Notes on a New Finsler Metric Function
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Abstract

The Weyl metric is a Finsler metric of the («, 3) type and is closely related to
the Randers and Beil (or Kaluza—Klein) metrics. Some properties of this metric
are computed. The suitability of the metric for physical applications is discussed.
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A new Finsler metric has been introduced which is closely related to the Randers
and Beil metrics [1]. The metric is of the (a, 8) type [2] and appears as a special case
of these metrics as classified by Park and Choi [3]. The metric has been labeled the
Weyl metric [1] since it has a similar structure to metrics used in the old unified field
theory of Weyl. The new metric can produce the Lorentz equation as an equation of
motion.

The purpose of these notes is to develop a few of the mathematical and physical
properties of the Weyl metric and to indicate whether or not it might be useful in the
unification of gravitation and electromagnetism or other physical applications.

The basic form of the Finsler metric function for this metric is

(1) F% =208, o =nu,v"v”, B=k?(B,o"),

where v* = dzH /dr is the tangent vector component at a point in the Finsler space
and B, = n,,B" is related to the electromagnetic potential vector A, by a gauge

oA
(2) B, = Au + Sk
The v#* will be taken to be independent of  while B, is z—dependent. The constant
k will be determined. For simplicity, the Lorentz metric 7, is used here as the metric
for the original (background) Riemannian space. A more general gravitational metric
guv would give similar results, but with additional purely gravitational terms in the
connections and curvatures.
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The metric function (1) can be compared with the metric functions of the Randers,
Fgr, and Kaluza-Klein, or Beil, metric, Fi:

(3) Fp=(a+pB), Fg=ao>+p"
so that
(4) Ff = Fj, + Fi;

which shows the close relationship of these metrics [1]. A similar way of classifying
these metrics has been given in more recent work [3]. A general discussion of (a, 3)
metrics with a useful list of references appeas in Antonelli et al [4]. See also [5].

Each of the metric functions (1), (3) leads to a version of the Lorentz equation for
charged particles. The necessary treatment of the constants in the Lorentz equations,
however, leads to different physical interpretations [1, 6]. There appears to be some
physical reason to prefer Fx over Fg [6]. For another approach to particle dynamics
see a new paper in this journal [7].

The interesting discussion in Ingarden et al [8] on this question suggests that Fpg is
better adapted to an ”optical” description of a trajectory whereas Fix is more suitable
for a "microscopic” or dynamical description of particle motion in time.

For purposes of further discussion, the metric function, Fy , is modified slightly
by introducing a more general constant factor w,

(5) F2, = waf.

One reason for this, as will be seen, is to preserve physical dimensionality.
Various consequences of the metric (5) are now examined. The metric itself is

(6) Juv

1 93 wp 1 k2
= 25w~ 2a | T gzouwtr g (Buvw Uy

with v, = n,,0".
For future reference, the determinant of the metric is,

452 62
) =1 = ooz [RBuB" =355

The contravariant form of the metric is

42
. Y I
wp 16a2[(— /)32
28k3
wh = —Blj (B*v” + v"B") — Qu*v” — kB"BY
a
2 kB, B*
Q= 6_4 + )\2
Q Q

as can be verified by computing f** f,y = 6%.
The equation of motion is most easily computed from
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d (OF%, oFy,
©) E(E)v“>_ ot =0
This gives
wpB  dv” 1 (dB, 0B, ,\ _
(10) FUWW +wak (? = o v ) =0

which leads to

2kz (OB B,
dv, o’k <8u_8 )v":O.

(11) ar "5 \ o an

If the condition

(12) F - mck3

holds, then (11) is the Lorentz equation,

d
doy € p v _,

(13) dr mc

The most convenient choice of values for a and (3 is
(14) a? =c?
which, from (12), immediately gives

1
mcikz

(15) 8=

€

Other choices are possible, but (14) and (15) give satisfactory results. Another
convenient choice is

2e
16 =—Q
(16) Y me2ks
which produces the value
(17) F = fuotv” =2¢°

with reasonable physical dimensionality.
The metric (6) then, can be evaluated as

VU
2

(&

(18) f[.“/ = Nuv — + (Buvu + UHBV) .

c me3

This shows that the Weyl metric, like the Randers metric, explicitly contains the
charge to mass ratio of the particle. This property is an apparent disadvantage of
the metric since it would imply that the structure of the space is dependent on the
parameters of the test particle. This has previously been noted for the Randers metric
by several authors [8, 9, 10]. The Fx metric avoids this problem, however.

The Riemann-Christoffel connection
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1 8fu>\ + af)u/ afuu
oz” OxH ox>

(19) Vpr = 3

is easily computed (assuming that « and § are independent of x), using(6),

0B, . 0B,
Oxv = Ozt )|’

wk?
(20) Vv = E |:qu1/)\ + UyFu)\ + vx (

An alternate expression to (9) for the equation of motion is

dv” y
(21) fﬁ)\? + ’YAWU“U =0.

It is easy to show that (13) follows from (20) and (21).
The vertical connection, also called the Cartan torsion tensor, is easily obtained

1
_ 109fu _ L 3 k2
Cxuww = 55,5 = 1a <k2aw>\ + a_EUAUNUV - %buvk - FCWA>

(22) Auvx = Nuw B + nuxBy + nuaBy,
buvr = NuwVx + NuAVy + Nuavy
Cuvr = VU, By +v\v, By, + a0, B,,.
This can be written in a more compact form,

C)\uu = ﬁ (uuub)\ + uu)\bl/ + ul/)\bu)

Vp Uy

(23) Upy = Nuv — —52
by = k3B — Zo,.

A Finsler metric which is C-reducible [11] can be written in the form
(24) C)\ull = huVM}\ + huAMV + huAM,ua

where M is an arbitrary vector and

OF OF
(25) wo = Ju Qvk v
is called the angular metric tensor.
For the Weyl metric we obtain
wp 3v,v, k3 ka?
(26) huu = % Npv — —2CM2 + % (BMUV + ’UUBV) — WBMBV

It is obvious that the Weyl metric is not C-reducible. This is in agreement with well
known results that the only («, 8) metrics which are C-reducible are of the Randers
or Kropina type [4, 11].

At this point calculations of the various Finsler torsions and curvatures could be
undertaken using (20) and (23). These will be postponed to future efforts.
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An easier calculation would be that of the Ricci tensor associated with (20). The
details will not be given here, but it is not difficult to see that one would obtain terms
in an Einstein tensor which would have the same form as an electromagnetic energy—
momentum tensor. In this way the Weyl metric is similar to the metric derived from
FZ [12]. However, for the Weyl metric there is no favorable comparison of constants
as in [12]. The magnitudes of the energy-momentum tensors do not match those of
gravitational theory. This leaves the status of the Weyl metric as a candidate for a
unified field theory somewhat in doubt.

There is a similar magnitude problem for the Randers metric, in addition to the
explicit presence of e/m in the metric. This means that Fz becomes a clear choice
for a unified theory.

The Randers and Weyl metrics are, however, very suitable for electron optics
and other applications since they produce the Lorentz equation. Applications of the
Randers metric are discussed extensively in [4].

Finally, another possible application of the Weyl metric is obtained by inserting
the auxiliary condition

mce 1
(27) BH = — (1 — 2—n2> UH

€

into Equation (18). This sort of condition can be introduced after differential compu-
tations are completed. The parameter n can be interpreted as an index of refraction.
The resulting form of the metric is

1Y\ v,v
(28) fuw = v + (1 _ F) L;2u
which is the geometrical optics metric of Miron and Kawaguchi [13].

The condition (27) thus effectively transforms the problem from the case of a
theory of charged particles to the case of geometrical optics. This might show a useful
correspondence between the two theories and allow computations in one theory to be
applied to the other.
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