On some special vector fields
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Abstract

We introduce the notion of F-distinguished vector fields in a deformation
algebra, where F is a (1, 1)-tensor field. The aim of this paper is to study these
special vector fields and, using their properties, to characterize spherical hy-
persurfaces, when F' is the shape operator. The last section is devoted to the
relation between the geometrical properties of Weyl manifolds and the algebraic
properties of Weyl algebras.
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1 F-distinguished vector fields

Let M be a connected paracompact, smooth manifold of dimension n > 2. Let
T M be the tangent bundle of M and 7] (M) be the C*°(M)-module of tensor fields
of type (r,s) on M. We denote 7 (M) (respectively T,°(M)) by X (M) (respectively
AY(M)).

Let A be a (1,2)—tensor field on M. The C* (M) —module X (M) becomes a
C° (M) —algebra if we consider the multiplication rule given by X oY = A(X,Y),
VX,Y € X (M). This algebra is denoted by U (M, A) and it is called the algebra
associated to A. If V and V are two linear connections on M, then U (M,V - V) is
called the deformation algebra defined by the pair (V,V) [9].

Let (M, g) be a Riemannian manifold and F be a (1, 1)-tensor field on M.
Definition 1.1 X € X (M) is called a (V, F)-Killing vector field if

(1.1) 9(VzF(X),Y)+g(Z,VyF(X)) =0,VY,Z € X(M)

holds.

One should remark that this is equivalent to the condition that F'(X) is a V-
Killing vector field.
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Definition 1.2 Let A be a (1,2)-tensor field on M. X is called a F-distinguished
vector field in the algebra U(M, A) if one has

(1.2) g(A(Z,F(X)),Y)+g9(Z,A(Y,F(X)) =0,VY,Z € X(M).

In the particular case when F' is the identity tensor field of type (1,1) one gets the
known notion of distinguished vector fields on M [10].

Let V be the Levi-Civita connection, associated to ¢ and V,V be linear connec-
tions on M, given by

A.

1, — o 1
V=V--4, V=vV+-
27 2

Proposition 1.1 Let X € U(M, A). The following assertions are equivalent:

i) X is a (V, F)-Killing vector field and a F-distinguished vector field in the algebra
UM, A);

ii) X is a (V,F)-Killing vector field and a F-distinguished vector field in the
algebra U(M, A);

i) X is a (V,F) and (V, F)-Killing vector field.

Proof. i)&ii) Let X be F-distinguished vector field in the algebra U (M, A). Hence
9(A(Z,F(X)),Y) +g(Z, A(Y, F(X)) = 0,VY, Z € X(M). Since A =V -V, then
G(V2F(X),Y) + g(Z,Vy F(X)) =0 & g(VF(X),Y) + g(Z, Yy F(X)) =0,

ili) <1) It is a consequence of (1.1) and (1.2).

Remark 1.1 Let A; x> gi; and X be the local components of A, g and X, respectively,
in a local system of coordinates. The formula (1.2) becomes

(1.3) (A% gpi + A} 95p) F7 X' = 0.

The integral curves of F-distinguished vector fields, called F-distinguished curves,
verify the following differential system of equations

Jdat
(1.4) (A% gpr + AL 95p) Fi v 0.

Remark 1.2 Let (M, g) be a Riemannian manifold, ¥ be the Levi-Civita connection
associated to g and m € A'(M). Let V be the Lyra connection associated to m, hence

(1.5) VxY =Vx Y +7(Y)X — g(X,Y)P,VX,Y € X(M),

where P is the dual vector field associated to « i.e. g(P,Z) = 7(Z2),YZ € X(M).
Then A =V— % verifies

(1.6) Afy = 0pm; — g

where 7 = g¢*7. So, from (1.6) we notice that (1.3) is satisfied. Hence all the
elements of the Lyra algebra U (M, A) are F-distinguished vector fields.
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2 On spherical hypersurfaces

Let M™ be a hypersurface in the Euclidean space E*t!. Let us denote by g,b
and h the first, the second and the third fundamental forms on M, respectively. We

1 2 3
suppose that b is nondegenerated. Let v,V and V be the Levi-Civita connections
associated to g,b and h, respectively. Let us denote by

1 2 , 2 3 ) 1 3
A=v-V , A=v-Vv, 6 A'=v-V

We note that
(2.1) b(A(X,Y), Z)=b(A"(X,Y), Z)=2b(A"(X,Y), Z):—%(%X b)(Y, Z).

We suppose that the (1,1)-tensor field F' is the shape operator of the hypersurface
M. Then F? = b%lgy;.

Remark 2.1 The deformation algebras U(M, A), U(M, A’) and U(M, A”) have the
same F-distinguished vector fields.
Indeed, this is a consequence of (1.3) and (2.1).

Remark 2.2 Let M? be a surface in the Euclidean space E?, given by

x = (a+ bcosx!) cos 12,
y = (a+bcosat)sina?,
z = bsina?,
where a > b > 0,a and b are constants, > € R and 2! € R\ {(2k +1)%},
k € Z. One has the following nonvanishing components of A, A" and A" :

1 2asinzt 9 2a sin 2!
Ay = A = Aly = 1 1
b (a +bcoszl)cosx
ol ol
gyl _asine e asinx
2="T 7 A=A = SRV
(a+bcoszl) cosz
ool ol
s1 _asinz' o o asinz
Algg=—— A" = A", =

b (a+bcosz!)coszl’

We point out that x' = kr, k € Z, the equatorial circles, are F-distinguished curves
of the algebras U(M, A),U(M, A’) and U(M, A”). Indeed these curves verify (1.4).

Theorem 2.1 Let M"™ C E"*! be a hypersurface and F be the shape operator of M.
Then the following conditions are equivalent:

i) All the elements of the algebra U(M, A) are F-distinguished vector fields.
i) M is a spherical hypersurface.

Proof. i) = ii) One has g(A(Z, F(X)),Y) + g(Z, A(Y, F(X)) = 0,

VXY, Z, e X(M).
Therefore, using (2.1), in local coordinates, we obtain



124 Tulia Hirica

1 1 .
(22) (gsjbsr Ve bki + gskbsr Vr bji)blngl =0.

Moreover, (2.2) implies
1 ,
(2.3) (9isb™" Vi bjg)b"gq = 0.

1
Then (2.3) lead to V, bji, = 0. Hence one gets i) ([8]).

ii) =1) is obvious.

3 Weyl manifolds

Let g be a semi-Riemannian metric on M and let g = {e"g|u € C*(M)} be the
conformal class defined by g.

Let W be a Weyl structure on the conformal manifold (M,7q) i.e. a mapping
W : g~ AY(M). Hence W (e*g) = W(g) — du,Vu € C>(M). The triple (M,g, W) is
called a Weyl manifold. There exists a unique torsion free connection V, compatible
with the Weyl structure W i.e.

(3.1) Vg+Wi(g)®g=0,

given by

29(VxY, 2) = X(g(Y, Z)) + Y (9(X, 2)) = Z(g9(X, Y))+
(3.2) +W(g)(X)g(Y, Z) + W(g)(Y)g(X, Z) — W(g)(Z2)g(X,Y )+
+g([Xv YLZ) +g([Z’ X]7Y) - g([K Z]’X)

V is called the Weyl conformal connection. Let % be the Levi-Civita connection
associated to g and A =V—V . U(M, A) is called the Weyl algebra. One has

(33)  29(AX,Y), 2)=W(g9)(X)g(Y, Z)+W (9)(Y)g(X, Z2) =W (9)(2)g(X,Y).

The torsion free connections V and % are called projectively equivalent if their un-
parametrized geodesic coincide [5].

The goal of this section is to study the Weyl algebra. Our algebraic approach gives
some insights of geometrical nature.

Theorem 3.1 Let (M, g, W) be a Weyl manifold. Let R, S and ;%, § be the curvature

tensor field and the Ricci tensor field associated to V and %, respectively. Let F' be
a (1,1)-tensor field . We suppose that the mapping F, : T,M — T,M is surjective,
Vp € M. Then the following assertions are equivalent:

i) Every element of the algebra U(M, A) is a F-distinguished vector field.
ii) The algebra U(M, A) is associative.

o
i11) V and ¥ are projectively equivalent.
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w) R :]c%, when S is nondegenerated.
v) S :§7 when S is nondegenerated and the 1-form W(g) is exact.
vi) V :% .
Proof. i)=vi). Let X be a F-distinguished vector contained in the Weyl algebra
UM, A). From (1.2) and
29(A(Z, F(X)),Y) =

29(A(F(Y),Y), 2) =
one gets

(3.4) W(g)(F(X)g(Z,Y)=0,vX,Y,Z € X(M).

Since the mapping F), : T,M — T,M is surjective, Vp € M, (3.3) and (3.4) imply
g(A(X,Y),Z) =0,VX,Y,Z € X(M). Therefore A =0 i.e. vi).

vi) =i) If A =0, then (1.2) is satisfied.
ii) & iii) & iv) © v) < iv) [6].
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