Generalized Invexities and Global Minimum
Properties

Stefan Mititelu

Abstract

New definitions for all types of invexity and generalized invexity of the arbi-
trary real functions are given. Direct implications between the invexity and gen-
eralized invexity types are established. Moreover, it is shown that for a (strict)
invex, (strict) pseudoinvex or (strict) quasiinvex function every (strict) local
minimum point is one of (strict) global.
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0. Introduction

The concept of convexity plays a very important role in the optimization theory.
Various convex models and methods of the convex programming are used also in the
study of the Riemannian manifolds [10]. The convex, pseudoconvex and quasiconvex
functions [1] knew various generalizations. We quote in the following some of these.
Let A be a nonempty open set of R™ and f : A — R be a differentiable function
on A. Hanson [5] generalized the differentiable convex, pseudoconvex and quasiconvex
functions respectively, by the following definitions.
Definition I. The differentiable function f is invexr on A if there is a vector function
n:AxA— R"such that

Vo,u € A: f(z) — f(u) 2 n'(x,u)Vf(u).

(" is the sign of transposition and V f is the gradient of f).
Definition II. The differentiable function f is pseudoinver on A if there is a vector
function n: A x A — R™ such that

Ve,u € A (@, u)Vi) > 0= fz) > f(u).

Definition III. The differentiable function f is quasiinver on A if there is a vector
function n: A x A — R™ such that
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Vao,u€ Az f(r) < f(u) = ' (2,0)V f(u) > 0.

Later the types of invexity, pseudoinvexity and quasiinvexity have been intro-
duced, specially in the differentiable case, by Jeyakumar [6] and Preda [8]. Craven
[3] introduced the invexity notion for the Lipschitz functions. In the nonsmooth case
Giorgi and Mititelu [4] and Mititelu and Stancu-Minasian [7] defined the nonsmooth
invex, pseudoinvex and quasiinvex functions using the upper Dini and Clarke direc-
tional derivatives, respectively. So, let f be the same function f and vectors u € A
and v € R™. The symbol

flu+Av) = f(u)
A

[ (u;v) = limsup (u+ v e A)

A0
is called the upper Dini directional derivative of f at the point u in the direction v [4].
Let p be a real number. Then the definitions of all types of the invexity, pseudoinvexity
and quasiinvexity in respect to f, given by Giorgi and Mititelu, are the following:
Definition 1’ (Invexities). The function f is said to be p-invez on A (shortly ply),
if there exist vector functions 7,6 : A x A — R™ such that

(pLy) Va,u€ A: f(z) — f(u) > fi(un(z,w)) + pllf(z, u)]*.

If
(1a) p > 0 the function f is called strongly invex;
(1b) p = 0 the function f is called invex;
(1c) p < 0 the function f is called weakly invez;
(1d)Vz e A, x #u: f(x) — f(u) > f\(u;n(z,u)) the function f is called strictly
invexr.
Definition 2’ (Pseudoinvexities). The function f is said to be p-pseudoinver on

A(pPI,) if there exist vector functions 1,0 : A x A — R™ such that
(pPL) Va,u€ A: fl(win(z,w) + pllo(z,w)l* > 0= f(z) > f(u).

If:

(2a) p > 0 the function f is called strongly pseudoinver;

(2b) p = 0 the function f is called pseudoinvez;

(2¢) p < 0 the function f is called weakly pseudoinvex;

(2d) Vo,u € A, x #u: fl (usn(x,u)) > 0= f(x) > f(u) the function f is called
strictly pseudoinver.
Definition 3’ (Quasiinvexities). The function f is said to be p-quasiinvez on A if
vector functions 1,6 : A x A — R™ exist such that

(pQL+) Vz,u€ A: f(z) < f(u) = fi(usn(z,w)) + pllf(z,uw)|* < 0.

If:
(3a) p > 0 the function f is called strongly quasiinvex;
(3b) p = 0 the function f is called quasiinvez;
(3¢) p < 0 the function f is called weakly quasiinvex;
(3d) Yo,u € A,z £ u: YA€ (0,1) : f(2) < F(u) = f(u+ Mi(z,u)) < f(u) the
function f is called strictly quasiinvez.
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(Be) Vz,u € A, x #u, YA € (0,1) : f(z) < f(u) = f(u+ M(z,u)) < f(u) the
function f is called semistrictly quasiinvex.

Remark 1. Some of Definitions 1'-3" have sense when function f! (u;) is finite.

The purpose of this paper is to give definitions for the nonsmooth invex, pseudoin-
vex and quasiinvex functions without use directional derivatives. The new definitions
are defined at a point. The direct implications between all types of invexity, pseudoin-
vexity and quasiinvexity are given. Moreover, some properties of global minimum of
the nonsmooth invex, pseudoinvex and quasiinvex functions are established.

1 Invexity and generalized invex types

We propose for all types of invexity and incavity definitions as follows.
Definitions 1. A (Invexities at a point). The functions f is said to be p-invez at
a point u € A(pI) if there exist vector functions 1,6 : A x A — R™ such that

(pI) Vz €A, VAE[0,1]: flu+An(z,u)) < f(u) + Alf (@) — f(u)] — pAl0(z, w)|*.

If

(1a) p > 0 the function f is called strongly invex at u(Sgl);

(1b) p = 0 the function f is called inver at u(I);

(1c) p < 0 the function f is called weakly inver at u(WI);

(1d) Vz € A, = # u,VX € (0,1) : f(u+ An(z,u)) < f(u) + A[f(x) — f(u)], the
function f is called strictly invex at u(SI).
B (Incavities at a point). The function f is said to be p- incave at w if the function
—fis p-invex at u. If p > 0, p =0 or p < 0 f is called strongly incave, incave or
weakly incave at u. The function f is said to be strictly incave at u if the function — f
is strictly invex at u.

In this section we suppose that f! (u;) is finite (see Remark 1).
Theorem 1.1. Definitions 1" with u fized and 1A are equivalent.
Proof. If u is fixed in Definition 1’ then from relation (pI;.) we obtain:

(pDy  w€A: f(x) — fu) > fi(usn(z,w) + pll(a,u)|.

Function f! (u;-) is positively homogeneous and then, by multiplication of (pI); with
an arbitrary scalar ¢ > 0, we obtain

€ A tf(z) = tf(u) > fi(usin(o,w) + tp8(w, w2 forall ¢ >0,

fu+ ptn(z,u) — f(u)

+tpl|0(z, u)||?
. pl|6(z, w)l

zeA:tf(x)—tf(u) > limsup
w0
forallt > 0 and g > 0,

x € A:tf(x)—tf p

+ tp||(z,u)||* and even

(1) @A t>0:tf(z) — itf(u) > flu+ atn(a,u) — f(u) + atol6(, w)l

Noting A = fit in (1) it results (pI) from Definition 1A.
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Conversely, for an arbitrary A > 0 in the relation (pI) by Definition 1A we obtain

flu+ pn(z,u)) = f(u)

3 < f(@) = f(u) = pllf(z, w)|?

(2)

and taking upper limit by A | 0 in (2) we obatin

filusn(z,w)) < f(z) = f(u) = pll6(z,w)||?,

which is (pI;) by Definition 1'.
Theorem 1.2. Between the invexity types the following direct implications hold:

(a) Strongly invex (SgI) and (z # u = 0(z,u) # 0) = Strictly invex (SI);

(b) Strictly invex (SI) = Invex (I) = Weakly invex (WI).
Proof. See above Theorem 1.1 and Théoreme 2.1 from [4].

For the pseudoinvexity and pseudoincavity types at a point we propose definitions
as follows.
Definition 2. A (Pseudoinvexities at a point). The function f is said to be
p-pseudoinver at u € A (pPI) if there exist vector functions 1,0 : A x A — R™ such
that

(pPI) Yz € A; VA€ [0,1]: f(u+ An(z,u)) + pAlf(z, w)l* > f(u) = f(z) > f(u).

If

(2a) p > 0 the function f is called strongly pseudoinvex at u (Sg PI);

(2b) p = 0 the function f is called pseudoinver au u (PI);

(2¢) p < 0 the function f is called weakly pseudoinvezr au u (WPI);

(2d) Yz € A, x # u,YA € (0,1) : f(u + An(z,u)) > f(u) = f(z) > f(u), the
function f is called strictly pseudoinvex at u (SPI).
B (Pseudoincavities at a point). The function f is said to be p- pseudoincave at
w if the function —f is p-pseudoinvex at u. If p > 0, p =0 or p < 0 then f is called
strongly pseudoincave, pseudoincave or weakly pseudoincave at u. The function f is
said to be strictly pseudoincave at u if the function — f is strictly pseudoinvex at w.

In what follows is necessary the next lemma.
Lemma. For all x € A and p € R the following equivalence holds

(3) Filusn(z,w) + pllf(z,w)|* > 0 &

(4) flu+ Mn(z,u) + pA|B(z, w)|]* > f(u), VA€ (0,1).

Proof. Function f (u;-) is positively homogeneous and then for all ¢ > 0 from (3) it
results

Fiustn(z,u)) + tpllf(@, w)|l* > f(u)

or equivalently

lim sup flu+ utn(w:, u)) — f(u)

+tpl|0(z,w)||*> >0, Vt>0.
iy - ploGe. w20, Vi

Then there is a i > 0 such that
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flu+ ﬂtn(ﬂi, u)) — f(u)

; T+ tpllf(, w)|> > 0, V>0

or equivalently,
flu+ ptn(z,u) — f(u) + @tpll(z,w)||* >0, Vt>0

We denote A = [it in this inequality and one obtaine (4).
Conversely, by (4) for A > 0, we obtain

flu+ An(z,u) — f(u)

: + oG, > 0

and taking upper limit by A | 0 in this inequality one obtains inequality (3).
Theorem 1.3. Definitions 2 with u fived and 2A are equivalent.
Proof. One uses the above Lemma.
Theorem 1.4. Between the types of pseudoinvezity the following direct implications
hold:

(a) Strongly pseudoinvezx (Sg PI) and injective = Strictly pseudoinvezr (SPI);

(b) Strictly pseudoinvex (SPI) = Pseudoinvex (P) = Weakly pseudoinvex (WPI).
Proof. See Théoreme 2.3 from [4] and the above Lemma.
Theorem 1.5.. If the function f is p-invex at uw € A then f is p-pseudoinvex at u.
Moreover, if f is strictly invex at u then f is strictly pseudoinver at u.
Proof. If f is p-invex at u then we have
(5)  weA Xe[0,1]: fu+An(z,u) + pAll6(z,u)||* — f(u) < A[f(z) - f(u)]

and if f(u+ A\p(z,u)) + pA||0)z,u)||* > f(u) then from (5) it results f(x) > f(u). For
the quasiinvexity and quasiincavity types at a point we propose definitions as follows.
Definition 3. A (Quasiinvexities at a point). The function f is said to be p-
quasiinver at u € A (pQI) if there are vector functions 1,0 : A x A — R"™ such
that

(pQI) Vz e A VAE[D,1]: f(z) < flu) = flu+ An(z,u) + pA|8(z, w)|]” < f(u).

If

(3a) p > 0 the function f is called strongly quasiinver at u (Sg QI);

(3b) p = 0 the function f is called quasiinver at u (QI);

(3c) p < 0 the function f is called weakly quasiinvex at u (WQI);

(83d) Ve € A,  # u, VA € (0,1) : f(z) < f(u) = flu+ M(z,u)) < f(u) the
function f is called strictly quasiinvezr at u (SQI);

(Be) Ve € A, © # u, VA € (0,1) : f(z) < f(u) = flu+ In(z,u)) < f(u) the
function f is called semistrictly quasiinvez at u (SSQI).
B (Quasiincavities at a point). The function f is said to be p- quasiincave at u
if the function —f is p-quasiinvex at u. If p > 0, p = 0 or p < 0 then f is called
strongly quasiincave, quasiincave or weakly quasiincave at u. The function f is said
to be strictly quasiincave at u if the function —f is strictly quasiinvex at v and f is
said to be semistrictly quasiincave at u if —f is semistrictly quasiinvex at u.
Theorem 1.6. Definitions & with u fived and 3A are equivalent.
Proof. One uses the above Lemma.
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Theorem 1.7. Between the types of quasiinvezity the next direct implications hold at
u:

(a) Strongly quasiinvez (Sg QI) and (x # u = 6(x,u) # 0) = Strictly quasiinvez
(SQD);

(b) Strictly quasiinvex (SQI) = Semistrictly quasiinvex (SSQI);

(c) Semistrictly quasiinver (SSQI) and lower semicontinuous on A and n(-;u)
bounded on A = Quasiinvez (QI);

(d) Quasiinver (QI) = Weakly quasiinvex (WQI).
Proof. For (a) and (d) one use the Lemma and Théoréme 2.7 by [4].

(b) Is obvious.

(c) We must show that

(QI) Vze A, VAe[0,1]: f(z) < f(u) = fu+ An(z,u)) < f(u).

Because f is (SSQI) at w and all A > 0, f(u + An(z,u)) < f(uw) implies f(u +
An(z,u)) < f(u), it results that f is (QI) at w.
We now have to prove that

(6) Vo€ A, YA€ [0,1]: f(2) = f(w) = flu+ An(z,u) < f(u).
Assume by reductio ad absurdum that (6) is not true. Then

Jte A INe0,1]: ft)=fu) and flu+An(t,w) > f(u).
We denote Z = u + An(t,u) and also
(7) f(@) = f(u) = a(a>0).

Because f is lower semicontinuous at x it results that for any € > 0 there is a §: > 0
such that for any 2 € A for which ||z — Z|| < d. one has f(z) > f(Z) —e. In particular
for £ = u one gets that ||u — Z|| < d. implies

(8) fu) > f(z) —e.

Choosing ¢ = a from (7) and (8) one obtain a > a, which is contradictory.
In this proof we suppose that ||u — Z|| < &, which is equivalent to ||n(t,u)|| < 6-/\.
From this it follows that the function n(-, ) must be bounded on A.
Theorem 1.8.. Between the types of pseudoinvexity and quasiinvezity the next im-
plications hold at u:

(a) Strongly pseudoinvezx (Sg PI) = Strongly quasiinvex (SgQI);

(b) Strictly pseudoinvexr (SPI) = Semistrictly quasiinvez (SSQI);

(¢) Weakly pseudoinvex (WPI) = Weakly quasiinvex (WQI);

(d) Pseudoinvex (QI) = Semistrictly quasiinvex (SSQI).
Proof. One use the Lemma and Théoréeme 2.8 by [4].

Direct implications which exist between various types of invexity, pseudoinvexity
and quasiinvexity at a point, according to Theorems 1.2, 1.4,1.5, 1.7 and 1.8 are given
in the following block diagram.
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weakly invex —  weakly pseudoinvex — weakly quasiinvex

T T T
quasiinvex
T
invex — pseudoinvex — semistrictly quasiinvex

T T T

strictly invex ——  strictly pseudoinvex —» strictly quasiinvex
T T T

strongly invex — strongly pseudoinvex — strongly quasiinvex

Remark 2. Functions 0-invex (case 1A (b)) have been introduced by Ben Israel and
Mond in 1986 and its have been denomed ”pre-invex functions” by Jeyakumar (see
Weir and Mond [11]).

2 Convexity, pseudoconvexity and quasiconvexity
types

. In the particular case when A is a nonempty convex set, n(z,u) = = — u and
6(xz,u) = & —u we recover the types of convexity, pseudoconvexity and quasiconvexity
at a point, as follows:

Definition 2.1. A(Convexities at a point). The function f is said to be p-convez
at u e A (pC) if

(pC) Vrx e A, YA€ [0,1]: f(Az + (1 = Nu) < Af(x) + (1 = N f(u) — pA||z — ul*.
If

(1'a) p > 0 the function f is called strongly convez at u (SgC);
(1'b) p = 0 the function f is called convez at u (C);

(1'c) p < 0 the function f is called weakly conver at u (WC);

U'd)Ve e A, z #u, YA€ (0,1): f(Ax + (1 —Nu) < Af(z) + (1 — X)f(u) then f
is called strictly convez at u (SC).
B (Concavities at a point. The function f is said to be p-concave at u if the
function —f is p-convex at w. If p > 0, p = 0 or p < 0 then f is called strongly
concave, concave or weakly concave at u. The function f is said to be strictly concave
at u if the function —f is strictly convex at u.
Definition 2.2. A(Pseudoconvexities at a point). The function f is said to be
p-pseudoconvex at u € A (pPC) if
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(pPC) Vz € A, VA€ 0,1]: f(Az + (1= Nu) + pAlle — ull* > f(u) = f(z) > f(u).

If
(2'a) p > 0 the function f is called strongly pseudoconvez at u (SgPC);
(2'b) p = 0 the function f is called pseudoconvez at u (PC);
(2'c) p < 0 the function f is called weakly pseudoconvez at u (WPC);
(2'd) Vz € A, x #u, YAin(0,1) : f(Az + (1 — Nu) > f(u) = f(x) > f(u) then f
is called strictly pseudoconver at u (SPC).
B (Pseudoconcavities at a point. The function f is said to be p-pseudoconcave at
u if the function —f is p-pseudoconvex at u. If p > 0, p =0 or p < 0 then f is called
strongly pseudoconcave, pseudoconcave or weakly pseudoconcave at u. The function f
is said to be strictly pseudoconcave at u if the function — f is strictly pseudoconvex
at u.
Definition 2.3. A(Quasiconcavities at a point). The function f is said to be
p-quasiconver at u € A (pQC) if

(pQC) Vz e A, YXE0,1]: fz) < flu) = fh + (1= N)u) + pAllz — ull® < f(u).

If

(3'a) p > 0 the function f is called strongly quasiconvez at u (SgQC);
(3'b) p = 0 the function f is called quasiconvez at u (QC);

(3'c) p < 0 the function f is called weakly quasiconvex at u (WQC);

B'd) Ve e A, & #u, YA€ (0,1): f(z) < f(u) = f(Az+ (1 — Nu) < f(u) then f
is called strictly quasiconvez at u (SQC).

Be)Vr e A, x #£u, YA€ (0,1): f(z) < f(u) = f(Az+ (1 — XN)u) < f(u) then f
is called semistrictly quasiconvez at u (SSQC).
B (Quasiconcavities at a point). The function f is said to be p-quasiconcave at
w if the function —f is p-quasiconvex at u. If p > 0, p = 0 or p < 0 then f is
called strongly quasiconcave, quasiconcave or weakly quasiconcave at u. The function
f is said to be strictly quasiconcave at w if the function — f is strictly quasiconvex
at w and f is called semistrictly quasiconcave at u if the function — f is semistrictly
quasiconvex at u.

3 Global minimum properties for (generalized) in-
vex functions

In this section we show that for all (striclty) invex, (striclty) pseudoinvex and (striclty)
quasiinvex functions every (strict) local minimum point is a (strict) global minimum
point. The global minimum property for these functions make them indispensable in
the optimization theory. For a semistrictly quasiinvex function every local minimum
point is one of absolutely minimum point.

Theorem 3.1. If a is a (strict) local minimum point of the function f in A and f is
(striclty) invex at a, then a is a (strict) global minimum point of f on A.

Proof. We suppose that a is a local minimum point and that f is invex at a in
respect to 7 : A X A — R™. Then there is a neighbourhood N of a such that f(z) >
f(a), YVx € NN A. Let now an arbitrary point ¢ € A. Then exists a A > 0, enough
small, such that a + Ap(t,a) € N N A. We have f(a) < f(a+ An(t,a)) and by the
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invexity of f at a it results f(a) < f(a) + A[f(t) — f(a)]. From this inequality one
obtains f(t) > f(a), V¢ € A. The proof of the strict variant of the theorem is obtained
on the same text.

Theorem 3.2. If a € A is a (strict) local minimum point of the function f in A and
f is (strictly) pseudoinvez at a, then a is a (strict) global minimum point of f on A.
Proof. We suppose that f is pseudoinvex at a in respect to : A x A — R™ and that
a is a local minimum point of f in A. Then there is a neighbourhood N of a such that

(9) flx) > f(a), VzeNNA.
Let now ¢ be an arbitrary point in A. Then there is a A > 0, enough small, such that
a+ M(t,a) € NN A.

According to (9) we have f(a + A(t,a)) > f(a). But f is pseudoinvex at a and then
fla+ An(t,a)) > f(a) implies f(t) > f(a), Vt € A. The strict variant of the theorem
is obtained in the same manner.

Theorem 3.3. If a € A is a strict local minimum point of the function f in A and f
is strictly quasiinvex at a, then a is a strict global minimum point of f on A.
Proof. We suppose that f is (SQI) at a € A in respect ton : A x A — R™. Then,
equivalently, we have:

(10) Ve € A, x # a, YAin(0,1) : f(a+ A\n(z,a)) > f(a) = f(z) > f(a).

If a is a strict local minimum point in A then there is a neighbourhood N of a such
that

(11) f(x) > fla), Ve NNnA\a.

At consequence there is an € > 0 such that a+en(t,a) € NN A\ a, where ¢ is arbitrary
in A. Then, according to (11), we have

(12) fla+en(t,a)) > f(a), VA€ (0,e], Vte A\a.

Taking now into account relations (10) and (12) we obtain f(t) > f(a), Vt€ A\a
and so, a is the strict global minimum point of f on A.

Theorem 3.4.. Let f be a semistrictly quasiinvex function at the point a € A. If a
is a local minimum point of f in A, then a is an absolut minimum point of f on A.

Proof. If f is (SSQI) at a in respect to n: A x A — R™ then, equivalently, one has

(13) Yz € A, x # a, YAin(0,1) : f(a+ A\n(z,a)) > f(a) = f(z) > f(a).

The point a is one of local minimum of f and then there exists a neighbourhood N
of a, such that f(z) > f(a), Va € NN A. Particulary, there is an £ > 0 such that

(14) fla+M(z,a)) = f(a), Ve € A, VA€ (0,e].

Combining relations (13) and (14) it results f(z) > f(a), Vo € A.

Definition 3.1. Let V and S be two nonempty subset of A. V is said to be a
"neighbourhood” of S if S C V and (Fr S) N (Fr V) = () or otherwise

0 # (Fr S) n (Fr V)C Fr A.
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Definition 3.2. Let f : A — R be where the set A has a nonempty relative interior.
a) The nonempty set S C A is said to be a local minimum subdomain of the
function f in A if f is constant on S and there is a "neighbourhood” V' C A of S
such that f(y) > f(z), Ve € S, Vy € V.
b) If M is the single local minimum subdomain of the function f in A then M is
called the global minimum subdomain of f on A.
Theorem 3.5. Let f be a quasiinvex function on A. Then any local minimum sub-
domain of f in A is a global minimum subdomain of f on A.
Proof. Let M C A be a local minimum subdomain of f in A. We suppose, ad absur-
dum, that the quasiinvex function f admits in A another local minimum subdomain
S, different from M. Evidently M NS = (). Let u € M and a € S be arbitrary choosed
and we suppose

(15) fla) < f(u).
Let V be a "neighbourhood” of M. We ascertain that
B ={u+ A\(z,u) € ANz € A, VA€ (0,\)}NV # ¢
where -
A = min{1,sup{A > Olu + A\n(z,u) € A}}.

Let y be an arbitrary point in B\ M. Then there are ' € A and X' € (0, ) such
that y = u + A'n(2’,u). We can choose y in B\ M such that f(z') < f(u) because,
according to (15), w is not an absolutely minimum point. Then, the quasiinvexity of
f at u imply

(16) flu+ X' u) < f(u).
But y = u+ Nn(z',u) in V implies
(17) fy) = flu+ X' u) > f(u).

Relations (16) and (17) are contradictory. Then it follows that the supposition above
maked, that M is not the single local minimum subdomain of f in A, is false.
Remark 3. The preceding theory can be translated in the Riemannian language using
the ideas of Udriste [10].
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