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Abstract

It is still an open problem whether Riemannian manifolds all of whose
local geodesic symmetries are volume–preserving (i.e., D’Atri spaces) or
more generally, ball–homogeneous spaces, and C-spaces are locally ho-
mogeneous or not. We provide some partial positive answers by proving
that five–dimensional locally ϕ–symmetric spaces can be characterized as
Sasakian spaces which are ball–homogeneous with η-parallel Ricci tensor
or D’Atri spaces or C–spaces. We also prove that all K–contact metric
manifolds, and hence all Sasakian manifolds, which are harmonic have
constant curvature one.
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1 Introduction

Locally homogeneous Riemannian manifolds have the property that the volumes
of small geodesic spheres or balls only depend on the radius. Riemannian man-
ifolds having this property are called ball-homogeneous spaces [16]. It is still an
intringuing open problem whether the converse holds or not for manifolds of
dimension greater than two. This converse problem has been treated for several
special classes of Riemannian manifolds. First we note that harmonic spaces,
or more generally, Riemannian manifolds all of whose local geodesic symmetries
are volume–preserving (that is, D’Atri spaces) (see [15] for a survey and further
references) are ball-homogeneous [12]. Even for this subclass, and also for that
of the harmonic spaces, the mentioned converse is still open in general, although
only locally homogeneous examples are known. For two- and three-dimensional
D’Atri spaces the converse holds but for four-dimensional D’Atri spaces only par-
tial results are given in [7], [9], [18], [20]. In [18] it is proved that four-dimensional
Kählerian D’Atri manifolds are locally symmetric and a similar result holds for
four-dimensional 2-stein [20] and Hermitian Einstein spaces [9]. The last results
have been extended to the broader class of four-dimensional ball-homogeneous
Einstein spaces [7].
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The C-spaces are introduced in [1] (see [2]) as Riemannian manifolds such
that the eigenvalues of the Jacobi operator are constant along each geodesic.
Their geometry shares some properties with that of the D’Atri spaces. First,
also here, only locally homogeneous examples are known. Further, it has been
proved in [1] that two- and three-dimensional C-spaces are D’Atri spaces, and
conversely. In dimension four, a similar result is derived in [7] for Kähler mani-
folds, for 2-stein spaces and for compact Hermitian-Einstein spaces by showing
that these spaces are again locally symmetric.

The main purpose of this paper is to study ball-homogeneous and C-spaces
in the framework of Sasakian geometry. There, locally symmetric spaces are re-
placed by ϕ-symmetric spaces [22]. They are endowed with a naturally reductive
structure [5] and this yields that they are D’Atri spaces [15] and also C-spaces
[1]. The converse holds in dimension three [5]. In Section 4 and Section 5 we
shall prove that the converse also holds for five-dimensional Sasakian manifolds.

To prove our result we first collect some basic material and formulas in
Section 2. In Section 3 we derive the useful result stating that a five-dimensional
Sasakian manifold is locally ϕ-symmetric if and only if it is ball-homogeneous
and has η-parallel Ricci tensor. Finally, in Section 6 we prove that any Sasakian
2-stein space (or more generally, any K-contact 2-stein space) and hence, any
Sasakian harmonic space, is locally symmetric and so, has constant curvature
one. This contrasts with Kähler geometry where it is still an open problem
whether Kählerian harmonic spaces are locally symmetric or not.

2 Preliminaries

In this section we collect some basic material about the geometry of Sasakian
manifolds and locally ϕ-symmetric spaces which we shall need to prove our
results. We refer to [4], [22], [26] for more details.

2.1 Sasakian manifolds

A smooth n-dimensional manifold Mn is said to be an almost contact manifold
if the structural group of its tangent bundle is reducible to U(k) × 1 where
n = 2k + 1. Such a manifold admits a tensor field ϕ of type (1, 1), a vector field
ξ and a one-form η satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ.

These conditions imply that ϕ(ξ) = 0 and η ◦ ϕ = 0. Moreover, M admits a
Riemannian metric g satisfying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any tangent vector fields X, Y . Note that this implies η(X) = g(X, ξ). M
together with these structure tensors (ϕ, ξ, η, g) is said to be an almost contact
metric manifold.

Next, let ∇ denote the Levi Civita connection on (M, g). Then (M, g, ϕ, ξ, η)
is said to be a Sasakian manifold if
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(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

for X, Y ∈ X (M), the Lie algebra of smooth vector fields on M . This condition
implies

∇Xξ = −ϕX

from which it follows that ξ is a Killing vector field. Further, the Riemannian
curvature tensor

RXY Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z

of a Sasakian manifold satisfies

RXξY = g(X, Y )ξ − η(Y )X,

RXY ξ = η(X)Y − η(Y )X

for all X, Y , Z ∈ X (M). These curvature properties imply that the sectional
curvature K(X, ξ) of the two-plane spanned by X, ξ equals +1 and hence (M, g)
has constant sectional curvature c if and only if c = 1. A plane section of TmM ,
m ∈ M , is called a ϕ-section if it possesses an orthonormal basis of the form
{X,ϕX} where X ∈ TmM is orthogonal to ξ (that is, X is horizontal). The
corresponding sectional curvature is called the ϕ–sectional curvature. If this is
a global constant, then the Sasakian manifold is called a Sasakian space form.
The Ricci tensor of such a space form satisfies

ρ(X, Y ) = λg(X,Y ) + µη(X)η(Y ).

Sasakian manifolds satisfying this condition are said to be η-Einstein manifolds.
Moreover, ρ is said to be η- parallel if it satisfies the weaker condition

(∇Xρ)(Y,Z) = 0

for all horizontal X, Y , Z.

2.2 Local submersions and locally ϕ–symmetric spaces

As already noted, on any Sasakian manifold (M, g, ϕ, ξ, η), ξ is a unit Killing
vector field and hence, M is equipped with a Riemannian foliation with one-
dimensional geodesic leaves. So, these manifolds are locally Riemannian sub-
mersions and this feature may be used to study the Sasakian geometry. Indeed,
at each m ∈ M , there exists a cubic neighborhood U such that ξ is regular on
U . Then π : U → Ũ = U/ξ is a submersion. Let g̃ be the induced metric on
the base space Ũ such that π becomes a Riemannian submersion. Further, let
X∗, Y ∗, . . . denote the horizontal lifts of X, Y , . . . ∈ X (Ũ) with respect to the
connection form η. On (Ũ , g̃) there is an induced Kähler structure J̃ defined
by (J̃X)∗ = ϕX∗. Further, the Levi Civita connections and the Riemannian
curvature tensors on (Ũ , g̃) and (U, g) are related by

(1)

(∇̃XY )∗ = ∇X∗Y ∗ − η(∇X∗Y ∗)ξ,

(R̃XY Z)∗ = RX∗Y ∗Z
∗ + g(ϕX∗, Z∗)ϕY ∗ − g(ϕY ∗, Z∗)ϕX∗

+2g(ϕX∗, Y ∗)ϕZ∗,
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X, Y , Z ∈ X (Ũ). Much information about the Sasakian geometry may be derived
from the corresponding one about the Kähler geometry on the base space of each
local submersion π by making a systematic use of the previous relations. For
example, it follows at once that a Sasakian manifold (M, g, ϕ, ξ, η) has constant
ϕ-sectional curvature or is η–Einstein, respectively η-parallel, if and only if the
base space (Ũ , g̃, J̃) of each local fibration π has constant holomorphic sectional
curvature or is Einstein, respectively Ricci-parallel.

In what follows we shall also need some relations between some scalar cur-
vature invariants or order one and two on (M, g) and (Ũ , g̃). Let τ , τ̃ denote the
scalar curvatures on these manifolds. Then we obtain from (1):

(2)

τ = {τ̃ − (n− 1)} ◦ π,

‖ρ‖2 = {‖ρ̃‖2 − 4τ̃ + 4(n− 1) + (n− 1)2} ◦ π,

‖R‖2 = {‖R̃‖2 − 12τ̃ + 10(n− 1) + 6(n− 1)2} ◦ π.

Remark 1. Since a k-dimensional Riemannian manifold is an Einstein space
if and only if k‖ρ‖2 = ‖τ‖2, it follows at once from (2) and the previous con-
siderations that the n-dimensional Sasakian manifold is η-Einstein if and only
if

‖ρ‖2 =
1

n− 1
{τ − (n− 1)}2 + (n− 1)2.

Similarly, since a Kähler manifold of complex dimension k > 1 has constant
holomorphic sectional curvature if and only if (k + 1)‖R‖2 = 4‖ρ‖2, it follows
that (Mn, g, ϕ, ξ, η), n ≥ 5, has constant ϕ-sectional curvature if and only if

‖R‖2 =
8

n + 1
‖ρ‖2 +

(
32

n + 1
− 12

)
τ − 2(n− 1) +

(
6− 8

n + 1

)
(n− 1)2.

(See also [21] for another proof.)
As is well–known, locally symmetric Sasakian manifolds have constant sec-

tional curvature +1. In [22], T. Takahashi weakened this condition and intro-
duced locally ϕ-symmetric spaces by the condition

ϕ2(∇V R)XY Z = 0

for all horizontal V , X, Y , Z. These manifolds play a similar role as the Kähler
manifolds which are locally isometric to Hermitian symmetric spaces.
The relation is given by
Theorem 2 .[22] Let (M, g, ϕ, ξ, η) be a Sasakian manifold. Then it is a locally
ϕ–symmetric space if and only if each base space Ũ of the local fibration π : U
→ Ũ is a locally symmetric Hermitian space.

The local ϕ-symmetry is also equivalent to the fact that each local reflection
with respect to the flow lines of ξ is an isometry. When ξ is complete and each
local reflection is extendable to a global one, then the Sasakian manifold is said
to be a globally ϕ-symmetric space. Any complete and simply connected locally
ϕ–symmetric space is globally ϕ-symmetric.
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There is no scarcity of examples. We refer to [6] for further details and
references. In particular, we refer to [14], [17] for complete classifications of
simply connected globally ϕ-symmetric spaces.

Finally, we note that the Okumura connection D on a Sasakian manifold
(M, g, ϕ, ξ, η) is defined by

DXY = ∇XY + dη(X, Y )ξ − η(X)ϕY + η(Y )ϕX.

Then it follows that the Sasakian manifold is locally ϕ-symmetric if and only if
the torsion of this connection or equivalently, if the (1, 2)-tensor field T given by

TXY = dη(X,Y )ξ − η(X)ϕY + η(Y )ϕX

defines a naturally reductive homogeneous structure [23] on it. As already noted
in the introduction, this implies that locally ϕ-symmetric spaces are D’Atri
spaces and also C-spaces. Since they are locally homogeneous, they are triv-
ially ball-homogeneous.

3 Ball-homogeneneous Sasakian manifolds

We recall that a Riemannian manifold (M, g) is said to be ball-homogeneous
if the volumes of small geodesic spheres or balls are independent of the center,
that is, only depend on the radius. Clearly, any locally homogeneous manifold
has this property. We will now concentrate on the converse for five-dimensional
Sasakian manifolds and start by mentioning a result for four-dimensional Kähler
manifolds. We note that all Riemannian manifolds are supposed to be connected.
Theorem 3. [7] Let (M, g) be a four-dimensional Kähler manifold. Then (M, g)
is locally symmetric if and only if it is ball-homogeneous and Ricci-parallel.
The proof of it uses the following useful unpublished result of A.Derdziński (see
[18]):
Theorem 4. Let (M, g) be a four-dimensional Einstein space such that its Weyl
tensor W ∈ C∞(End

∧2
M) has constant eigenvalues (that is, which is curvature

homogeneous). Then (M, g) is locally symmetric.
Moreover, one makes extensive use of the following power series expansion for
the volume Vm(r) of a small geodesic ball Bm(r) of radius r and center m.
Theorem 5. [11] For any point m ∈ M and any small radius r > 0 we have

(3) Vm(r) = V n
0 (r)

{
1 + A(m)r2 + B(m)r4 + C(m)r6 + O(r8)

}
,

where V n
0 (r) denotes the volume of a Euclidean ball of dimension n = dimM

and radius r. The coefficients A, B and C are given by

(4) A(m) = − τ(m)
6(n + 2)

,

(5) B(m) =
(−3‖R‖2 + 8‖ρ‖2 + 5τ2 − 18τ∆τ)(m)

360(n + 2)(n + 4)
,
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C(m) =
1

720(n + 2)(n + 4)(n + 6)

{
−5

9
τ3 − 8

3
τ‖ρ‖2 + τ‖R‖2 +

64
63

ρ̌

−64
21

g(ρ⊗ ρ, R̄) +
32
7

g(ρ, Ṙ)− 110
63

Ř− 200
63

ˇ̄R +
45
7
‖∇τ‖2

+
45
14
‖∇ρ‖2 +

45
7

α(ρ)− 45
14
‖∇R‖2 + 6τ∆τ +

48
7

g(∆ρ, ρ)

(6) +
54
7

g(∇2τ, ρ)− 30
7

g(∆R, R)− 45
7

∆2τ

}
(m).

We refer to [11] for the explicit expressions of the cubic scalar curvature invari-
ants used in (6). We only mention

Ř =
∑

i,j,k,l,p,q

RijklRklpqRpqij ,

Ř =
∑

i,j,k,l,p,q

RikjlRkplqRpiqj

where {ei, i = 1, . . . , n} is an arbitrary orthonormal basis of each tangent space,
and note the relation

1
2
∆‖R‖2 = g(∆R,R) + ‖∇R‖2.

Now, we prove the main result of this section.
Theorem 6. Let (M, g, ϕ, ξ, η) be a five-dimensional Sasakian manifold. Then
it is locally ϕ-symmetric if and only if it is ball-homogeneous and η-parallel.
Proof. Since a locally ϕ-symmetric space is clearly ball-homogeneous and η-
parallel, we concentrate on the “if” part in the statement.

So, let (M, g) be ball-homogeneous and η-parallel. Then each (Ũ , g̃) is Ricci-
parallel. If it is locally reducible, then (Ũ , g̃) is trivially locally symmetric and
then the result follows from Theorem 2. So, we suppose that (Ũ , g̃) is locally
irreducible. Then it is an Einstein space of dimension 4 and hence (U, g) is η-
Einsteinian, that is,

ρ(X,Y ) = λg(X, Y ) + µη(X)η(Y ).

It then follows that

τ = nλ + µ, ‖ρ‖2 = nλ2 + µ2 + 2λµ

where λ, µ are constant since dimM ≥ 5. Moreover, a detailed computation,
which we omit, yields
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‖∇ρ‖2 = 2(n− 1)µ2,

α(ρ) = −(n− 1)µ2,

ρ̌ = nλ3 + µ3 + 3λµ(λ + µ),

g(ρ⊗ ρ, R) = λ{nλ2 + µλ + 2(n− 1)µ},
g(ρ, Ṙ) = λ‖R‖2 + 2(n− 1)µ,

g(∇2ρ, R) = µ{3τ − (n− 1)(3n− 1)},
g(∆ρ, ρ) =

1
2
∆‖ρ‖2 − ‖∇ρ‖2 = −2(n− 1)µ2.

Since M is ball–homogeneous, it follows from Theorem 5 that B is constant
on M and hence ‖R‖2 is constant. This implies that all the above mentioned
cubic invariants are constant on M . Since also C is constant, we have

(7) 22Ř + 40Ř− 27
2
‖∇R‖2 = const.

Moreover, from [11, (2.18)] we get

g(∇2ρ, R) =
1
4
g(∆R, R)− 1

2
g(ρ, Ṙ) + Ř +

1
4
Ř

and hence,

(8) Ř + 4Ř− ‖∇R‖2 = const.

Finally, since dimM = 5, the six-dimensional Gauss-Bonnet integrand vanishes,
that is [11, (2.24)],

τ3 + 3τ‖R‖2 − 12τ‖ρ‖2 + 16ρ̌ + 4Ř− 8Ř + 24g(ρ⊗ ρ, R)− 24g(ρ, Ṙ) = 0,

from which we get

(9) Ř− 2Ř = const.

Hence, from (7), (8), (9) we may conclude that Ř, Ř and ‖∇R‖2 are constant.
Next, we consider (Ũ , g̃, J̃). Since this is Einstein, τ̃ and ‖ρ̃‖2 are constant

and from (2) it follows that ‖R̃‖2 is constant. Moreover, proceeding as for (2),
we get

(10) Ř = { ˇ̃R− 6‖R̃‖2 − 24‖ρ̃‖2 + 12(2n + 3)τ̃ − 8n3 + 4n + 4} ◦ π

from which it follows that ˇ̃R is constant on Ũ . Further, we have [11, (11.4)]

τ̃3

2
− τ̃‖R̃‖2 + 8 ˇ̃R− 8

ˇ̃
R = 0

and [11, (11.3)]

‖∇̃R̃‖2 = ˇ̃R− 4
ˇ̃
R− τ̃

2
‖R̃‖2.
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Hence
ˇ̃
R and ‖∇̃R̃‖2 are also constant on Ũ .

Finally, since (Ũ , g̃, J̃) is a four-dimensional Kähler-Einstein manifold, we
may choose at each m ∈ Ũ an adapted Singer–Thorpe basis {e1, e2 = J̃e1, e3, e4 =
J̃e3} [18], [3]. Then the components of R̃ with respect to this basis are given by

(11)

R̃1212 = R̃3434 = a, R̃1313 = R̃2424 = b, R̃1414 = R̃2323 = c,

R̃1234 = α, R̃1342 = β, R̃1423 = γ,

R̃ijkl = 0 whenever three of the indices i, j, k, l are distinct





and where
α = b + c =

τ̃

4
− a, β = −b, γ = −c.

Then we get

a + b + c =
1
4
τ̃

8(a2 + 3b2 + 3c2 + 2bc) = ‖R̃‖2

48bc(a− b− c) =
1
48

τ̃3 − 1
24

τ̃‖R̃‖2 +
1
6
‖∇̃R̃‖2,

from which it follows that a, b, c are constant on Ũ [7]. This shows that (Ũ , g̃, J̃)
is curvature homogeneous and hence, as a consequence of Theorem 4, locally
symmetric. This completes the proof by using Theorem 2. 2

4 Five-dimensional Sasakian D’Atri spaces

A Riemannian manifold is said to be a D’Atri space if the local geodesic symme-
tries are volume-preserving up to sign, or equivalently, divergence-preserving.
If θm =

√
detgij denotes the volume-density function with respect to nor-

mal coordinates, then the D’Atri condition is equivalent to θm(expm(rx)) =
θm(expm(−rx)) for any unit vector x ∈ TmM and any sufficiently small r > 0.
Since

(12) θm(expm(rx)) = 1− r2

6
ρxx(m)− r3

12
(∇xρxx)(m) + O(r4),

this condition implies (∇xρ)(x, x) = 0 for any vector x ∈ TmM and hence, a
D’Atri space has constant scalar curvature and is analytic in normal coordinates
(see for example [15]).

Watanabe [25] observed that any three-dimensional Sasakian D’Atri space
is locally ϕ-symmetric. Moreover, using the conditions for the curvature tensor
following from the condition on θm, he showed that any five-dimensional Sasaki-
Einstein D’Atri space of non-negative sectional curvature is locally ϕ-symmetric.
Our main result in this section will yield an extension of this result by using
Theorem 7 [12]. Any connected D’Atri space is ball-homogeneous.

Now we prove
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Theorem 8. Any five-dimensional Sasakian manifold is locally ϕ-symmetric if
and only if it is a D’Atri space.
Proof. In Section 2 we have already mentioned that any locally ϕ-symmetric
space is a D’Atri space.

Conversely, let (M, g, ϕ, ξ, η) be a D’Atri space. Then, as mentioned above,
(∇xρ)(x, x) = 0 and hence, using(1), we get that each base space (Ũ , g̃, J̃) is
a Kähler manifold with cyclic-parallel Ricci tensor. It then follows that ρ̃ is
parallel [19] and so, (M, g, ϕ, ξ, η) has η-parallel Ricci tensor. The result follows
now from Theorem [6] and Theorem [7]. 2

5 Sasakian C-spaces

The main purpose of this section is to extend Theorem [8] to the class of C-
spaces. A Riemannian manifold (M, g) is said to be a C-space if for any geodesic
γ the eigenvalues of the Jacobi operator Rγ := Rγ′ · γ′ are constant along γ. This
is equivalent to the condition that traceRk

γ is constant along γ for all k ∈ N .
For k = 1 this condition means that ρ is cyclic-parallel. This implies that the
scalar curvature is constant and hence any three-dimensional Sasakian C-space
is localy ϕ–symmetric. Note that we already mentioned in Section 2 that any
locally ϕ-symmetric space is a C-space.

Now we consider the case of five-dimensional Sasakian C-spaces and prove
Theorem 9. Any five-dimensional Sasaki manifold is locally ϕ-symmetric if and
only if it is a C-space.
Proof. It suffices to prove the “if” part. So, let (M, g, ϕ, ξ, η) be a Sasakian
C-space of dimension 5. Since ρ is cyclic-parallel, ρ̃ is cyclic parallel and hence
parallel on each base space (Ũ , g̃, J̃). As in the proof of Theorem [6] we may re-
strict to the case where (Ũ , g̃) is an Einsein space, that is, (U, g) is η–Einsteinian.

Now, since traceR2
γ is constant along γ, we have

G(x) =
∑

a,b

Rxaxb∇xRxaxb = 0.

Further, let x be a horizontal vector and choose an orthonormal basis {e1, . . .,
e4, ξ} of TmM . Then we get by using the formulas in Section 2:

(13) 0 = G(x) =
5∑

a,b=1

Rxaxb∇xRxaxb = G̃(x̃)− 3∇̃x̃R̃x̃J̃x̃x̃J̃x̃

where x̃ = π∗x and

G̃(x̃) =
4∑

i,j=1

R̃x̃ix̃j∇̃x̃R̃x̃ix̃j .

Now, denote by D the Laplacian on Rn. Then it follows at once from (13) that
DG̃(x̃) = 0. Since for any Riemannian manifold with parallel Ricci tensor we
have [20] D2G(x) = 12x‖R‖2, it follows that ‖R̃‖2 is constant on Ũ . Further,
since (Ũ , g̃, J̃) is a four-dimensional Kähler-Einstein space, we have [9]
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(14) ‖R̃‖2 = 16F̃ (x̃) +
1
2
τ̃2 − 4τ̃ H̃(x̃)

where H̃(x̃) denotes the holomorphic sectional curvature of the two-plane deter-
mined by the unit vector x̃ and

F̃ (x̃) =
∑

i,j

R̃2
x̃ix̃j .

Hence, by differentiating (14), we get

(24− τ̃)∇̃x̃R̃x̃J̃x̃x̃J̃x̃ = 0.

If τ̃ 6= 24, then (Ũ , g̃, J̃) is locally symmetric [19] and (U, g) locally ϕ-symmetric.
So, we are left with the case τ̃ = 24, or equivalently, τ = 20. This means that

(U, g) is Einsteinian. In this case, put

Axyzw = A(x, y, z, w) = R(x, y, z, w)

for all horizontal x, y, z, w. Then A is a curvature-like tensor and its Ricci tensor
ρ(A) is proportional to g since ρ(A)(x, x) = ρ(x, x)−g(x, x). So A is Einsteinian.
For the corresponding scalar curvature we have τ(A) = 12. Further,

F (A)(x) =
∑

a,b

A2
xaxb = F (x)− 1

and since
F (x) = F̃ (x̃)− 6R̃x̃J̃x̃x̃J̃x̃ + 10,

we have
F (A)(x) = F̃ (x̃)− 6R̃x̃J̃x̃x̃J̃x̃ + 9.

Since τ̃ = 24, (14) yields

‖R̃‖2 = 16F̃ (x̃) + 288− 96R̃x̃J̃x̃x̃J̃x̃

and so, F (A)(x) is independent of the horizontal unit vector x. Since A is al-
ready Einsteinian, this means that A is a 2-stein curvature-like tensor (see for
example [10], [20] and Section 6). Moreover, since the horizontal subspace is
four-dimensional, A is pointwise Osserman and hence 3-stein [3], [10], that is,

∑

a,b,c

AxaxbAxbxcAxcxa

is independent of the horizontal unit vector x. Now, with the method used in
[11], integration over the unit sphere of {ξ}⊥ = R4 yields

(15)
∑

a,b,c

AxaxbAxbxcAxcxa =
1
48

{
ρ̌(A) +

9
2
g(ρ(A), Ȧ)− Ǎ +

7
2
Ǎ

}
.

Moreover, since A is Einsteinian, we have
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ρ̌(A) =
τ(A)3

16
, g(ρ(A), Ȧ) =

τ(A)
4

‖A‖2.

Since A is 2-stein and G(x) = 0, we get that ‖A‖2 = ‖R‖2−32 is constant along
horizontal curves, and hence also ‖R‖2. Using this and since traceR3

γ is constant

along γ, we get by differentiating (15) that Ǎ− 7
2 Ǎ is constant along horizontal

curves. A straightforward computation yields

Ǎ = Ř− 32 Ǎ = Ř− 40

and hence, Ř− 7
2 Ř is also constant along horizontal curves.

Finally, on a five-dimensional Einstein manifold we have [11, (11.6)]

τ3

5
− 9

5
τ‖R‖2 + 4Ř− 8Ř = 0

and so, in our case, Ř−2Ř is constant along horizontal curves. Since [11, (11.6)]

‖∇R‖2 = 3Ř +
1
10

τ3 − 13
10

τ‖R‖2,

we obtain that ‖R‖2, Ř, Ř and ‖∇R‖2 are constant along horizontal curves.

From this one then easily derives that ‖R̃‖2, ˇ̃R,
ˇ̃
R and ‖∇̃R̃‖2 are constant

on (Ũ , g̃, J̃). This again shows that (Ũ , g̃) is curvature homogeneous and hence
locally symmetric. This completes the proof of the theorem. 2

6 Sasakian 2-stein and harmonic spaces

We mentioned already in the introduction that all known example of harmonic
manifolds, that is, Riemannian manifolds such that the volume-density function
θm is a radial function (see [2], [3], [8] for more details), are locally homogeneous.
It is still unknown whether this holds in general or not. Surprisingly, this is even
the case for harmonic Kähler manifolds. In this section, we shall give a positive
answer for general Sasakian manifolds. To do this, we first prove a result about 2-
stein manifolds, that is, Riemannian manifolds which are Einsteinian and satisfy

∑

a,b

R2
xaxb = λg(x, x)g(x, x).

In this case we have [8]

(16)
∑

a,b

R2
xaxb =

1
n(n + 2)

{
3
2
‖R‖2 + ‖ρ‖2

}
g(x, x)g(x, x).

Theorem 10. A Sasakian manifold (M, g) is a 2-stein space if and only if it
has constant sectional curvature +1.
Proof. First, let (M, g) be a 2-stein space. Since K(x, ξ) = 1, we get from (16),
by putting x = ξ,
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(17)
1

n(n + 2)

{
3
2
‖R‖2 + ‖ρ‖2

}
= n− 1.

Since (M, g) is Einsteinian, we have ‖ρ‖2 =
τ2

n
= n(n− 1)2 and so, (17) yields

‖R‖2 =
2

n−‖ρ‖
2.

This implies that (M, g) has constant sectional curvature c (see for example [8])
and hence c = 1.

The converse is trivial. 2

Since any harmonic space is a 2-stein space [12] and any real space form is
harmonic, we get
Corollary 11. A Sasakian manifold is harmonic if and only if it is a space of
constant curvature +1.

We finish this paper with some remarks.
Remark. A Riemannian manifold is said to be disk-homogeneous if the volumes
of all small geodesic disks Dx

m(r) do not depend on the unit vector x ∈ TmM
for all m ∈ M . If, in addition, the volumes do not depend on m, then (M, g) is
said to be strongly disk-homogeneous. See [16].

Moreover, (M, g) is called a tube-homogeneous manifold if the volumes of all
small circumscribing tubes Uσ(r) are independent of the axial geodesic σ [24].

It is still an open problem whether disk- and tube-homogeneous spaces are
locally homogeneous. Since it is proved in [16], [24] that in both cases (M, g)
must be a 2-stein space, Theorem 10 yields that a Sasakian disk-homogeneous
or tube-homogeneous space has constant sectional curvature +1. The converse
holds for any real space form [16], [24].
Remark. An almost contact metric manifold (M, g, ϕ, ξ, η) is said to be a K-
contact manifold if it is a contact metric manifold and ξ is a Killing vector field.
For these manifolds we also have K(x, ξ) = 1 and so the proof of Theorem 10
applies. So, we get: A K-contact manifold is a 2-stein space if and only if it is
a space of constant sectional curvature +1. Also the results about harmonicity,
disk- and tube-homogeneity still hold.

Finally, we note that these properties are still valid for the class of C(α)-
manifolds, introduced in [13]. This broader class includes the co-Kähler, Ken-
motsu, Sasaki and K-contact spaces.
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