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Abstract

Let (M, g) be a compact Riemannian manifold of dimension n. The
aim of the present paper is to study the dimension of K?(M, R) in the
connection with the Riemannian metric g on M.

Mathematics Subject Classification: 53C20
Key words: Riemannian manifold, Killing tensor field, Riemannian metric,
harmonic g-form and Killing g-form.

1

Let (M, g) be a compact Riemannian manifold of dimension n. Let K?(M, R)
where ¢ = 2,...,n — 1 be the vector space of Killing tensor fields of order ¢ on
M. The study of the dimension of K%(M,R) is an important problem. This
importance comes from the fact there is a connection between g-harmonic forms
and Killing tensor fields of order ¢. Let HY(M, R) be the vector space of harmonic
g-forms. It is known that dim(H9(M, R)) = by is the ¢-Betti number of M, which
is topological invariant. It is still open if dim(K9(M, R)) for ¢ = 2,...,n — 1 is
also a topological invariant.

The aim of the present paper is to study this problem. We also improve
Yano’s results ([16]).

The whole paper contains three paragraphs. Each of them is analyzed as
follows.

In the second paragraph we study differential operators of cross sections of a
fibre bundle over a compact Riemannian manifold M. The Killing tensor fields of
order ¢ can be considered as special cross sections of the fibre bundle VI(T'(M))
over M.

The space of Killing tensor fields K(M, R) of order ¢ with the connection
of the Riemannian metric g on M is studied in the last paragraph. These results
are an improvement Yano’s results ([16]).
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2

Let (M, g) be a compact Riemannian manifold of dimension n without bound-
ary. We denote by AY(T(M)) and A9(T*M) the fibre bundles of antisymmetric
convariant tensor fields of order ¢ and antisymmetric contravariant tensor fields
of order g respectively on the manifold M. It is known that the vector space
NI(T*M) coincide with the vector space AY(M) of exterior g-forms.

We must notice that each exterior g-form w is a cross section of AY(T*M) =
A9(M). The same is true for each element A € AY(T'M). The Laplace operator
A is a second order elliptic differential operator C*°(AY(M)), that is

A =db+ 6d: C®°(ANI(M)) — C=(AI(M)),

A=dé+6dd:a— Ala) =dé(a) +dd(a), o€ C®(AY(M)),

where a an exterior g-form and d,d are first order differential operator defined
by
d: C®(NI(M)) — C=(ANTT(M)),

§: C®(ANYM)) — C® (AT (M)).
These differential operators are related by
<, 08 >=<da,f>, VYacCO®ANI(M)), VBeO®ANITH(M)),

where <> is the global inner product on C*°(A?(M)). The local inner product
is defined by
<,y > 1=, ﬂil,...,iq = gj1i1~-gjqiq Qi ﬁjl ,,,,, jar

Let (z1,...,2n) be a local coordinate system on the chart (U,¢) and let
{e1,...,en} be the associated local frame in M, that is

0 0

61 = —, ..., = —.
Oz’ 7 Oz,

If a is a g-form, which is a cross section of A?(M), that is a € C*°(AY(M)),
then a with respect to the local coordinate system can be expressed by

a(emeiz,...,eiq) = iy i 1< <ig<... < iq <n.

The following formulas are known

1 kjrda
(2.1) (da)i,..i5 = agif.l..iq]j ViQji..jgj
(2.2) (6)iy.iy = —Vial, 4,

(Aav)i,..i, = *Vkvkoéil...iq +
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1 . .
skJQ.-.]q (vlvkal

(23) + (q _ 1)| i1...0q i2...94

l
- VkvlaiQ...iq)a

where

o 1 if (i1...4,) is even permutation of (ji...J)
entr =9 —1 if (41...Jr) is odd permutation of (ji...J,).
0 if (é¢1...%,) is not permutation of (ji...j,)

The formula (2.3), by means of Ricci’s formula, becomes

V. Vil

l R 5 r
igeig ViVia; = erkaiz...iq_

2.0

q
T l
(2.4) - E Rislkaiz...is,lri5+1...iq’
s=2

and after some estimates, takes the form

1 kja...j
(A, i, = —VFiViay, i, + e 7 Ryl

e e =
95 1 Kljs---ja pp mn
(2.5) —m Ciroig  ARImnQGy g, -
If o is a g-form, then we have
(26) A( o) = (0 A0) - | Va P~ Ly ()
' 2 ’ (q—1)17 7

where ¢ > 2 and

1 o
(2.7) | Va |*= avka“”"" Vi, iy

(2.8) Ly(@) = —(q — 1) Rigmna™2-10 o™ 4 2Ry oFi2-ia )

jg...iq ’L‘Q..‘iq'

From (2.8) we can consider L, as a quadratic form on the vector space
AY(M, R), that is

(2.9) Ly:NY(M,R) = R, Lg:a— Ly(a).

A g-form « is called killing g-form if its covariant derivative V a is a (¢ + 1)-
form. This in local system (z1, ..., ) can be expressed as follows

(2.10) ViQiiy. iy + Vi, i, =0,
which is equivalent to

(2.11) qVjQiyiy. iy + Vi Qiy iy + oo + Vi Qi iy_15 = 0.
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If « is a killing g-form, then from (2.11) we obtain

(2.12) Vjal, ; =0.

The killing ¢-form « satisfies the equations

1l...q
" . _
q9’"ViVj iy i, + Z Qiy iy T g1 lg R+
S

1l...q

(2.12) Y iy T a1 e dg R iy =0
s<t

Hence if we consider the second order elliptic differential operator
D, : C*(AY(M,R)) — C*(AY(M,R))

Dy:a— Dy a,

where
1l...q
ik T
(Dg @)iy...i, =q 9" ViV aiy i, + E Qi gy rigqrig Bt
S

1l...q
(213) + § Qi1 T g 1Bt 1 JL gt 1.eig

s<t

Therefore the Ker(Dy) of D, that is
Ker(D,) = {a € ANY(M,R)/Dy(a) = 0}

consists of the killing g-forms, whose space is denoted by K,(M, R), that means
K,(M,R) =Ker(D,).

Proposition 2.1.. There is an isomorphism between the vector spaces ADy(M, R)
and ADY(M, R), where AD4(M, R) and ADY(M, R) are the vector spaces of an-
tisymmetric convariant tensor fields of order q, that is q-forms, and antisym-
metric contravariant tensor fields of order q respectively.

Proof. Let (U, ¢) be a chart of M with local coordinate system (a1, ..., 2,). If
w is a g-form on M, then w has the following components

{wil...iq/l <ip <ig < ... <ig < n},

with respect to the local coordinate system (x1, ..., z,,). We consider the following
linear mapping

F: AD,(M,R) = A%(M, R) — AD(M, R)

F:w— F(w)
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whose component of F'(w) with respect to (1, ..., 2,) are the following
F(w)il"'jq —_ giljlmgiqjq Wiy
i

It can be easily proved that F' is bijective. Therefore the vector spaces AD,(M, R)
and ADY(M, R) are isomorphic, q.e.d.

Remark 2.2. If w is a killing ¢-form, then F(w), which is an antisymmetric
contravariant tensor field of order ¢, has the property VF(w) = 0. An anti-
symmetric contravariant tensor field § of order ¢ with the property V3 = 0,
is called killing tensor field of order gq. Due to isomorphism F' we can use the
notion killing tensor field of order ¢ instead of killing g-form and conversely.

3

The set of killing tensor fields of order ¢ is denoted by K9(M, R), which is
isomorphic onto K,(M, R).

In this paragraph we shall study the dim(K?(M, R)) with respect to some
properties of the Riemannian metric g on M.

If « is a killing ¢g-form, then

(3.1) (o, Aar) — (Aa)il,,,iqail“'i‘l,

which by means of (2.5) and after some estimates and taking under to consid-
eration (2.8) we obtain

(3.2) (o, Aa) = —

The equation (2.6) by means of (3.2) becomes

+1
(¢ q! )Lq(a)'

(3.3) %A(| al)=—|Val®+

From the second order elliptic differential operator D, we obtain and endo-
morphism (D,), of the fibre AY(M, R), in z, that is

(3.4) (Dg)z : NY(M,R)y — NI(M,R),,
which satisfies the relation
< (Dg)z v >=< u, (Dg)gv >, Yu,v € N (M,R),
where <> is the inner product on AY(M, R), induced by the inner product on
T*M.
Now, we define

(3.5) R(z) = Sup{< (Dq)zv,v > /v € N1 (M,R), < v,v >=1}

(3.6). Rimae = Sup{R(z)/x € M}
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Now, we shall prove the theorem
Theorem 3.1. Let (M, g) be a compact Riemannian manifold of dimension n.
If R(z) <0 and there exists an xg such that R(xo) < 0, then K9(M, R) = {0}.
If Rinax =0, then dimK1(M, R) <1 = rank{A%(M, R)}.
Proof. If we integrate (3.3) on the manifold M, we obtain

2
(3.7) /M { | Va |? +q;ﬂ Ly(a)| dM = 0.

From the inequalities
(3.8) —|Va?<0

and the assumptions that R(z) < 0, Vo € M — {xo} and R(z¢) < 0, which
imply

(3.9) L,(z) <0, VxeM-—{zo} and Ly(xo) <0,
we conclude that
(3.10) Va=0 and «o/x=0, Ve M,

which yields
a=0.

This proves that K4(M, R) = {0}
If Rpar = 0, then the formula (3.7) implies

(3.11) / [~ | Vo |2dm + @ Ly()dM <0
M q: M

which implies | Va |= 0, that means « is a parallel tensor field. Hence every
killing tensor field of order ¢ on M is parallel. Since the maximal number of
independent parallel killing tensor fields on M is less or equal than the rank(E),
where F is the vector bundle of exterior ¢-forms, then we have

dim(K9(M, R) <1 =rank{\"(M,R)} q.ed.
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