, the number of instances where a feasible solution has been found is
included (“# feas. sol. in DeadlineRCPSP”).

4.1. Comparisons of the different justification types

We have run our algorithm with the different versions of the justification
introduced in sections 2 and 3. Apart from our standard algorithm HGATJ,
the following versions are considered: justification with due dates only with the
delayed restrictions (3rd row), justification with due dates only with the non-
delayed restrictions (4th row), an extreme version with 0 restrictions (5th row)
and an extreme version with n restrictions (6th row). Note that “0 restrictions”
correspond to the justification by eligibles, because it does not used the justifi-
cation by due dates. Besides, the version “n restrictions” correspond to applying
the justification with due dates. Finally, in the last row, the HGA with the
max-ddn justification applied to every schedule is run.

loose set medium set tight set # feas. sol. in

DeadlineRCPSP

HGATJ 6.43 177.58 1100.06 424

Only delayed

restrictions
8.41 189.76 1152.16 382

Only non-delayed

restrictions
8.13 197.26 1159.62 398

0 restrictions 11.30 195.03 1088.31 348

n restrictions 6.76 194.62 1172.68 426

maxdd-justification 6.42 177.19 1100.04 425
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Table 1: Results of different versions of HGATJ

As we can see in Table 1, restraining the justification gives very good results
in the loose set. In the medium set, restraining the justification too little or
too much worsens the solution quality. The tight set is where less difference
occurs among algorithms. The reason for this behaviour is that the justification
with due dates cannot change the solutions much in the tight set, since many
activities are delayed or very near their due dates. Nevertheless, using the jus-
tification with 0 restrictions does not improve the results much. All in all, the
best algorithms for the TardinessRCPSP are HGATJ and HGATJ with maxdd-
justification. We will see in section 4.3 why we have chosen HGATJ as our final
algorithm.

4.2. Comparisons with state-of-the-art heuristic: TardinessRCPSP

In this section we are going to compare HGATJ with the best algorithm in
Ballest́ın et al. (2006). Table2 contains the results in the TardinessRCPSP, along
with the improvement HGATJ attains
( = (Ballest́ın et al. – HGATJ)/HGATJ ).

total tardiness average % improvement

loose

set

medium

set

tight

set

loose

set

medium

set

tight

set

Ballest́ın

et al. (2006)
11.41 199.02 1119.18 77.33% 12.07% 1.74%

HGATJ 6.43 177.58 1100.06 - - -

Table 2: Improvement from HGATJ in the TardinessRCPSP

The algorithm HGATJ clearly outperforms the other algorithm in all the
sets. We can observe that the improvement is very important in the loose set and
reasonably important in the medium set. The smallest improvement happens
in the tight set, where we have seen that the justification with due dates works
worse.

4.3. Comparisons with state-of-the-art heuristic: DeadlineRCPSP

Algorithm
# feas. solut. in

DeadlineRCPSP

% impr. in

#feas. sol

makespan

deterioration

HGATJ 424 - -

H+DJ R1-L6 282 50.35% 0.37%

H+DJ R4-L6 336 26.19% 1.93%

H(2)+DJ R1-L6 342 23.98% 1.80%

H(2)+DJ R4-L6 348 21.84% 2.39%

Table 3: Comparisons in DeadlineRCPSP
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Table 3 compares HGATJ with the best algorithms in the DeadlineRCPSP.
It is a little more difficult to compare algorithms in this problem, because there
are two measures to take into account, the number of feasible solutions and the
makespan achieved in those instances. This is the reason why we have taken
four algorithms from Ballest́ın et al. (2006); none outperforms the others in
both measures. For example, H+DJ R1-L6 is the best algorithm in makespan
and worst in number of feasible solutions.

The third column of the table contains the improvement percentage in the
number of feasible solutions obtained by HGATJ. In each cell of the fourth
column we only take into account instances where both HGATJ and the corre-
sponding algorithm have obtained feasible solutions. For each of these instances,
we calculate the relative deterioration in the makespan, i.e.,

makespan(algorithm)−makespan(HGATJ)

makespan(HGATJ)
.

The number in the cells is the average of these quotients.

The first conclusion of the table is the increase in the number of instances
where a feasible solution is reached. For example, HGATJ doubles H+DJ R1-L6
in number of instance with feasible solutions. Concerning the second measure,
an improvement around 2% is obtained with the rest of the cases. Except in the
case of H+DJ R1-L6, which obtains in this measure similar results than HGATJ.
Summing up, HGATJ clearly outperforms the four algorithms.

If we compare the version maxddn-justification with the four algorithms, the
makespan deterioration is -0.59%, 0.68%, 0.57% and 1.12%, respectively. Hence,
in the second measure it is better not to use maxddn throughout the whole
algorithm. This is the reason why we have not used this justification in HGATJ.

5. An algorithm for the multiobjective problem

5.1. Introduction

Having studied the TardinessRCPSP and the DeadlineRCPSP, it is natural to
go further and try to offer solutions for a combination of both problems, solutions
with a low tardiness and makespan. This cannot be done by aggregating the two
functions in one and solving the corresponding problem, since the total tardiness
can go from 0 to one or two orders of magnitude of difference with the makespan.
We will call the multiobjective tardiness-makespan RCPSP the problem with
the restrictions of the RCPSP and two objective functions: total tardiness and
makespan. Note that we do not impose the due dates as restrictions because (1)
if we must satisfy them, we obtain the DeadlineRCPSP, (2) in many practical
cases not all due dates are going to be met but the manager still wants to meet as
many as possible while having a small makespan and (3) in some cases managers
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would sacrifice the fulfilment of one or a few due dates if s/he can have a (much)
better makespan.

To solve the multiobjective tardiness-makespan RCPSP means to calculate
the non-dominated solutions. A feasible solution S is efficient if there is no other
feasible solution strictly better than S for at least one criterion and not worse
in the remaining criteria. If S is efficient, then y = (f1(S), f2(S), . . . , fp(S)) is
called non-dominated, if fi is the i-th objective function. A minimal complete
set contains one decision vector for every non-dominated objective vector. In
general, a multiobjective combinatorial optimisation problem is considered as
solved if a minimal complete set – sometimes called Pareto front – is calculated.
We have adapted HGATJ into MOHGATJ to calculate an approximation of the
Pareto front.

Despite the fact that the RCPSP is an inherently multi-objective problem
(Viana and de Sousa, 2000), few papers have been published in this field. In
a recent paper, Ballest́ın and Blanco (2009) revised most of those papers and
developed different metaheuristic methods for the regular case and for one case
with regular and one non-regular objective function. The regular case occurs
when all objective functions are regular. A regular objective function is a non-
decreasing function of the activity start times (in the case of a minimisation
problem). The makespan and total tardiness are examples of regular objec-
tive functions. Resource levelling, weighted earliness-tardiness and stability are
examples of non-regular objective functions.

The best algorithm in Ballest́ın and Blanco (2009) was a combination of
DJGA (Valls et al., 2005) and NSGA2 (Deb et al., 2000). DJGA+NSGA2 uses
activity lists as codifications, the S-SGS as decoder, the two-point crossover and
the justification by extremes as improvement method. DJGA+NSGA2 was also
applied to the multiobjective tardiness-makespan RCPSP and therefore it will
be the keystone for MOHGATJ.

We have created a multiobjective algorithm, MOHGATJ, by incorporating
the management of the population of NSGA2 into HGATJ. That is, HGATJ is
still responsible for the calculation of every solution, but NSGA2 decides about
the survival of individuals. NSGA2 classifies the population into layers, being
the first layer the non-dominated solutions. At each iteration of MOHGATJ,
a new population is created with the current one and every solution created
(before and after the justification) at that step with HGATJ. Then, the layers
are formed and the worst layers are erased until a certain size is reached. To
distinguish inside a layer, the so-called crowding distance is applied.

Another change occurs in step 3 of Figure 11, when the population for the
second phase is created. There, in the HGATJ, the best solution found so far
is used to calculate that population. In the MOHGATJ, however, every non-
dominated solution found so far contributes to create the new population. To
build a solution, one of these non-dominated solutions is randomly chosen and



142 F. Ballest́ın, R. Blanco

the β-BRSM (section 3.1) is applied to the activity list of that solution. The
outcome S and DJ(S) are inserted in a set. The population for the second phase
is obtained by trimming this set with NSGA2.

As stated in Ballest́ın and Blanco (2009), a heuristic algorithm that works
with activity lists and the S-SGS can find a complete set of efficient solutions in
any MORCPSP with regular objective functions. So, MOHGATJ is searching in
the correct solution space when solving the multiobjective tardiness-makespan
RCPSP.

5.2. Enhancements in the standard algorithm: the third phase

We have introduced two enhancements in MOHGATJ. The first one has to do
with diversity. We do not allow an individual to enter in the population if all its
objective values coincide with those of an element of the population. Besides, in
the construction of the population for the second phase of MOHGATJ, we only
calculate solutions from individuals with different objective functions. In the
computational results we will see that comparing solutions (genotype) instead
of objective functions (phenotype) does not improve the algorithm.

The second enhancement consists in adding a third phase to MOHGATJ. In
this phase, we exploit the efficient solutions found in the algorithm. After the
evolutionary algorithm, the approximation of the Pareto set contains several,
usually few, schedules with different makespan and tardiness values. Presum-
ably, all of them contain good features, because these features have lead to
non-dominated solutions. This seems a perfect scenario to apply Path-Relinking
(PR, Glover and Laguna, 1999) to these solutions, trying to find new ones that
combine those characteristics. PR is used to connect elite solutions obtained
by other (meta)heuristic techniques. PR starts from an initial solution and
gradually incorporates attributes from a guide solution. Thus, each new solu-
tion resembles more the guide solution and less the initial one. The method to
combine solutions is usually different from other methods applied during previ-
ous phases. In our case, we wanted an operator capable of obtaining solutions
near a model solution, but with some characteristics of a guiding solution. To
accomplish that goal we use the percentage operator, Valls et al. (2005), a gen-
eralisation of β-BRSM to deal with two solutions. Given a percentage percent,
and two activity lists λ and χ, this operator obtains an activity list µ in the
following manner. At each of n stages, the set of eligible activities is calculated
and a random number (p) is generated between 0 and 1. If p < percent, then
an eligible activity is selected with the lowest order in λ. In this case it behaves
like the β-BRSM. If p ≥ percent, however, the percentage operator chooses the
eligible activity with the lowest order in χ. Subsequently, the greater percent,
the more weight χ will have in the creation of µ and the less weight λ will have.

We have tried different versions of the third phase. All of them work with an
elite set ES. At the beginning of the procedure, ES is formed with the efficient
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solutions of previous phases. Following the idea of diversity commented upon
above, we do not allow solutions in ES with the same objective functions. How-
ever, we do introduce dominated solutions until | ES | = 5. The inclusion rule
is the one followed by NSGA2.

A) PR I

We repeat the following loop until the limit in the number of schedules is
reached.

1. Choose λ and χ randomly from ES.
2. Initial = λ.
3. Do

a. µ = %Operator(Initial, χ, 5%).
b. Calculate S = S-SGS(µ), S’ = DJ(S).
c. ES = ES ∪ {S, S’}.
d. Initial := µ.

4. Until µ = χ.
5. Eliminate non-efficient solutions from ES.

PRI randomly chooses two solutions from ES, λ and χ. The percentage
operator is applied to them with percent = 5%, obtaining an activity list µ.
Then S = S-SGS(µ) and DJ(S) are calculated. Theoretically µ is more similar
to χ than λ. Afterwards, we change our initial solution and apply the percentage
operator to µ and χ, again with percent = 5%. We repeat these steps until S(µ)
= S(λ). All solutions created are introduced in the eligible set and we eliminate
the dominated solutions.

B) PR II

We repeat the following loop until the limit in the number of schedules is
reached.

1. Choose λ and χ randomly from ES.
2. µ = %Operator(Initial, χ, 5%).
3. Calculate S = S-SGS(µ), S’ = DJ(S).
4. ES = ES ∪ {S, S’}.
5. Eliminate non-efficient solutions from ES.

Some of the µ’s obtained in step 3.a in PRI may be worse than λ and χ. So,
they might not be good solutions to guide the PR. To investigate this issue, we
have introduced the following change in the algorithm. Once we have applied the
percentage operator for the first time to λ and χ, we introduce S and DJ(S) in
ES if they are non-dominated. Then, we select a new initial and guide solutions
and continue the algorithm.

C) β-BRSM
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We have also tried a third phase that does not combine solutions, but applies
β-BRSM to solutions of ES. We work with β = 1-5/n, with which we intensify
instead of diversify.

5.3. Comparison of the Pareto front of the algorithms

The comparison among multiobjective algorithms is still an issue. In several
papers, e.g. Deb et al. (2000), a maximum in the number of function evaluations
is imposed. This is approximately also done to compare heuristic algorithms in
the uniobjective case in the RCPSP (see Hartmann and Kolisch, 2000), where
the number of created schedules is bound. Here we will also stop every algorithm
after a certain number of schedules created. We will compare algorithms with the
distance of their final sets from a reference set (Czyzak and Jaszkiewicz, 1998).
The Pareto approximation set of the union of sets obtained by the different
algorithms is used as the reference set. To study the significant differences among
algorithms we will use the test of signs (Fisher, 1925, Dixon and Mood, 1946).

Table 3 contains the comparison of the different versions with a limit of
5000 schedules. HGATJ+NSGA2 is just the algorithm HGATJ which handles
the population with NSGA2. The versions “without repetitions” include the
diversity condition in HGATJ+NSGA2. The three versions MOHGATJ include
the diversity condition and one version of the third phase.

Distance

to ref. set

HGATJ+NSGA2
0.1679

without repetitions –

genotype
0.1622

without repetitions –

phenotype
0.1611

Distance

to ref. set

MOGHATJ

(β-BRSM)
0.1587

MOGHATJ

(PR I)
0.1527

MOGHATJ

(PR II)
0.1537

Table 4: Comparisons of different versions of MOHGATJ

Not allowing individuals with the same objective functions (version “without
repetitions”) slightly, but significantly, improves the results. Comparing solu-
tions with their start times instead of with the objective functions does not add
much, however, to the quality of the algorithm. We have therefore incorporated
the first option into the rest of the algorithms, because it is faster.

Algorithms with the inclusion of a third Phase outperform HGATJ+NSGA2,
and the version with β-BRSM is slightly worse. There are no significant differ-
ences between the two algorithms with PR. These results indicate that combin-
ing PR with an evolutionary algorithm is a good option to solve multiobjective
project scheduling problems.

Finally, we are going to compare our algorithms with the best procedure in
Ballest́ın and Blanco (2009), DJGA+NSGA2. We impose different limits in the
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number of schedules calculated. Each cell contains the distance to the reference
set.

5000 10000 25000 50000

DJGA+NSGA2 0.2603 0.2168 0.1673 0.1350

HGATJ+NSGA2 0.1679 0.1322 0.0979 0.0794

MOHGATJ (PR I) 0.1527 0.1180 0.0850 0.0670

Table 5: MOHGATJ versus NSGA2

Different conclusions can be drawn from these figures. First of all, MO-
HGATJ is a good (multi-objective) algorithm, in the sense that it is capable
to obtain better results as the schedule limit increases. Secondly, it clearly
outperforms DJGA+NSGA2 in every schedule limit. This means that the good
performance of HGATJ in the two uniobjective problems has been transferred to
the multiobjective tardiness-makespan RCPSP. Finally, the third Phase is useful
no matter what the time limit. The relative improvement over HGATJ+NSGA2
is 10%, 12%, 15 and 18.5%.

5.4. Approximation of Pareto sets throughout the algorithm

Figure 12: Approximation of Pareto fronts through the algorithm

Figure 12 shows the evolution of the approximation of the Pareto fronts
through a version of MOHGATJ in a specific instance, j12013 1.sm with loose
due dates. There are 5 approximation sets depicted: a) the first population of the
algorithm, before beginning the evolutionary algorithm, b) the last population
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obtained after the first phase, c) the first population of the second phase, d) the
last population obtained after the second phase, before applying PR and e) the
outcome of the algorithm, the approximation obtained after applying PR.

This graph contains some of the trends that happen in many instances. First
of all, the greatest improvement comes from the first phase. Secondly, the con-
struction of the population of the second phase does not improve much the Pareto
solution already calculated. Nevertheless, sometimes it obtains new efficient so-
lutions between two old efficient solutions or near one old efficient solution. In
our case, (148, 36) between (147, 39) and (149, 35). Furthermore, the second
phase obtains a significative improvement in the Pareto front, although very far
away from the improvement attained in the first phase. Finally, the PR is ca-
pable to refine the Pareto front. In this instance an almost complete new front
is obtained. In other instances only some of the existing solutions are improved.
Also new solutions between two old efficient solutions can be discovered, as in
the construction of the second population.

6. Summary and conclusions

There are very few algorithms for project scheduling with due dates, despite
their tremendous importance in the field. In this paper we have taken HGA, a
very good algorithm for the basic RCPSP, and transformed it into an algorithm
for two problems concerning due dates and project scheduling, the TardinessR-
CPSP and the DeadlineRCPSP. The most important contribution concerns the
development of new forms of justification that exploit the information given by
the due dates. The performance of these types of justification depends on the in-
stance. We have added an extra gene in HGA creating HGATJ, a self-adapting
evolutionary algorithm. This gene handles the use of the justification in the
algorithm.

In the second part of the paper we have adapted HGATJ to solve the multi-
objective tardiness-makespan RCPSP, creating MOHGATJ. A third phase with
PR has been added to MOHGATJ, improving its performance. Both HGATJ
and MOHGATJ clearly outperform the few algorithms from the literature that
exist for the corresponding problems.
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