Some Representations of Affine Conformal
Transformations of Minkowski Space

George Margulescu

Abstract

We consider the groups G1,G2,G3 that are different from affine conformal
group just because the space-like or (and) time-like symmetries are accompanied
by the inversion Iy (charge conjugation operation). For these groups there exist
some fundamental spin representations (spin s = 1) given by (14); the represen-
tations of the subgroup formed from the proper Lorentz group, the homotheties
and the considered symmetries, for different couples X, u such that p? — \? =1,
are equivalent.
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1. Let M be Minkowski space, ' (i = 1,2,3,4) being orthogonal coordinates,
x2 = —(z1)? — (22)? — (2®)2 + (2*)2. Let M# be compactified Minkowski space [1], [2],
[4] (M with a "null cone at infinity”) and G the group of conformal transformations of
M (more exactly, of M#). We know that the transformations of G' may be considered
as linear transformations in a six-dimensional pseudo-Euclidean space EZ with the
metric Gap = €,0°, €, = —1,—1,—1,+1,—1,+1 and let O(4,2) the group of motions
of E2. Then G ~ O(4,2)/Z2, where Zs is the center of O(4,2) which, in the matrix (six-
dimensional) representation, consists of I and —I. We can construct an epimorphism
n:0(4,2) - G in the following manner: to every o = o(t%) € 0(4,2), (2'* = t82°,
Gupt?th = Geq, a,..,d = 1,..,6) corresponds g € G
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Note that 0 = o(ty) and & = o(—t}) have the same image, therefore O(4,2) is a
two-fold covering group of GG. In particular, if O¢ and G¢ denote the identity-connected
component of O(4,2) and G respectively, we see that O° is also a two-fold covering
group of G°¢.
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Let Gy C G be the affine conformal group, for which the ”null cone at infinity”
is preserved. Gy is formed by the full Lorentz group L, (z' = t;-mj, 6 parameters),
the translation group T (T(a) : 2'" = z' — a', 4 parameters) and the dilatation
group H (H(6) : 2" = e %z, 1 parameter). £ is formed from £1 (identity-connected
component of £) by addition of two symmetries, for instance 7, : ' — —z! and
74 : ¥ — —z*. The full conformal group G (with 15 parameters) is obtained from

Go by addition of the inversion Iy : /' = ;22 One obtains a new subgroup with 4
parameters
@) G(a') - gt = — O

s :

1 + 2aiz; + a?x2’

By direct computation one obtains G5(a’) = IyT(—a)ly and also G(a’) = I(a)7,,
where I(a) is the inversion relative to the hypersphere of center a’/a? and radius
1/va?, and 7, is the symmetry in the direction of nonisotropic vector a(7, : z'* =

(67 — 2% )a7).

a2
In EZ we have

2" =7t (i=1,..,4) 2" = l;'.zj
H(#):{ 2'>=—sinhf 2° + coshf 26 L£:48 25=2
2'6 = cosh z° — sinh# 25, 26 = 28

(2 =2t ai(2P + 20)
Go(a):{ 27 = (1+2),0 4 250 4 ¢
26 =(1- a—2)26 - %225 —a;z,
2" =2+ al(28 — 2°)

T(a'): ¢ 2% =2°—1a%(20 — 2%) — q;2!

26 =20 — 1a?(2f - 2%) — a;2"

Reflexion 7; : 28 — —z' (fixed i) corresponds in EZ to z! — —z%. The reflexion
76 : 25 = —28 corresponds, in M# to the inversion Iy and 75 is corresponding to I
followed of the ” total reflection” of the axes z'' = —z% (i = 1,...4).

To obtain the spin representations of G, it suffices to get the spin representations
of O(4,2). For this, we consider the Clifford algebra C§ associated to Ef.

2. Let Cg be the associative algebra with unity generated (with complex coeffi-
cients) by six entities i, ..., B¢ satisfying

(3) Baﬁb + Bbﬁa = 2Gab -1

Then [, ..., B¢ are linearly independent and let W C Cg be the linear space
spanned by the 8,. For every two vectors x,y € W we define (x,y) = %(xy—}—yx).
Writing down x = z'83;, y = y'f; we will obtain (x,y) = > z*y’ such that (x,y)
defines a scalar product into W and {f,} is an orthonormal basis. We agree to iden-
tify both spaces W and EZ and their orthonormal considered bases. Let Q be the
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multiplicative group of the nonisotropic vectors of EZ. Then for the symmetry 7, in
the direction of nonisotropic vector a € Ez we get

(4) T,:2 = —aza ' or 7z = (aE)z(aE)' (E=p1...0s), z€ E2).

Because for each o € O(4,2) we have 0 = 7,,...7,,, there exists an epimorphism
h:Q—0(4,2),

(5) oz = (—1)fwzw™ or oz = (WE)z(WE)™!, (w=a..a; € N),
ker h = C. Note that y = 1 o h is epimorphism of Q onto G. Let Q C Q be the
group [3] of normed elements of  such that h = h|g has kerh = {£1}, the group
Q being a two-fold covering group of O(4,2) (cf. [3] there exist four normed groups
Q... C Q that give us distinct representations of O(4,2). Let Q be one of this.)
Note that, denoting 0 = h(dw) for w € Q, we have ¢ = h(+wFE) whence, for y =
Xlg we have kery = {+1,£E} and Q is a four-covering group of G. Obviously,
the matrix representation of Cg gives us a four-valued linear representation of G,
called fundamental spin representation of G. For the infinitesimal generators of this

representation we get
1 1 1 1
Li; = §3iﬁj7D = §B6B57Pz' = 5&'(35 + B6), Ki = —5&'(55 - Bs),
and the operators D(a’) = e® P D(0) = ¢ D, D(¢') = ¢ Ki of T'(a), H(#), G,4(c) are

(6) D(a') =1+ %aiﬁi(& + B6), D(0) = cosh g] + sinh 2&365,

D(c')=1- %Ciﬁi(65 — Bs)-

3. We will consider some of the subgroups of G, which contain G§ and which can
have applications in the classification of the elementary particles.

Considering the decomposition of the groups G and Gy in connected components

G = GC U Tch U 7'4C1YC U T1T4GC, Go = G(C] U T1G8 U T4G8 U T1T4G8,

we notice that G; = G° U 4G¢, Gy = G° UG, G3 = G° U 14G*, are subgroups
of G. For a certain group G, C G and hq,hs € G, we will denote with {G,; hq,h2}
the group formed from the elements of G, and the composition of these, in a certain
number of times, with the elements hy, ho.
Proposition 1. We have:

1. G1 {G(C];Tllg,ﬂ;]g};

2. Gy ={G§; 11, 14lp};

3. G3 = {GS;T1[0,7'4}.

We will prove here only the affirmation relative to Gj.

Through a direct computation (which can be done in the space M# or EZ) we get

1ily = Iyr;, 7T (a) =T(ra)r, H(0)Iy = IoH(-0).

Then, the relation G(a) = I(T'(—a)ly can be written
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G(a) = (1alo) o T(—a) o (1a1y),
and therefore {G§; 74l } D G¢. But 141y € G¢ (because in E it represents the trans-
formation 747¢; or in M# we can verify that 7,1y = T(bg)G(bg)T(bg) € G° with
by =(0,0,0,1)). It results

(7) G ={G5malo}

On the other hand, 7 Iy ¢ G° because, in EZ it is the product of the space-like or
time-like symmetries 7, and 74 (in M # we can verify that 7 Iy = 7o T'(ag) o G(—ag) o
T'(ag) with ag = (—1,0,0,0) and 7 = ry7a1374 ¢ G°). For g € G° it results (r1lp)g =
7T (ag)G(—ap)T (ap)g = mi7ag’, 9’ € G¢. Using (7) follows Gy = {G§; 111y, Talp}.

For the group GG; we will give the decomposition in connected components:

(8) Gy = G(C] U GS(T4IQ)G8G8(T1]0)G8 U T1T4G8.

Indeed, (see above) we have G,(a') = I(a)7,. But, for a? > 0 we can write 7, = go74
(because through a translation and a dilatation, therefore through a proper Lorentz
transformation, we can transform the vector a into e4) and for a? < 0 we can write
Ta = goT1, go € G§. Because the inversion

Tege:§) — ) =RE

can be written, for R? > 0 as Ze.ge = T(—])H(RE)ZT()’) and for R* < 0 as
Tere = T(—])BH(RE)L,T(]?), it results that for any nonisotropic vector a, we can
write G4(a®) = go(7210)gh, go, g4 € G§. From 741y € G€ it follows

G° = G UGS (141) G,

Using the relation which defines G, we obtain (8).

We notice that the groups G, G2, G3 are different from Gy just because of the fact
that the symmetries are accompanied by the inversion Iy. Thus, it is possible that
the elementary particles (for example neutrino) for which the symmetry operations
are accompanied in an obligatory way by the operation of charge conjugation, to be
the representations of one of these subgroups.

4. Obviously, every representation of G gives us a representation of Gy (respec-
tively of Go,G3). We will prove that there exist some representations of G (also, of
G4, (G3) that are not obtained by this way.

Lemma 2. Let K=\05 + ufs, u> — \* = & = £1. Then the mapping E2 — FE2 given by

IMNp): 2 =-KeK ' z2=28,€E2 (a=1,..,6;\, u€R)

is the inversion with respect to the hypersphere with center O(0,...,0) and the radius

_ Atp
R = e

Proof. Obviously, K is nonisotropic vector and K~ = ¢K. We have

N 1,
7'= = KaK ' =28 + —[(1” + X*)2" = 2012] 85 + + [ (* + A*)2" + 2027,
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and therefore

. . 1., . . 1 . .
2 =202 = (W + N?)2° — 2Au2%], 20 = S [ (p® + A2 + 2apu2].
£ €

Since 2%z, = 2'*z! the function I(\, u1) is an isometry in E2. Then in M# we have

Vi 2 ptA
5 16

P CEETED\ x2

and the lemma is proved.

A
+ Nk it results that

Denoting hg the homothety with the center O and power

w4+ A

A
3 > 0; I(A\,p) = hgotoly, ifu+

0.
)\<

9) IO p) = hoo Iy, if

We denote Qf the subgroup of ) for which x(Q§) = G§ C G°¢. The group Qf
does not depend on the choice done for . It is the subgroup of the elements like
w = aias...asg, where a; are unit vectors, such that an even number of vectors are
space-like among a;, as, ...as;.

Proposition 3. Let K=A85 + uBs, u, A € R, p?> — X2 = +1. Let s=vB K, t =
V' 8K, where v,V are defined by s> = e,t> = ¢' and ¢ = +1,&' = +1(therefore
v,v' = +1,+i). Let

(10) Q. (A 1) = Q5 U Q5SS U QSEQE U st

Then:
1. Q. (A, ) is group.
2.x1=X @, () is homomorphism of QX_, (X, p) onto G.

, 2 2 _
3. There exists Ue Q0 such that UQ!, (A, u)U "t = { Q%Z,El((l(?O?fZ'TM% __/\/; :__11_
Proof. First, we notice that the four subsets which appear in (10) are disjunctive.
So, for example, an equality in the form wofiKwy = wif1Kwi, wo,w),wr,w; € Qg
implies w/ K = 1 Kw', w,w’ € Qg. Then, through the homomorphism x, we have
nghUI(] = T4h0](]gl, g,g’ € G(C] Because h(]Tl = Tlho, ghg = hggl, it results ngIIO =
nhg', 91,9 € G§.

Considering the corresponding transformations in EZ, it result g6 = 74769,
where g, ¢’ belong to the identity-connected component of the group O(4,2); but this
relation is impossible because the right member belongs to this connected component
and the left member does not belong to it.

To prove that Q7 (A, 1) is subgroup of Q, it is sufficient to show that the prod-
uct of any two of its elements belongs to Q7 (A, u). Firstly, we mention that if
w € (A p), then also wE € QF, (A, p). Indeed, w € Q. (A, u) implies woE =
wofB1...06 € ), because x(woFE) = x(wo)x(E) = x(wo) € G§. It follows that each
of the four components of Q*_, (A, 1) (see (10) ) contains, together with the element
w, also the elements —w, *wE. Thus, if w € Q§(84K)Q§, therefore w = wo(B4K)wy,
then wE = wo(BsK)wyE belongs to Q§(5.K)Q§, because wp,woE € Qf. Whence
X '(G1) = Q. (A, p). Then, for wi,ws € Q2 (A, p) we have y(wiws) = x(wi)x(w2);
since x(w1), x(w2) belong to the group Gi,it follows wiws € x ' (G1) = Q2 (A, ).
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To prove the last point, we denote
K, = coshy (5 + sinh ¢ fg, Ko = sinh ¢ 5 + cosh ¢ fg.
We have
K= 1K;=+1 KIKi + KbK; =0, K, 3 + 3K, = 0,0 = 1,2.

Therefore the systems of vectors {3;, 85, 86} and {f;, K1, K>} satisfy the same com-
mutation rules, and hence there exists U€ () such that

UBU = Bi, UKiU * = B5, UK U = .

Let us consider two choices of the vectors K, namely K = Ky, K' = ;. Then s=
vB1Ks, t= 14K, and s’ = vf18s,t' = v/ B4Bs. Because UsU™ ! =8/, UtU™! = t/,
it results

(11) UQ*. (sinh o, cosh )U 1 = Q7 (0,1).
Analogously,
(12) UQ* (cosh g, sinh p)U ' = QF_,(1,0).

Indeed, the operators D(l}), D(a') and D(f) for the proper Lorentz transformation,

translation T'(a") respectively for the homothety H(f) in the matrix representation of
Cs are given by (6) and using the relations

K + Ky = e?(B5 + ), Ki Ky = 3556
we obtain
(13) UD(I5)U " = D(1%),UDB)U " = D(0),UD(a" ) U"" = D(e ¥a’),

and therefore UQU ! = Q.
Analogously, since {8;, 85,06} and {8;,i06,i05} satistfy (3) there exists V € Q
such that
VBV =8, VBV =iBe, VBV ' = ifs.

Then

VBiBsV ' =iBiBs, VBBV " = B5Bs, V(Bs + )V ' = i(B5 + Be)-

Therefore
Vs (1,00V !t =0F

—e,—¢’

(0,1).

The relations (13) suggest to consider the subgroup G = {LL, H, 1o, 14lp}. Tt is
the Weyl group {L£,H}, where the symmetries are accompanied by the inversion Ij.
Conclusion. Considering the matrix (spin) representation of Cg, one obtains:

For given €,&' (e,&' =1 or —1) there exist four classes of fundamental spin repre-
sentations (spin s = %) of the group GG; such that to the symmetries in the direction
of vectors a,be M# (a? =1, b? = —1, a= a'f3;, b= b'f3;) correspond the operators
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(14) s=va(A\Bs + uBs), t = v'b(A\Bs + ufs), u’> — A? = 1.

For different couples A, pr such that 2 — A2 = 1 one obtain equivalent representations
of the subgroup G} C G (for given ¢,¢’). For this subgroup, the substitution u?—\? =
1 — pu? — X2 = —1is equivalent to g,&' — —&, —€'.

It is possible that an elementary particle with isospin corresponds to such a rep-
resentation.
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