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Abstract

We introduce the notion of F -distinguished vector fields in a deformation
algebra, where F is a (1, 1)-tensor field. The aim of this paper is to study these
special vector fields and, using their properties, to characterize spherical hy-
persurfaces, when F is the shape operator. The last section is devoted to the
relation between the geometrical properties of Weyl manifolds and the algebraic
properties of Weyl algebras.
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1 F -distinguished vector fields

Let M be a connected paracompact, smooth manifold of dimension n ≥ 2. Let
TM be the tangent bundle of M and T r

s (M) be the C∞(M)-module of tensor fields
of type (r, s) on M. We denote T 1

0 (M) (respectively T 0
1 (M)) by X (M) (respectively

Λ1(M)).
Let A be a (1, 2)−tensor field on M . The C∞ (M)−module X (M) becomes a

C∞ (M)−algebra if we consider the multiplication rule given by X ◦ Y = A (X,Y ),
∀X, Y ∈ X (M) . This algebra is denoted by U (M,A) and it is called the algebra
associated to A. If ∇ and ∇ are two linear connections on M, then U (

M,∇−∇)
is

called the deformation algebra defined by the pair
(∇,∇)

[9].

Let (M, g) be a Riemannian manifold and F be a (1, 1)-tensor field on M.

Definition 1.1 X ∈ X (M) is called a (∇, F )-Killing vector field if

(1.1) g(∇ZF (X), Y ) + g(Z,∇Y F (X)) = 0,∀Y, Z ∈ X (M)

holds.

One should remark that this is equivalent to the condition that F (X) is a ∇-
Killing vector field.
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Definition 1.2 Let A be a (1, 2)-tensor field on M. X is called a F -distinguished
vector field in the algebra U(M, A) if one has

(1.2) g(A(Z,F (X)), Y ) + g(Z, A(Y, F (X)) = 0, ∀Y, Z ∈ X (M).

In the particular case when F is the identity tensor field of type (1, 1) one gets the
known notion of distinguished vector fields on M [10].

Let
◦
∇ be the Levi-Civita connection, associated to g and ∇,∇ be linear connec-

tions on M, given by

∇ =
◦
∇ −1

2
A , ∇ =

◦
∇ +

1
2
A.

Proposition 1.1 Let X ∈ U(M, A). The following assertions are equivalent:
i) X is a (∇, F )-Killing vector field and a F -distinguished vector field in the algebra

U(M, A);
ii) X is a (∇, F )-Killing vector field and a F -distinguished vector field in the

algebra U(M,A);
iii) X is a (∇, F ) and (∇, F )-Killing vector field.

Proof. i)⇔ii) Let X be F -distinguished vector field in the algebra U(M,A). Hence
g(A(Z,F (X)), Y ) + g(Z, A(Y, F (X)) = 0, ∀Y, Z ∈ X (M). Since A = ∇−∇, then
g(∇ZF (X), Y ) + g(Z,∇Y F (X)) = 0 ⇔ g(∇ZF (X), Y ) + g(Z,∇Y F (X)) = 0.

iii) ⇔i) It is a consequence of (1.1) and (1.2).

Remark 1.1 Let Ai
jk, gij and Xi be the local components of A, g and X, respectively,

in a local system of coordinates. The formula (1.2) becomes

(1.3) (Ap
jsgpk + Ap

ksgjp)F s
i Xi = 0.

The integral curves of F -distinguished vector fields, called F -distinguished curves,
verify the following differential system of equations

(1.4) (Ap
jsgpk + Ap

ksgjp)F s
i

dxi

dt
= 0.

Remark 1.2 Let (M, g) be a Riemannian manifold,
◦
∇ be the Levi-Civita connection

associated to g and π ∈ Λ1(M). Let ∇ be the Lyra connection associated to π, hence

(1.5) ∇XY =
◦
∇X Y + π(Y )X − g(X,Y )P,∀X, Y ∈ X (M),

where P is the dual vector field associated to π i.e. g(P, Z) = π(Z), ∀Z ∈ X (M).

Then A = ∇− ◦
∇ verifies

(1.6) Ai
jk = δi

kπj − gjkπi,

where πi = gikπk. So, from (1.6) we notice that (1.3) is satisfied. Hence all the
elements of the Lyra algebra U(M, A) are F -distinguished vector fields.
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2 On spherical hypersurfaces

Let Mn be a hypersurface in the Euclidean space En+1. Let us denote by g, b
and h the first, the second and the third fundamental forms on M, respectively. We

suppose that b is nondegenerated. Let
1

∇,
2

∇ and
3

∇ be the Levi-Civita connections
associated to g, b and h, respectively. Let us denote by

A =
1

∇ − 2

∇ , A′ =
2

∇ − 3

∇ , A′′ =
1

∇ − 3

∇
We note that

(2.1) b(A(X,Y ), Z)=b(A′(X,Y ), Z)=2b(A′′(X,Y ), Z)=−1
2
(

1

∇X b)(Y,Z).

We suppose that the (1, 1)-tensor field F is the shape operator of the hypersurface
M. Then F s

i = bsqgqi.

Remark 2.1 The deformation algebras U(M, A), U(M, A′) and U(M, A′′) have the
same F -distinguished vector fields.

Indeed, this is a consequence of (1.3) and (2.1).

Remark 2.2 Let M2 be a surface in the Euclidean space E3, given by

x = (a + b cosx1) cos x2,
y = (a + b cosx1) sin x2,
z = b sin x1,

where a > b > 0, a and b are constants, x2 ∈ R and x1 ∈ R \ {(2k + 1)π
2 },

k ∈ Z. One has the following nonvanishing components of A,A′ and A′′ :

A1
22 =

2a sin x1

b
, A2

21 = A2
12 =

2a sinx1

(a + b cosx1) cos x1
,

A′122 = −a sin x1

b
, A′221 = A′212 = − a sin x1

(a + b cosx1) cos x1
,

A′′122 =
a sinx1

b
, A′′221 = A′′212 =

a sin x1

(a + b cos x1) cos x1
.

We point out that x1 = kπ, k ∈ Z, the equatorial circles, are F -distinguished curves
of the algebras U(M, A),U(M,A′) and U(M, A′′). Indeed these curves verify (1.4).

Theorem 2.1 Let Mn ⊂ En+1 be a hypersurface and F be the shape operator of M.
Then the following conditions are equivalent:

i) All the elements of the algebra U(M, A) are F -distinguished vector fields.
ii) M is a spherical hypersurface.

Proof. i) ⇒ ii) One has g(A(Z,F (X)), Y ) + g(Z, A(Y, F (X)) = 0,
∀X, Y, Z,∈ X (M).

Therefore, using (2.1), in local coordinates, we obtain
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(2.2) (gsjb
sr

1

∇r bki + gskbsr
1

∇r bji)biqgql = 0.

Moreover, (2.2) implies

(2.3) (gisb
sr

1

∇r bjk)biqgql = 0.

Then (2.3) lead to
1

∇r bjk = 0. Hence one gets i) ([8]).
ii) ⇒i) is obvious.

3 Weyl manifolds

Let g be a semi-Riemannian metric on M and let ĝ = {eug|u ∈ C∞(M)} be the
conformal class defined by g.

Let W be a Weyl structure on the conformal manifold (M, ĝ) i.e. a mapping
W : ĝ 7→ Λ1(M). Hence W (eug) = W (g)− du, ∀u ∈ C∞(M). The triple (M, ĝ, W ) is
called a Weyl manifold. There exists a unique torsion free connection ∇, compatible
with the Weyl structure W i.e.

(3.1) ∇g + W (g)⊗ g = 0,

given by

(3.2)
2g(∇XY,Z) = X(g(Y, Z)) + Y (g(X, Z))− Z(g(X, Y ))+

+W (g)(X)g(Y,Z) + W (g)(Y )g(X,Z)−W (g)(Z)g(X,Y )+
+g([X, Y ], Z) + g([Z, X], Y )− g([Y,Z], X).

∇ is called the Weyl conformal connection. Let
◦
∇ be the Levi-Civita connection

associated to g and A = ∇− ◦
∇ . U(M,A) is called the Weyl algebra. One has

(3.3) 2g(A(X,Y ), Z)=W (g)(X)g(Y,Z)+W (g)(Y )g(X,Z)−W (g)(Z)g(X, Y ).

The torsion free connections ∇ and
◦
∇ are called projectively equivalent if their un-

parametrized geodesic coincide [5].
The goal of this section is to study the Weyl algebra. Our algebraic approach gives

some insights of geometrical nature.

Theorem 3.1 Let (M, ĝ, W ) be a Weyl manifold. Let R,S and
◦
R,

◦
S be the curvature

tensor field and the Ricci tensor field associated to ∇ and
◦
∇, respectively. Let F be

a (1, 1)-tensor field . We suppose that the mapping Fp : TpM 7→ TpM is surjective,
∀p ∈ M. Then the following assertions are equivalent:

i) Every element of the algebra U(M,A) is a F -distinguished vector field.
ii) The algebra U(M, A) is associative.

iii) ∇ and
◦
∇ are projectively equivalent.
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iv) R =
◦
R, when S is nondegenerated.

v) S =
◦
S, when S is nondegenerated and the 1-form W (g) is exact.

vi) ∇ =
◦
∇ .

Proof. i)⇒vi). Let X be a F -distinguished vector contained in the Weyl algebra
U(M, A). From (1.2) and

2g(A(Z,F (X)), Y ) = W (g)(Z)g(F (X), Y ) + W (g)(F (X))g(Y,Z)−
−W (g)(Y )g(Z,F (X)),

2g(A(F (Y ), Y ), Z) = W (g)(Y )g(F (X), Z) + W (g)(F (X))g(Y,Z)−
−W (g)(Z)g(F (X), Y )

one gets

(3.4) W (g)(F (X))g(Z, Y ) = 0, ∀X,Y, Z ∈ X (M).

Since the mapping Fp : TpM 7→ TpM is surjective, ∀p ∈ M, (3.3) and (3.4) imply
g(A(X, Y ), Z) = 0, ∀X,Y, Z ∈ X (M). Therefore A = 0 i.e. vi).

vi) ⇒i) If A = 0, then (1.2) is satisfied.

ii) ⇔ iii) ⇔ iv) ⇔ v) ⇔ iv) [6].
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