Discrete-Continuous Dynamical Systems with
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Abstract

This work develops the geometry and dynamics for discrete-continuous sys-
tems with nonholonomic constraints and symmetry from the perspective of La-
grangian mechanics.

The basic methodology is that of geometric mechanics of discrete-continu-
ous type, applied to the formulation of Lagrange - d’Alembert for these systems,
generalizing the momentum maps associated with a given symmetry group to
this case.

One of the purposes of this paper is to derive the evolution equation for
the momentum, a discrete-continuous momentum equation and to distinguish
geometrically and mechanically the cases where it is conserved.

We give detailed exemples to ilustrate this theory.
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1 Introduction

Problems of nonholonomic mechanics, including many problems in robotics are of
considerable interest. Greenspan (1973,1974) and more recently Labudde, T.D.Lee
(1987), Yuhuawu (1990) and Shibberu (1992) developed a discrete mechanics. Discrete
mechanics schemes are distinguished from numerical conventional schemes in that
they are based on fundamental principles, as opposed to approximations of differential
equations derived from continuum mechanics.

The purpose of this work is to bring these topics closer together with nonholonomic
systems with symmetry.

We begin by formulating a discrete-continuous variational principle and deduce
the discrete-continuous Lagrange d’Alembert principle. Following this, we add the
hypothesis of symmetry, derive a discrete-continuous version of the Noether theorem
and develop an evolution equation for the momentum, of course a discrete-continuous
one, that generalize the usual conservation laws associated to a symmetry group.
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In the final part of the paper we extend this theory for discrete-continuous systems
with special constraints (homogeneous and affine).

In this paper we give some examples to illustrate our approach including a discrete
version of a nonholonomically constrained particle.

2 The discrete-continuous variations

Let {7k }yeio.np> [0,N] = {0,1,...,N]} be a division of the interval [r),7n] C R,
where

™ — T0

(1) T = To + kAT, AT = N

and let R = [r9,7n] % [a,b] C R” be the two-dimensional network whose arbitrary
element (74,t) € R is denoted by (k,t),k € [0,N],t € [a,b]. For a function ¢ : R —
R", C'-differentiable with respsct to ¢ € [a, b], we denote

q(k= t) = (qz(k t))

) 0", 1) = = (alk + 1,6) — q(k, 1)
i, 1) = 201,
The set
b N
(3) L2(R) = {q R = R"| Z5ijqi(k,t)qj(k,t)ATdt < oo}
74 k=0

endowed with the scalar product

b N
(4) (‘LQ) = / (Z 6ijqi(k7t)qj (k7t)AT> dt
¢ \k=0

is a Hilbert space. The tangent space of the manifold
(5) Q= {q € £2(R)7 q(k7a) = ql(k)7 q(kab) = Q2(k)7k € [LN - 1]
q(olt) = QI(t)7q(N7 t) = qN(t)at € [a/b]}

at a point ¢ € Q) is

©) Tr={n:R = R" n(k,a) = 0,n(kb)=0,ke[l,N 1]
n(0,t) = 0,n(N,t) =0,t € [a,b]}
where
dq(k,t,e
(7) U(ki):% L) €Q,e€ ICR,0€I,q0) = q.

e=0
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For a C'-differentiable function F : @ — R we define the variation of the function
F (1),
OF : T, - R,

®) (F)) = =

K F(q(k, 1)
= kZ:O oD n'(k,t).

e=0

The point g € Q is critical (or stationary) for F', if at this point §F = 0.
Let be the sets

(9) Q' = {¢' (k,1), (k,s) € R}, Q = {q(k, 1), (k,s) € R}

and L : R x Q x Q! x © — R be a C?-function with respect to the variables from ,
Q! Q and t € [a,b]. We denote this function by

(10) L(k,t) = L(k,t,q(k,t),q" (k,t),q(k, 1)), (k,t) € R.

For L(k,t) we obtain

dL(k,t) 8L(k,t) 1 OL(k.t)
dgi(k,t)  Oqi(k,t) AT dqUi(k, 1)

dL(k,1) 1 OL(k,t) o

(1D g+ 1,0) A7 0q(h 1)’

The functional
p /N—1
(12) Alq) = / (Z L(k,t)Ar) dt
va k=0

is called the action of L with respect to ¢ € Q.
Proposition 1 (first variation formula) [6]. The variation of the functional A is

b [S [OL(k,t) OL(k,t) 1,
LX_I <3qi(k,t)n (k1) + g iigp gy (o)t

(13)  SAGn i) = /

a

OL(k,t) .
. "(k,t ATdt,
BICOL )ﬂ o
where k)
i dq(s)(k7t) 1i dq(E) k.t
"(kt) = ———= , "(k.t) =
n' (k. t) | n'(k.t) e By
14 "(k,t) =
(14) 1" (k1) e |,




38 D.Craciun and D.Oprig

with
eel CR,0€1,90) = 4,90, =" 4(0) = G-
For . (k. 1)
. n(k,t
nl(kat) = _(U(k"‘l,t)*ﬂ(k,t)): n(kat) =
AT dt

from (12) we obtain

p N—1 )
(15) SA@ = [ Y [kt (k) Art
where
(L) + L(k—1,8)  d [OL(k,t)
(16) Lk 0) = = i 1) G (aq%k,t)) |

3 The discrete-continuous Lagrange-d’Alembert prin-
ciple

The path g(k,t) € Q is called a discrete-continuous motion of the lagrangian system
(Q, L), if it is a critical point of the action functional A(g). From (13) we obtain
Proposition 1 (discrete-continuous variation principle). The function q € Q is a
critical point for A(q) iff

(17) [E)i(k,t) = d(L(k’t;qj(i(f) —LY) % <§;Ei?)> =0i=1,n,(kt)eR.

Lagrange equation. For L(k,t) = L(k, q(l‘c)7 q'(k)), k € [0, N — 1], we obtain from (16)
the discrete Euler-Lagrange equations

For L(k,t) = L(t,q(t),q(t)), t € [a,b], we obtain from (16), the continuous Euler-

d(L(k) + L(k — 1))

(18) dg' (k)

—0, i=Tm.

For A7 = 1,79 = 1,78 = N, from (17) we deduce the discrete Euler equations
given in [5]

oL(k)  OL(k)  OL(k-1)

(19) aq(k)  dqi(k) " Bqli(k—1)

=0, i=1,nkeR.

Let fo : RxQx Q' x Q) = R, a =1, m, a C'-function with respect to the variables
of Q, Q' Q and t € [a,b], given by

(20) fa(k,t) = fa(k,t,q(k,1),q" (K, 1)), a=Tm,(kt)eR
with

Ofal(k,
(21) rang ‘%H =m < n, (k,t) € R.
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The elements n € T,() satisfying the conditions

Ofalk,t)

(22) Oq"i(k,t)

i (k,1) = 0, a=Tm,(kt)€R

are called virtual variations of the constrained discrete lagrangian system (€2, L, S)
where L is given by (10) and

$ = {(alk, 1), (k,8), (k. 1) € 2 x Q" x O, fulk,t) =0,

(23) a=T1m,(kt)€R}

The discrete Lagrange-d’Alembert definition: The admissible element g € Q is
called a discrete motion of the discrete constrained lagrangian system (12, L, S) if for
(k,t) € R, [E;(k,t)ni(k,t) = 0 for all virtual variation .

Proposition 2. The discrete motion of the discrete constrained lagrangian system
(Q,L,S) is given by

o Ofa(k,t)
(24) [E]i(k.t) = o i (k. 1)
fa(k,t) =0, a=1m,i=1,n,(kt) € R.
Let fo(k,t) given by (20) with
(25) rang % =m < n, (k,t) € R.

The elements n € T,() satisfying the condition

(26) %-ni(ht) =0, a=T1,m,(k,t)ER

are called virtual variations of the constrained continuous lagrangian system (€2, L, S)
where L is given by (10) and S is given by (23).

The continuous Lagrange-d’Alembert principle is: The admisible element g €
is called a continuous motion of the continuous lagrangian system (2, L, S) if for
(k,t) € R, [E)i(k,t)ni(k,t) = 0, for all virtual variation 7.

Proposition 3. The continuous motion of the continuous lagrangian system (Q, L, S)
is given by

3

(27) [E]:(k, t) :ua%

fa(k,t) =0, a=1,m,i=1,n,(kt) € R.
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4  The discrete-continuous Noether theorem

Let be the Lie group G acts (from the left) on Q, by (g,q) € GxQ = g-q € Q, which
(9q)(k,t) = q(k,t,g). Let G be the Lie algebra of G and G* the linear dual of G. To
each vector € € G there correspond the one-parameter group exp(ef),e € I C R of G
whose action on {2 determines a discrete-continuous vector field &, given by

d
(28) a(k,t) = d—g[ewp(r:f) ~q(k,t)]]e=0 (k,t) € R.
From (28) we obtain
(29) e (k,t) = KI (k, )€, i=1,n, a=1,dmG,dimG =r,

where

dq'(k,t,exp(cey))
de

(30) £ =%, €0, Ki(k,t) =

e=0

Let @ be the canonical prolongation of G on Q x Q! x Q). The Lie group G is
called a symmetry group of the discrete—continuous lagrangian system (2, L) if

(31) Log(k,t,q) = L(k,1) V(k,t) € R, Vg € G.

3

The function L is called G—invariant lagrangian. The corresponding discrete mo-
mentum map is the mapping J¢ : T,Q! — G* [2] given by

OL(k —1,1)

(32) T = S

Ki(kt),  a=Tn(k)eR

and the corresponding continuous momentum map is J¢ : TqQ — G* given by

AL(k, 1)

)

(33) Jo(k,t) = 93 (k. 1)

K! (k,t) a=T1,n,(kt) €R.

Proposition 1 (discrete-continuous Noether theorem). For a solution of the discrete
continuous Fuler—Lagrange equations, we obtain

(34) JW(k,t) + % =0, a=T1,r(kt) €eR,
where
(35) le(kat) = Jg(k'i-l/t)*‘]g(k:t)

If L(k,t) = L(k,q(k),q' (k)), for a solution of the discrete Euler Lagrange equa-
tions, we obtain [5]

(36) JM(k) =0, a=T1,r.

If L(k,t) = L(t,q(t),q4(t)), for a solution of the continuous Fuler-Lgrange equa-
tions, we obtain [2], [4]
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475 (1)

(37) o

:07 a:W

Suppose that the lagrangian L does not depend on ¢/, j fixed. The system (€2, L)
admit locally the symmetry group G;. The action on (1 is given by

38)  q'(k,t) = q'(k,t), @ (k,t) = ¢ (k,t) + o, i#j,a’ €R.

The discrete continuous generator is given by & (k,t) = 0, fg)(k,t) =1,i #j.
From (40) we find

(39)

OL(k,t)  OL(k—1,t) d <3L(’“7t)> — 0, (k1) € R.

i (k1) 0qU(k—1,0) i \ 9 (k.1)
The coordinate ¢7 is called a cyclic coordinate.
For discrete—continuous lagrangian system (2, L), the conservation energy hold;

along a solution, the energy function

O(L(k,t) + L(k — 1,t))

9’ (k. t)

(40) E(k,t) = q'(k,t) — (L(k,t) + L(k — 1,1))

is constant in time.

5 The discrete—continuous momentum equation

In this section we use the discrete-continuous Lagrange-d’Alembert principle to derive
an equation for a generalized discrete-continuous momentum as a consequence of the
symmetries. We make the assumption that the action of G on (2 is free and proper.
Let S € Q x Q' x Q. We say that S is invariant if S,, = S,,Yq € Q,Vg € G.
The group orbit through a point ¢ € € is denoted by orb(q) = {gq,q € G}. Let ¢P
be the canonical prolongation of G on 2 x Q! x Q, T4 S the virtual variation and
T;(orb(qP)) the tangent space to the group orbit through a point ¢ = (¢,¢*,¢). In
general, S;e = TS N Ty(orb(g?)) #0. We define for each point ¢ € Q x Q x Q,
the vector subspace G(g) to be the set of Lie algebra elements G whose infinitesimal
discrete-continuous generators evaluated at ¢ are in S;= so G(q) {£ € G : £a(q) € S5}
Since the action is free, the vector field £q(g) defines the elements £(q) € G(q).
The discrete nonholonomic momentum map J™*? is defined by

OL(k —1,t)

(41) T (k1) = mfﬁ(’f:t% (k,t) € R,
where
(42) £ (k,t) = K (k,1)E% (K, 1), £(g(k,t) = &(k,t) € Gq(k,1)).

The continuous nonholonomic momentum map J™¢ is defined by

OL(k, 1)

(43) Jrhe(k,t) = 25k 1)

&6 (k, 1), (k,t) € R.
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Proposition 1. Assume that the lagrangian L is invariant under the group action
of G and £(q) € G(q). Then any solution of the Lagrange-d Alembert equations for
a S (discrete-continuous nonholonomic system) must satisfy the discrete-continuous
momentum equation

dJmhe (k, t)

Jnhd(k +1,¢t) — Jnhd(k,t) + —a =

AL(k,1)

- ~ 9g" (k1)

icla OL(k,t) [d i
K€ (k’tHW {Ef(ht)k.

If L(k,t) = L(k,q(k),q"(k)), for a solution of the discrete Lagrange- d’Alembert
equation, we obtain

nhdl _ aL(k) i la

If L(k,t) = L(t,q(t),q(t)), for a solution of the continuous Lagrange- d’ Alembert
equations, we obtain [4]
dJnhe(t)  OL(t)

(46) R

(1) ..
20 () (t).

6 The discrete-continuous momentum equation in
a moving basis

At the point ¢ € € introduce a basis {e1,...,em,€m+1,-..,€.} of the Lie alge-
bra such that the first m elements form a basis of G(q). Thus r = dimG and
m = dimG(q) which by assumption is locally constant. We can introduce a simi-
lar basis {e1(q),---,€m(q);€m+1(q),-..,e.(q)} for ¢ € Q. We consider a change of

basis matrix by writing

(47)  eala(k,1) = ealk.t) = vala(k, 1)es(a(k,t)) = va(k, Des, a,f=1r.

Here, the change of basis matrix ¢ is an r x 7 inversable matrix. By definition

Tk, 1) = %[ea(wa a=Tm, (k1) € R,
(48) Jrhe(k,t) = %[ea(k,t)]g, a=T1,m,(k,t) eR.

Using this notation, the momentum equations, with the choice given by £(q(k,t)) =
E(k,t) = eq(k,t) a=1,m, reads as follows:

nhc
(49) Tk +1,8) = Ty (k. ) + dJTM -
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OL(k, 1) ‘
= 9V (k. 1)

We define Christoffel like symbols by

[ea(k 4+ 1,t) — eq(k, )] +

AL(k,1) [d

a4 (k, 1) Ee“(’“’“h

0U3 (k1) -
0 Dtk 1) = oo VA k1)

Ag(k/t) = W’f(k + lat) - 1/’5(74775)]1/%(’?,75)7

where @g(k t) denotes the inverse of the matrix ¢5 (k, ).
Observe that

8 .
(51) %ea(k t) = awgélz:,t) G'(k,t)es = TN (k, t)g" (k, t)ex(k,t)

eall+1,8) — eqll, ) = [UF (k +1,8) — 05 (k, D6 (, Der(h, 1) = AX(k, ek, 1)
which implies '

pealk)]| =T 000 el

Q

(52) [ealk +1,8) — ea(k, )] = Ay (K, t)[ex(k, )]G
Thus we can write the momentum equation as

dJrhe(k,t
(53) Jrh (4 1,8) — T (ke t) + # =

OL(k,t) |, OL(k,t) ;
[WA (k,t) + Wr (k)7 (K, 1) | [ex(k, 1)]h-

7 Discrete-continuous systems with special constraints

Consider the set S = {( (k,t),q" (k, 1), Gk, t) € A x Q' x Q, fo(k,t) =0,

a=1, p} An element n(k,t) € TS is called a discrete virtual variation of the
constrained lagrangian system (2, S) if

(54) %ng(k,t) =0, a=1,p, rang (%) =p, V(k,t) € R.

An element 7(k,t) € Ty is called a continuous virtual variation of the con-
strained lagrangian system (€2, S) if

af(k,t)

R ()

. o (k1)
Wik t) =0, a=Tp, rang(aqi(k,t)>_p’ Yk 1) € R.

The Lagrange-d’Alembert principle is:
a) The admissible element ¢(k,t) € 2 is called a discrete motion of the constrained
lagrangian system (Q, L, S) if for all discrete virtual variation the equations are
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Ei(L)niy(k,t) =0, V(k,t) € R.

b) The admissible element g(k,t) € Q is called a continuous motion of the con-
strained lagrangian system (€2, L, S) if for all continuous variations we can write the
equations

Ei(L)ni(k,t) =0, V(k,t) € R.

Let Sy be the constraint distribution. The constraints in general are nonintegrable.
Choose a local coordinate chart for the constraint such that

(56)  fU(k.t) = q"(k,t) + A% (kD" (k,t) — (ko t) = 0, a=T,p,

where
AL (k,t) = Ag(a(k, 1)), v (k,t) = 7" (q(k, 1)).

The discrete virtual variation for (€2, Sq) is
n® (k. t) + Ag (k, t)n* (k, 1) =
The Lagrange-d’Alembert equation of motion for the discrete motion are
(58) Eo(L)(k,t) = AQ (k1) Ea (L) (K, 1)

q'" (k. t) + AG (k. t)g"" (k,t) =" (k1) = 0

Now we define the constrained lagrangian as

Lc(k7t) = L(k=t7q(k=t)7 _Ag(kzt)qla(k7t) + Wa(k=t)7q1a(k=t)7q.(k7t)) =

(59) Le(k,t,q(k,1),q" (k,1),4(k, 1)), a=Tp, a=p+1Lm.

Proposition 1. The discrete equations of motion are

Eo(Lo)(k,t) —  A%(k,t) {M o(kst) <5L e(k ’t)ﬂ _

dq°(k,t) 04 (k, )
(60) = [A5(h1) ‘AZ(’“‘L”]%+
+ ng(k,t)a%(ft)) ?(k.1) + (k’t)%’
where

_O( k,t
a0 = Gy 0 By
Remark. If L(k,t) = L(k, q(k), ¢* (k)) and ¢**(k)+ A% (k)g** (k) —v*(k) = 0,a = 1, p,

we can write the constrained lagrangian

(61) Le(k) = L(k,q(k), =A4 (k)q"" (k) + 7 (k. 1), ¢ (k)
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and the discrete equations of motion are

OL.(k)
dq° (k)

0q*(k)  0q°(k) | 09" (k) 9q*(k) " 0q* (k)] 0q"* (k)
If the constraint distribution is given by

(63) fa(k7t) = qa(k7t) + Ag(k,t)qa(k,t) - Va(k7t) =0, a=1,p,

(62) Eo(Le)(k) — Ag (k) = [AQ (k) — AQ(k = 1)]

9g'"(k — 1)

+|Aa (k)

the continuous distribution is given by
(64) n*(k,t) + Ag (k, t)n® (k, t) = 0,
the Lagrange-d’'Alembert equation of continuous motion for the system are
(65) Eo(L)(k,t) = AL (K, t) Ea(L) (K, t)-
Let L. be the constraint time independent lagrangian

(66)  Le(k,t) = Lk, q(k, t), = Aq (k, 1)g* (k. t) + 7 (1), q¢'* (k. 1), 4° (K, 1))

a=1,p, a=p+1,m
Proposition 2. The continuous equations of motion are

) OLo(k,t) ALk —1,8) OL.(k.1)]
Ba(Le)(k,t) = Aa(bot) | 5y T o= 1.0)  dge(k.t)| —

OL(k, 1) k,t)

(67) = Bk 0) g )+ G 2 )
where
a _ OA%(k,t) 0AG(k,t) 0Af(k,t) DAL (k1)
okt = Gitn ~ oren T2 pmn D oD
_ (k) 0" (k. t) 0AG (K, 1)
(68) Yo (k,t) = aht) AL (K, 1) 30 (h.1) +7°(k, 1) 3¢ (k1)
Remark. If L(k,t) = L(q(t),4(t)) and ¢* + A%¢* —v* =0, a = 1, p, we obtain
(69) Le(t) = L(q(t), —Ag (t)¢* (1) + 7,4 (1))
The motion of the system is given by
anOLe(k) OL(t) . wra OL(t)
(70) E, (LC)(t) - Aa (t) aqa(t) — Pap (t) 8q“(t) qB (t) * Ya (t) 6qa (t) :

These equations are derived in [4].
Examples.

We now consider two detailed examples to illustrate the theory developed above.
Although these examples are of strictly academic interest, they ilustrate the basic
concepts and indicate how more complicated examples should be attacked.
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1 A nonholonomically constrained particle
Consider a particle with the lagrangian

L P R + PR}, ke 0.,

L(k) = 5

where ¢''(k) = ¢'(k+ 1) — ¢*(k), i = 1,2,3, k € [0, N] and the nonholonomic discrete
constraint

(1) S: ¢ (k) =q*(k)g" (k).
We obtain A3 (k) = —¢®(k), A3(k) = 0 and the constraint lagrangian is

1 . 1

(2) Le(k) = 51+ (@ (kD" (B)] + 50" (k).

The corresponding equation of motion are

OL.(k)  OL.(k) OL.(k—1)  , OLc(k) _
o(k)  agoh) T agak—1) oM agur) =
e OAR(R)  OAKR) | 5, OL(K) . . OL(k — 1)
= |45 (k) 9" (k) - 9g° (k) q B(k)m — (Aq (k) — AQ(k — 1))m-
Here we take a = 3, a = 1,2, and so
OL.(k) OL.(k)  OL.(k-1) s OL(k — 1)
@ am e Togmny - N AR DgmeT
OL.(k)  OL.k) | OL.k—1)  9AI(K) ,, . OL(K)

3k~ 0q(k) T ok 1) am ¢ P agniy

The equations of motion now become

14+ ¢*(k)%)q" (k) — [1+¢*(k = 1)*)¢" (k= 1) = (¢° (k) — ¢*(k — 1))g"* (k — 1)

(4) ¢ ()lg" ()" — (k) + ¢ (k — 1) = ¢"" (k)q"* (k).

Together with the constrained equation (1) this completely specifies the motion.
Using (1) and (4) we obtain

¢?(k) — ¢ (k—1)=0

(5) [1+¢*(k = 1)a*(K)lg"" (k) + [1 + ¢*(k = 1)°]¢" (k = 1) = 0.

Then ¢'%(k) = ¢'*(k — 1), gives ¢*(k) = ¢*(0) + kc. The constraints and the
lagrangian are invariant under the R? action on Q given by

(" (k), a*(K), ¢’ (K)) = (a' (k) + X, ¢* (), ¢* (k) + ) V(A p) € R?, ¥k € [0, N].

We obtain
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Tykyorb(q(k)) = span {(1,0,0); (0,0,1)}.

The tangent space to the orbits of this action is given by

Sq(k) = span {(17 0, q2(k))7 (0/ 1, 0)} )

and the constraint distribution is

Sq(k) N Tq(k)orb(q(k)) = span {(17 0, q2(k))} )

and thus
e = (1,0,42(k), €M = (1,¢°(k)).
We obtain
6) Ki(k)=1Ky(k)=0 K{(k)=0 Kj(k) =0 K{(k) =0 Kj(k)=1 .
The nonholonomic momentum map is
n OL(k—1) piq(k
J hd(fq) Bq“'((kfll)) Qq( ) =
(7) = < (qll(ki1)7q12(k71)7q13(k71))7(1707q2(k)) >=
< (q""(k),q"*(k),q"(K)), (0,0,¢"(k)) >= q"?(k)q"* (k).

Hence the momentum equation becomes

0+ a4 D) = 1) = R (= 1) = L R () =

(8) =< (q"" (k) q"*(k),q"*(k)), (0,0,¢"(k)) >= ¢"*(k)q"* (k).

(9) ¢ (k) = ¢ (k= 1)+ ¢*(B)[g" (k) — ¢"*(k — 1)] = 0.
Using (1) in (9) the momentum equation map be rewritten as

q*(k)

(10) qll(k) - qll(k - 1) + W

¢" (k— 1)g"(k— 1) = 0.

We can illustrate the momentum equation in a moving basis. Choose a fix basis for
the Lie algebra of G = R? namely e; = (1,0), es = (0,1); we have €4 = e; + ¢°(k)es
and the moving basis

e1(q(k)) = (1, ¢*(k)), ea(q(k)) = (0,1).
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2 A homogeneuous ball on a rotating plate

The configuration space of the sphere is Q = R* x SO(3) parameterized by (z,y, R),
R € SO(3). Let w = (wa, wy,ws) be the angular velocity vector of the sphere measured
with respect to the inertial frame ({2 constant about z axis), let m the mass of the
sphere, mk? its inertia about the Oz axis and a its radius. The lagrangian of the
system is

1 . . 1 o . .
(1) L= §m(a':2 +9%) + Emkz(wj + w4+ w?),
with the affine nonholonomic constraints
(2) T —awy, = -0y, Y+ aw, =0z

The angular momentum of the ball about the z-axis is conserved since the la-
grangian is invariant under rotations about the z-axis.
The conservation law and the constraints are

Qz 1 Q
(3) We +—9 = —, wy——j::—y7 w; =c
a a

(up to an irrelevant constant)

1
Le=55 {m(a® + k%) (3% + 9°) + mk?Q*(2® + y*) + 2mk? (i — Qay).}
a
The equation of motion are
k2Q . k2Q

(5) Pt arEl =0 I et

These equations may also be derived by considering the momentum equations
associated with the system. The constraint distribution given by the two kinematic
constraints is

(6) S, = span {(a,0,0) + &, (0, —a,0) + &, &}

where &,, &,, £, denote the infinitesimal generators of the rotations about the Oz, Oy
’si Oz axes of the ball. Now we consider the action of the group R* x SO(3) on the
configuration space (clearly the lagrangian is invariant under this action). We have

(7) S, NTy(orb q) = S,.

The nonholonomic momentum map J""¢ has three components:

OL ; . .
Jo= a—qj(fz)é = ami + mk’w,
OL . ]
(8) Jy = 8—(11(53,)6 = —amy + mk3*w,
L ; .
Js = a—(fz)f2 = mk3w,.

g7
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In all cases &7 are independent of ¢ so the momentum equations are simply

dJ1 dJ2 dJ3

o Y P o v

(9)

Acknowledgements. A version of this paper was presented at the First Confer-
ence of Balkan Society of Geometers, Politehnica University of Bucharest, September
23-27, 1996.

References

[1] V.Arnold, Mathematical methods of classical mechanics, Springer Verlag 1988.
[2] J.Marsden, Lectures on Mechanics, Cambrige University Press 1992.

[3] D.Greenspan, Discrete numerical methods in physics and engineering, Academic
Press, New York 1974.

[4] A.Bloch, P.S.Krishnaprasad and J.E.Marsden, Nonholonomic Mechanical Systems
with Symmetry. Archive for Rational Mechanics and Analysis 1995.

[5] D.Craciun and D.Opris, On a discrete mechanics (to appear).

[6] D.Oprig and I.D.Albu, On the discrete continuous dynamical systems (to appear).

Dana Craciun Dumitru Opris

West University of Timigoara West University of Timigoara
Department of Theoretical Physics, Departament of Mathematics
Bdul V.Parvan 4, Bdul V.Parvan 4

1900 Timigoara, Romania 1900 Timigoara, Romania



