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Abstract

We study the second fundamental form of invariant submanifolds of a contact
metric manifold with & belonging to the k-nullity distribution and with constant
¢-sectional curvature. Then we shall show that some Kon’s results are special
cases of ours.
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1 Introduction

In [12], Simons classified compact minimal submanifolds of a sphere into three cate-
gories with respect to the length of the second fundamental form. Then he got a very
important formula (Simons’ type formula) with respect to minimal submanifolds (see
[12], pp. 81). Kon [9] studied, by using Simons’ type formula, the pinching problem
for the length of the second fundamental form of a compact invariant submanifold
in Sasakian manifolds of constant ¢-sectional curvatures and got the condition for
its invariant submanifold to be totally geodesic. Moreover, he studied an invariant
submanifold with trivial normal connection.

On the other hand, the present author [8] got the curvature tensor of a contact
metric manifold with ¢ belonging to the k-nullity distribution and with constant ¢-
sectional curvature. The purpose of this paper is to lead Simons’ type formula for the
second fundamantal form of invariant submanifolds of a contact metric manifold with
€ belonging to the k-nullity distribution and with constant ¢-sectional curvature and
to show that some Kon’s results [9] are special cases of ours.

2 Contact metric manifolds

Let M be an (2r41)-dimensional contact metric manifold and (¢, £, 7, g) be its contact
metric structure. Then we have
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¢’ =-I+7q®E, ¢n=0, fod=0, 7 =1,
<

¢X, Y >=< XY > —qj(X)q(Y), <X, &>=1(X),
dp(X,Y) =< ¢X,Y >, X,Y € X(M),
where we denote the metric tensor field by <, > instead of g and the Lie algebra of
_ _ = 1 -
vector fields on M by X'(M). On such a manifold we define h = _§£§¢ (L denotes the
Lie differentiation). Then h is symmetric, h anti-commutes with ¢ (i. e., ph+ho = 0),

hé =0,no0 Biz 0 and Trh = 0, where Tr h is the trace of h. It is well-known that the
vector field ¢ is a Killing vector field if and only if h vanishes. Also

(2.1) Vxé=¢X +¢hX (and thus Vg€ = 0),

where V is the Riemannian connection of <,> (e.g., [7], ¢f. [1]). A contact metric
manifold M for wich ¢ is Killing is called a K-contact manifold. We also recall that
on a K-contact manifold it is valid R(X,£)¢ = X — (X)¢, X € X(M), where R
is the curvature tensor of M. A contact structure on M?"*! gives rise to an almost
complex structure on the product M?"*' x R, where R is the real line. If this almost
complex structure is integrable, the contact metric manifold is said to be Sasakian.

Equivalently, a contact metric manifold is Sasakian if and only if
R(X,V)E = q(V)X —g(X)Y, X,Y € X(M).
The k-nullity distribution (e.g., see [13]) of a Riemannian manifold (M, <, >) for
a real number £ is the distribution
N(k):p— Ny(k) ={Z e T,(M)|R(X,Y)Z =k(<Y,Z>X-<X,Z>Y)}

for any X,Y € T,(M). From now on, if we don’t refer something else, we suppose
that M is a contact metric manifold with ¢ belonging to the k-nullity distribution,
ie.,
(2.2) R(X,Y)E=k(n(Y)X —7(X)Y), XY € X(M).

In particular, if M is Sasakian, then k = 1.

Then the following lemma is needed later ([11], [13] and [8]).

Lemma 2.1 Let M be a contact metric manifold with £ belonging to the k-nullity
distribution. Then we have

(2.3) Q¢ = (2nk)E, h* = (k—1)¢* (and hence k < 1);

(24) (Vgd)V =— <X +hX,Y >E+0(Y)(X +hX) (and thus Ve = 0);
(1-k)(2<X,0Y >E+7(X)pY —7(Y)9X)
+ N(X)ghY —n(Y)phX,

[
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for any vector fields X,Y € X (M), where Q is the Ricci operator on M.
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If X is a unit vector which is orthogonal to &, we say that X and ¢X span a
¢-section. If the sectional curvature H(X) of all ¢-sections is independent of X, we
say that M is of pointwise constant ¢-sectional curvature.

Then we get the following theorem [8].

Theorem 2.1 Let M be a contact metric manifold with € belonging to the k-nullity
distribution. If M is of pointwise constant ¢-sectional curvature H, then the curvature
tensor has the following form:
(2.6)

AR(X, V)7
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where H is constant on M if n # 1.

3 Invariant submanifolds

Let M = M?"'(¢,£,7,<,>) be a contact metric manifold. A submanifold M =
M2+ of M is said to be invariant if

(i) € is tangent to M everywhere on M;

(ii) ¢X is tangent to M for any tangent vector X to M.

It is well-known that any invariant submanifold M with induced structure tensor
(¢,€,m,<,>) of M is also contact metric manifold and is minimal in M (e.g., [3], [4]).
If we define an operator h = —3L¢¢ in an invariant submanifold M (¢, &,n, <,>) of a
contact metric manifold M (¢, £,7, <, >), then we have the results that h is symmetric,
h anti-comutes with ¢ (i.e., ph+h¢p = 0), hé = 0, noh = 0 and Tr h = 0. Moreover, by
the definition of h, we can see that h.X is tangent to M and hX = hX for X € X (M)
(see [5]).

Let X(M)* be the set of all vector fields normal to M. We denote by V the co-
variant differentiation in M and V the one in M determined by the induced metric on
M. If we denote by A the second fundamental form of M, then the Gauss-Weingarten

formulas are given by
VxY =VxY +B(X,Y), VxN=-AN(X)+ DxN,

X,Y € X(M), N € X(M), where < AN(X),Y >=< B(X,Y),N > and D is the
linear connection in the normal bundle T'(M ). The covariant derivative of B is given
by
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(VxB)(Y,Z)=Dx(B(Y,Z)) — B(VxY,Z)— B(Y,VxZ).
For XY € X(M), the Gauss-Weingarten formulas implies
(3.1) (R(X,Y)2)" = R(X,Y)Z — ABYA)(X) 1 AP D) (),

where T is the tangential projection on M. For any tangent vector field W on M we
obtain the Gauss equation

<(RX,Y)Z,W> = <RX,Y)ZW>-<B(Y,Z),B(X,W) >+

(3.2) ’
+ < B(X,Z),B(Y,W)>.

On the other hand, using the Gauss-Weingarten formulas, we get

(3.3) (R(X,Y)N): = R*(X,Y) - B(AN(Y), X))+ B(AY(X),Y),

3

where XY € X(M), N € X(M)* and R*(X,Y) = [Dx, Dy] — Dix y].
We need the following lemma later.

Lemma 3.1 [([5], [5])]. Let M be an invariant submanifold of a contact metric mani-
fold M. Then the second fundamental form A of M satisfies AN¢ = —pAN, ANE =0,
N € X(M)*.

Let M be a contact metric manifold with £ = ¢ belonging to the k-nullity distri-
bution. Then, by (2.2), we have

R(X,Y)¢ = k(n(Y)X —n(X)Y) = k(n(Y) —n(X)Y).
Here, from the Gauss equation and Lemma 3.1 we find R(X,Y)¢ = R(X,Y)¢. There-
fore we get R(X,Y)¢ = k(n(Y)X — n(X)Y), so that, M is also a contact metric
manifold with ¢ belonging to the k-nullity distribution. So, we have the following
identities:

(3.4) Q¢ =2nké, h* = (k—1)¢*> (and hence k < 1);
(3.5) (Vxd)V = =< X +hX,Y >+ (V) (X + hX);
(3.6) —(Vxh)Y +(Vyh)X = (1-k)(2<X,9Y >+n(X)oY —n(Y)oX

+ n(X)phY —n(Y)phX,

for any vector fields X, Y € X(M), where @) is the Ricci operator on M.
Here we have the following.

Lemma 3.2 Let M be a contact metric manifold with € belonging to the k-nullity
distribution. If M is an invariant submanifold of M, then the following are satisfied

(3.7) pAN = AN,
(3.8) (Vxh)N = 0;
(3.9) hAN = ARV,

(3.10) AND = AN, X,Y € X(M), Nex(Mm)?t.
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Proof. At first we prove (3.7). From the Gauss formula we see that

(3.11) H(VxY)=¢(VxY)+¢B(X,Y).

On the orher hand, by (2.4) and the Gauss formula, we find

p(VxY) = Vx(¢Y) — (Vx9)Y
= Vx(¢Y)+ <X +hX,)Y > ¢ nY)X —n(Y)hX
= (Vx9)Y +¢(VxY) + B(X,¢Y)
+ <X+hX,)Y >E-—nY)X —nY)hX.

(3.12)

Taking the normal parts of (3.11) and (3.12), we get ¢B(X,Y) = B(X, ¢Y). Thus we
find pAN = APV,

Next we prove (3.8) and (3.9). By Weingarten formula, we get the following two
equations:

(3.13) Vx (hN) = —A"™(X) + Dx (hN);
Vx(hN) = (Vxh)N +h(VxN)
(3.14) = (Vxh)N + h(=AN(X)+ DxN)

= (Vxh)N — hAN(X) 4+ hDxN).

On the other hand, we have

Le(Vx )N = Vi (Lep)N — (Vig x19)N = 0,
from which, we obtain

(Vxh)N = —%Eg(?xé)N + %(@[57)(](;3)1\1.

Here, from (2.4), we see that (Vx¢)N = (V¢ x)¢)N = 0. Thus we get (Vxh)N = 0.
Taking the tangential parts of (3.13) and (3.14), we find our result.
Last we prove (3.10). Using the Gauss formula, we get

Vx(hY) = (Vxh)Y +h(VxY)
(3.15) = (Vxh)Y + h(VxY + B(X,Y))
= (Vxh)Y +h(VxY)+ h(B(X,Y)).
On the other hand, we find
Vx(hY) = Vx(hY)
(3.16) = Vx(hY) + B(X,hY)
= (Vxh)Y +h(VxY)+ B(X,hY).

From (3.15) and (3.16), we have
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(3.17) (Vxh)Y + h(B(X,Y)) = (Vxh)Y + B(X,hY).
Interchanging X and Y in the above equation, we find
(3.18) (Vyh)X + h(B(Y, X)) = (Vyh)X + B(Y,hX).
Subtracting (3.17) from (3.18) and using (2.5), we obtain B(X,hY) = B(Y, hX), from
which ANh = hAN.

Using Lemma 3.2, we get the following lemma.
Lemma 3.3 Let M>"+! be a contact metric manifold with € belonging to the k-nullity
distribution. If M*"+ s invariant submanifold of M>"+'. Then we have Tr hA? = 0
and (Tr ha)? < 2n(1 — k) Tr A?.
Proof. At first, h is represented by the following matrix form (see [13], pp. 446):

5} 0

pn

—Hn
0 0

where u; = V1 —k, (1 < i < n). From (3.10) we can take the same orthogonal
matrix as h’s one to orthogonalize A. Therefore, from Lemma 3.1, A is expressed as
in the following;:

141 0

Vn

—VUn

0 0

Thus, we get Tr hA = 2¢/1 — k(v; + -+ +v,,) and Tr hA? = 0, from which

(Tr hA)2 = 41—k +- -+ Vn)Z
4’!7,(1 — ]{;)(yf 4+ -4 Ufb)
2n(1 — k)Tr A%

IN

The following two theorems are known ([5], [2]).

Theorem 3.1 Let M be an invariant submanifold of a contact manifold M. Then
AN = ANR if and only if (VxAN)¢E = 0.
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Theorem 3.2 Let M?"*! be a contact metric manifold with R(X,Y)¢ = 0 for all
vectors X and Y. Then M?"*! is locally the Riemannian product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of positive curvature 4.

By Theorem 3.2, we get the following lemma.

Lemma 3.4 Let M?*t! be a contact metric manifold with & belonging to the k-nullity
distribution, and let M>"t! be an invariant submanifold of M. If the second funda-
mental form A of M7+ is covariant constant, them either M*"t1 is totally geodesic,
or M?"*! s locally the Riemannian product of a flat (n + 1)-dimensional manifold
and an n-dimensional manifold of constant curvature 4.

Proof. By Theorem 3.1 and out assumption, we get AN = ANh. Therefore, from
Lemma 2.1, i.e. follows that A" = ANh = ANB? = AN(k — 1)¢*. By Lemma 3.1 we
find

ANX = (k- 1)AN (—X + n(X)¢) = (1 — k) AN X.

This implies kAN X = 0, from which & = 0 or AN X = 0. In the case of ANX =0,
X € X(M), M?"*! is totally geodesic. When we have k = 0, by Theorem 3.2, M2?"+!
is locally the Riemannian product of a flat (n + 1)-dimensional manifold and an n-
dimensional manifold of constant curvature 4.

We now suppose that the ambient manifold M is a contact metric manifold with
€ belonging to the k-nullity distribution and with constant ¢-sectional curvature H.
Then we have

(3.19) )
RX,Y)Z = H: V2> X—<X,Z>Y)+ %(n(X)n(Z)Y

—nY)(Z2)X +n(Y) <X, Z>-—n(X)<Y,Z>¢

+ <Y, Z > dX—< X, Z > Y =2 < ¢X,)Y > ¢Z)
+(k = DmY)n(2)X =n(X)n(2)Y +n(X) <Y,Z > ¢
—nY)< X, Z>)+<hY,Z>X—-<hX,Z>Y
+<Y,Z>hX—-<X,Z>hY +9(X)n(Z)hY
—n(Y)(Z)hX + (V) < hX,Z > & —n(X) < hY,Z > §)
+3(<hY,Z > hX— < hX,Z > hY+ < ¢hX,Z > phY
— < QhY,Z > phX) + ABYVA) X — AB(X.Z)y,

(3.20) (VxB)(Y,Z) — (Vy B)(X, Z) = 0,

Ric(Y,Z) = (”(H+3)+(H_1) +(k—1)> <Y, 7>+

2
e DE=D) y )+

+ 2(n—-1)<hY,Z>-3 < B(X,e;),B(Y,e;) >,

(3.21) + <(2n — (k1) —
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(3.22) S, =n*(H +3)+n(H+1)+4n(k Z < B(ei,ej), B(ei,ej) >,

where {e;} is an orthonormal basis of M, Ric is the Ricci curvature on M and S, is
the scalar curvature on M (see [§]).

4 Simon’s type formula of invariant
submanifolds

In this section, we assume that M = M?>"*'(¢, £, 7, <, >) be a contact metric manifold
with & belonglng to the k-nullity distribution and Wlth pointwise constant sectional
curvature H, and let M = M?*"*+1 (¢, &, 1, <,>) be an invariant submanifold of M. We
put p = r — n. First we have (2.6). Since any invariant submanifold M of a contact
metric manifold M is minimal, its second fundamental form A satisfies

(4.1) VZA=-AoA - A, 0 A+ R(A) + R,
where R(A) and R’ are defined by setting
(4.2)
_ 2n+1
<RAV(X),Y > = Z {2 < R(e;, Y)B(X,e;),W > +
+ 2< R(e;, X)B(Y,e;), W > —
— < AW(X),R(e;,Y)e; > — < AV(Y), R(ei, X)e; >
< R(e;, B(X,Y))e;, W > =2 < AW (e;), R(e;, X)Y >}
B 2n+1 B B B B
<R(X),Y >= Y (< Vx(R)(e;,Y)er, W > + < Ve, (R)(es, X)Y, W >),
i=1

where X, Y € T, (M), W € T, (M) and e, . .., €354 is a frame in T, (M) (see [12],
pp. 81). The operator A is defined by

(4.3) A=Ato A,

where A? is the transpose of A. Let vy, va,. .., v, be a frame for T,,(M)*. Then the
operator A, is defined by setting A, = Z?ﬁl ad A’ad A’. Here we denote a¥ by A’
to simplify. A and A, are symmetric and positive semi-definite operators. Since M
is of constant ¢-sectional curvature H, from (2.1), (2.6), (3.3), (3.4), Lemma 3.1 and
Lemma 3.2 we get, after lengthly computation,

<RAY)(X),Y>+<RW(X), V> = 2fdn2kol) o qWx y >
+ m<hAY XY >—-2TrhA" <X,V >

2n(X)n(Y)TrhAW — TthAW <hX,Y> .

+

Hence we get by (4.1) and Lemma 3.1
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(4.4) )
—<V2AA> = <AoAA>+4 <A oA A> I2HEIn A1) 42

;=20 > Tr h(AW)2 4+ 5 (Tr hAW)2,
w W

where ||A|| denotes the length of the second fundamental from A. From (4.3) Lemma
3.2 we can see easily that A = A¢. And A is symmetric, positive semi-definite at
each point m € M. Hence we can choose an orthogonal basis vy, ..., v, ¢v1,...,dv,
of T,,,(M)* with respect to which the matrix form of A is of the form

2
ai 0
2
A= “p
aj
2
0 a,

We can see that

P P
i(22(L?)2 << Aod A>= 22@1 = 2((Za?)2 - Za?ag)

2; t=1 t=1 t£s
(also see [12], pp. 93, pp. 94). From this we have
1 - 1
(45) LAt << a0 4 as< Ly
2p 2
2p
Here we define the operator A* = 3" (A4;)? which is also a symmetric, positive semi-
i=1

definite operator. Taking a basis ey, ..., en, €1, ..., ¢en, £ € T,,(M), by Lemma 3.1
and (3.7) we have pA*APpA* = — A2 A’ A?. Therefore we obtain

2p
<A,o A A>= D" ||[AY A7 = 2Tr (A*)°.

a,b=1

Since A* is symmetric positive semi-definite and ¢A* = A*¢, by using a suitable
frame A* is represented by the matrix form

where A4+ = A¢, Ay > 0. Then we have

2n 2n
. 1 . 1
<A AA>=2Y N > —(3 ) = Al
i=1

i=1
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2n 2n
<A, 0AA> = 2((2 /\Z)2 - Z /\Z/\])
i=1 i£j
2n n
= 23 N)2—83 MAs— < A.o0A A>.
i=1 t#s

Consequently we get the following inequality

(4.6) JAI << Auo A, A >< 4]

Therefore (4.4), (4.5), and (4.6) and Lemma 3.3 imply

(4.7) — < V?4,A>< [gHAHZ - %((n +2H +3n) + (2n — 1)(1 — k)]||A]]%.
If M is compact, then we get

—/ <V2A,A>:/ <VAVA>.
M M

Theorem 4.1 Let M?"*' be a contact metric manifold with € belonging to the k-
nullity distribution and with constant ¢-sectional curvature H, and let M>*"*' be a
compact invariant submanifold of M?™*'. Then either M>"+1 is totally geodesic in
M+ or M7+ s locally the Riemannian product of a flat (n + 1)-dimensional
manifold and an n-dimensional manifold of constant curvature 4, or at some point
m € M?™ ! the following inequality holds

‘ 1 i}
147(m) > S ((n+2)H + 30— 2(2n = 1)(1 ~ k)).
Proof. From (4.7), we get

/ [g||,4||2 - %((n F2)H +3n) + (20— 1)(1 — k)]|JA|? > / < VA, VA >>0.
J M J M

. 1 _
Suppose ||A|]? < g((n + 2)H + 3n — 2(2n — 1)(1 — k)) everywhere. Then the sec-

ond fundamental form of M?2?"+! is covariant constant, from which M?"*! is totally
geodesic, or M2"*! is locally the Riemannian product of a flat (n + 1)-dimensional
manifold and an n-dinemsional manifold of constant curvature 4. Therefore, except
for this possibility, at some point m € M?2"+1,

1 _
AIP(m) > 3((n +2H + 30— 2(2n — 1)(1 — k).
If M2+ is of constant ¢-sectional curvature H, then the scalar curvature S, of

M?"*+1 s given by (3.22). Consequently we get the following corollary.

Corollary 4.1 Under the same assumption as in Theoremd.l, M?*"t! s totally
geodesic in M?"T1, or M*"t1 s locally the Riemannian product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of constant curvature 4, or at
some point m € M,

S.(m) <n?(H +3)+n(H+1) +4n(k — 1) — %((n +2)H +3n —2(2n — 1)(1 — k)).

Remark 4.1 In the case of which M?*"+! is Sasakian, we have k = 1. Then Theorem
4.1 and Corollary 4.1 become the results of Kon ([9],pp.136).
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5 Invariant submanifolds with trivial normal
connection

In this section, we study, in the same way as Kon leads, invariant submanifolds with
trivial normal connection. Let M be a contact metric manifold with ¢ belonging to
the k-nullity distribution and with constant ¢-sectional curvature H, and let M be an
invariant submanifold of M. Throughout in this section, we assume that the normal
connection of M trivial, i. e., RY = 0. By the assumption and (3.3) we obtain

< (R(X,pV)V)E, 0V >= — < B(AY (¢Y), X), ¢V > + < B(AY (X), ¢Y),dV >,

where X, Y € T,,(M) and V is a unit vector in T,,(M)+. From (2.6) the left hand
side of this becomes

< (R(X,pY)V)E, ¢V >= %(1 — H) < ¢X,8Y >,
and by Lemma 3.1 and Lemma 3.2 we see that
— < B(AY(¢Y), X))oV > + < B(AY(X),9Y), sV >=2 < AV (X), AV (V) > .
Hence we get
(5.1) (1-H) < ¢X,9Y >=4< AV(X), AV (V) > .
From this we obtain the following result.

Proposition 5.1 Let M be a contact metric manifold with & belonging to the k-nullity
distribution and with constant ¢-sectional curvature H. If the normal connection of
an invariant submanifold M of M is trivial, then H < 1 and equality holding if and
only if M is totally geodesic in M.

Lemma 5.1 Let M be a contact metric manifold with & belonging to the k-nullity
distribution and with constant ¢-sectional curvature H, and let M be an invariant
submanifold of M with trivial normal connection. Let V and W be unit vectors in
T (M)L. If V is orthogonal to W, then

(5.2) AVAY £ AV AV = 0.

Proof. We may construct a new unit vector (V + W)/v/2 in Ty, (M)*. In view of
(5.1) we see that for any vectors X,Y € T,,,(M)

<AVAY(X),Y > + < AMAV(X),Y >=0,
which proves (5.2).

Theorem 5.1 Let M?"*! be a contact metric manifold with € belonging to the k-
nullity distribution and with constant ¢-sectional curvature H. If M1 is invariant
submanifold of M?™t' and the codimension of M is greater than 2, then the following
conditions are equivalent:

(I) the normal connection of M is trivial, i.e., R+ = 0;

(II) H = 1 and M is totally geodesic in M.
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Proof. From (2.6) and (3.3) it is clear that the condition (II) implies the condition
(I). Let us assume the condition (I) and that M is not totally geodesic in M. Let
€1,...,em, & be a ¢-basis in T, (M) such that e, ; = pe;. If AV (e;) = 0 for some
unit V € T,,,(M), then (5.1) implies that M is totally geodesic. Therefore AV (e;) # 0
for any V and e;. From (5.1) we can see that A(e1), ..., A(ea, are linearly independent.
On the other hand, by (3.3) and (5.2) we get

< (R(X,Y)V)E, W >=2< AV(X),A"(Y) >,

where X,Y € T,,,(M) and W is a unit vector in T},(M)* which is orthogonal to V.
Using (2.6), we obtain

_ 1 _
< (R(X,YYV)L, W >= 5 << X9V > oV W >
Hence we have
(5.3) (1-H) << X,0Y > oV,W) =4 < AV(X), AV (V) > .

If 2p > 2, we can take W which is orthogonal to V and ¢V. Then regarding to
(5.3), it follows that < AY(X),AV(Y) >= 0 for any X,Y € T,,(M). And by the
assumption, AW (e;) # 0 for any i (i = 1,...,2n). Therefore AV (e;) is orthogo-
nal to A" (e;) for any i, j. Consequently A" (e1),..., AW (e2,), AW (e1),..., AW (ean)
are linearly independent. But each AV (e;) and AW (e;) are in T,,(M) and we have
dim T,,(M) = 2n + 1. This is the contradiction. Therefore M is totally geodesic in

M and hence H = 1.

Remark 5.1 In the case of which M is Sasakian, Theorem 5.1 turns out a result of
Kon (9], pp.138).
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