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Abstract

In this paper we modify the fundamental function of a Finsler space with
the help of a parallel Finsler vector field, getting a new Finsler space whose
properties are investigated.
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The terminology and notations are referred to Matsumoto’s monograph [5].

Let F™ be an n dimensional Finsler space with a fundamental function L(z,y)
(y = &), and we shall introduce in F™ the Cartan connection CT = (F}%,, Ny, C;'1).

Let us consider a vector field X?(x) in F™: this field is called parallel, if it satisfies
the partial differential equations

(1) Xijj =0 X — N"jopX' + X"Fy'; = ;X' + X"F'; = 0,
(2) Xi|j = 9; X1+ X"Cy'; = X"Cy; =0,

where 8; and 9; denote partial differentiations by =7 and y, respectively.
From the Ricci identities, the following integrability conditions hold:

(3) X"Rpijp =0,
(4) XhPhijk =0,
(5) thhijk = 0,

where Rp;jr, Prijr and Spi i are the components of the curvature tensors of CT'.

Remark. In particular, the above equations (1) and (2) are satisfied for a stationary
vector field X(x).
In terms of covariant components X;(z)’s, (1) and (2) are written as

(1) Xy =0,
(2)! Xi|; =o0.

Here we shall consider the modification of a Finsler metric by a parallel vector
field X?(z), as follows. Putting
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(6) "L =L+ 57 (B =Xi(a)y' #0),

*L defines a new Finsler metric of M. It is said that *L is obtained by a S—change of
the metric L [6]. The metric tensor derived from *L is written as follows:

(7) *9i; = gij + XiX;, "¢ = ¢ - X'X7 /(1 + X?),

where X is the length of X? with respect to the original metric. The coefficients of
Cartan’s connection are written in the forms

(8) N'j =N, CF = Fi'y,
and we have *Fj;, = (6"; + X; X")Fipy.

From (7) we immediately get
9) *Cijk = Cij, “Cj'x = Oy’
As a consequence, (8) and (9) yield

Proposition 1. If a Finsler space with a fundamental function L admits a parallel
vector field X", then the vector field X" is parallel with respect to the modified metric

(6)-

In view of (9), we can conclude immediately
(10) *Shijk = Shijk-
The components of the other two curvature tensors are
(11) *Rhuijk = Rnijk, *Rn'jr = Ri'jk,
(12) *Phijk = Phijk, *Pn'jk = Pa'ji,
For the later use, we shall show here two lemmas.
Lemma 1. ([6]) The covariant vector m;(:= X; — By;/L?) is a non zero vector or-

thogonal to y'.
Proof. Assuming that m; = 0, we have L2X; — By; = 0. Differentiating this by y’

and denoting 5iL(: yi/L) by ¢;, we are led to a contradiction h;;(:= g;; — €;il;) = 0.

Lemma 2. For the angular metric tensor h;; and the covariant vector m;, we have
(13) hij X7 =m; (#0),

(14) m; X' =m? (#£0),

where m? = gi;m'm? and m' = g"m;.

Proof. Assuming that m? = 0, we get L?X? — 32 = 0. Then 0;0;(L*X? — %) = 0
gives us g;; = X;X;/X? which contradicts rank(g;;) = n.

Remark. It follows from 8 # 0 that the covariant vectors m; and X; are non—zero
vectors.
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Now, we shall consider the T—condition
(15) Thijk := LChij|x + €nCijk + LiChjk + £;Chi + Lk Chij = 0,

where the T—tensor T} is completely symmetric.
If we contract (15) by X", we have X"¢,Cijx = 0 in virtue of (2). But from
X"y, = B/L # 0, we find Cij, = 0. Consequently, from (9) we find

Theorem 1. If a Finsler space F™ satisfying (15) admits a parallel vector field, then
both the Finsler spaces F™ and *F" are Riemannian.

The generalized T' condition is defined by
(16) Tij = Tijrsgrs = LCl|J + ﬁlCJ + ﬁjCl = 0,

where the tensor Tj; is called the contracted T—tensor and C; = Cjjrg’* being the
torsion vector.

Contracting (16) by X and using (2), we have C; = 0. According to Deicke’s
theorem and (9), we have

Theorem 2. If a Finsler space F™ satisfying (16) admits a parallel vector field, then
both the Finsler spaces F™ and *F" are Riemannian.

We are concerned with a space of scalar curvature in Berwald’s sense. It is char-
acterized by the equation

(17) Rior(= Rijry’) = L*Khy,
or
(18) Riji = hiK; — hij Ky, K; = L*0;K/3 + LK{;,

where h;, is the angular metric tensor and the scalar curvature K is a Finsler scalar
field.
Contracting (17) by X* and using (3) and (13), we obtain

Proposition 2. If a Finsler space F" of scalar curvature K admits a parallel
vector field, then the scalar curvature K vanishes.

From Proposition 2 and (18), we immediately get R;jr = 0. In terms of (9) and
(11), the Berwald’s curvature tensor Hp;ji(:= 3th~jk — 2Cipr R" i) coincides with
*th'jlm so we find

Theorem 3. If a Finsler space F™ of scalar curvature K admits a parallel vector
field, then both Berwald’s curvature tensors Hp;j, and *Hp;jp, vanish.

A Finsler space F™ (n > 2) is called quasi-C-reducible, if the torsion tensor Cjjy
is written as

(19) Ciji = Aj;Cr + A, C; + Ay Cj,
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where A;; is a symmetric Finsler tensor field satisfying A;(:= 4;;y7) = 0.

Contracting (19) by X?X/ and using (2), we immediately get AC} = 0, where
A= A;; X'XJ. Therefore, taking into account (9) we have
Proposition 3. If a quasi—-C-reducible Finsler space F™ (n > 2) admits a parallel
vector field, then both the Finsler spaces F™ and *F™ are Riemannian, provided that
A= A XIXT) £ 0.

The condition we consider next is the C' reducibility. A Finsler space F" (n > 2)
which satisfies the equation

(20) (n+1)Cijr = hijCr + hji,C; + hiiCj,
is said to be C' reducible.
Contracting (20) by X?X7 and using (2), we obtain h;; X'X7C) = 0. Paying

attention to Lemma 2, we get Cy = 0. Thus, taking into account of (9) we have

Theorem 4. If a C reducible Finsler space F™ (n > 2) admits a parallel vector field,
then both the Finsler spaces F™ and *F™ are Riemannian.

A Finsler space F™ (n > 2) with non zero length C of the torsion vector C? is
called semi C' reducible, if the torsion tensor Cjj, is of the form

(21) Ciji = p(hijCx + hjxCi + hyiC;)/(n + 1) 4+ qC;C;C, [ C?,
where C? = ¢“’C;C; and p+ ¢ = 1.

As the exceptional case (p = 0) of semi C' reducibility, we are led to the following
definition:

A Finsler space F™ (n > 2) with C? # 0 is called C2 like, if the torsion tensor
Ciji is written in the form
(22) Cijk = C;C;Cy/C*.

Contracting (21) by X?X7 and using (2) and Lemma 2, we get pCy, = 0. Then we
obtain p = 0 because of C? # 0. In virtue of p 4+ ¢ = 1, we have ¢ = 1. Consequently,
taking into account of (9), we obtain

Theorem 5. If a semi—C —reducible Finsler space F" (n > 2) admits a parallel vector
field, then both the Finsler spaces F™ and *F™ are C2 like.

A Finsler space F™ (n > 2) will be called C" recurrent, if the torsion tensor Cjjy
satisfies the equation

(23) Cijkie = Cijr Ki,

where K; = Ky(z,y) is a covariant vector field.
The following expressions are well-known,

(24) Prijr = Uniy{Cijrin + ChjrCi o}

(25) Pijr = Cijkjo;

(26) Shijk = Ui {Chrr Ci" 5},
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where the index 0 means contraction by y’ and the notation Uiy denotes the inter-
change of indices h,i and subtraction.
Contracting (24) by X" and using (1),(2) and (4), we have

Lemma 3. For a torsion tensor Cjj;, and a parallel vector field X", we have

(27) XhCijk‘h == 0

Contracting (23) by X¢ and using (27) and (9), we obtain

Proposition 4. If a C"-recurrent Finsler space F™ (n > 2) admits a parallel vector
field, then both the Finsler spaces F™ and *F™ are Riemannian, provided that p(=
XtKy) #0.

Diferentiating (26) h-covariantly we obtain

(28) Shijrie = Uy {CnkeeCi"j + Chir Ol e }-

Contracting this by X* and using (27), we get XZSM]'W =0.
A P2 like Finsler space F™ (n > 2) is characterized by

(29) Ppiji = KnCijr — KiChji,

where K, = Kp(z,y) is a covariant vector field.
Contracting this by X" and using (2) and (4) we get X"K,C;;;, = 0. Therefore,
taking into acount (9) we have
Theorem 6. If a P2-like Finsler space F™ (n > 2) admits a parallel vector field, then
both the Finsler spaces F™ and * F" are Riemannian providing that v(= X"K}) # 0.
A Landsberg space is characterized by Pjjx (= Cjjxj0) = 0. Further, a Finsler space
is called P reducible, if the torsion tensor Pj;; is written as

(30) Pz‘jk = (hiij + hjkPi + hkzP])/(n + 1)7

where Pz = Prir = Uijjo-
Contracting (30) by X*X7 and using (25),(1) and (2), we obtain X’ X7h;; P, = 0.

From Lemma 2, we get P, = 0. Thus, taking into account (12), we have

Theorem 7. If a P reducible Finsler space F" admits a parallel vector field, then
both the Finsler spaces F" and *F™ are Landsberg spaces.

A Finsler space F™ (n > 3) is called S3 like if the curvature tensor Spjx is written
in the form

(31) L?Shijk = S(hnjhir — haghij)

where the scalar curvature S(= Spi;1g" g'*) is a function of position alone.

Contracting (31) by X"g%* and using (5), (13) and Lemma 1, we get S = 0.
Therefore, taking into account (10), we have



34 M.Kitayama

Theorem 8. If an S3-like Finsler space F™ (n > 3) admits a parallel vector field,
then both the curvature tensors Spijr and *Spijr vanish.
Similar to the case of the S3-likeness, we are concerned with the following;:

A Finsler space F" (n > 4) is called S4 like if the curvature tensor Sp;jr, is written
in the form

(32) L?Shijk = hnj M + hi, Mpj — hpi Mij — hij Mg,

where M;; is a symmetric and indicatory tensor. Then the tensor M;; of the above
definition is given by

(33) Mhz-:LQ{S;”-—Shhi/2(n—2)}/(n—3),

where Shi = Shrir.
Here we shall prove a lemma.

Lemma 4. For the angular metric tensors we have
(34) *hz‘j = hl’j + Tm;m; (’T = [/2/*L2)7
(35) hij = Mij /v +2m;ym;/m?* (v = L2S/2(n — 2)(n — 3)).

Proof. Contracting (32) and (33) by X" and using (5) and Lemma 2, we obtain
v(higm; — hijmy) = Mzm; — M;jmy. Further contracting this by X7 and using
Lemma 2, we get (35).

From (5), (7), (10), (33) and (34), we have
*Shi = Shi, "S =8, "Mpi = Mpi/T — vmpm;.
Thus, using (10) and Lemma 4, we obtain

Theorem 9. If an S4 like Finsler space (n > 4) F™ admits a parallel vector field X*,
then the modified metric (6) is also S4-like.

A Finsler space F™ (n > 2) is said to be of h isotropic, if the curvature tensor
Rpijr is written as
(36) Rhijke = K(gnjgix — 9nrgij),
where K is a Finsler scalar. In 1961 Akbar—Zadeh proves that K is a constant.

Contracting (36) by X"m/ and using (3) and (14), we obtain K (m2g;; —m;Xy) =
0. Further, contracting this by ¢g**, we have K = 0. Hence, taking into account (11),
we get

Theorem 10. If an h—isotropic Finsler space F™ (n > 2) admits a parallel vector
field, then both the curvature tensors Rp;ji, and * Ry vanish.

Next, we shall be concerned with the notion of an R3-like Finsler space which is
defined by the following:
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A Finsler space F™ (n > 3) is called R3-like, if the curvature tensor Rp;j is
written in the form

(37) Ryijk = gnjLix + gikLnj — gniLi; — gijLnk-

It follows from (37) that R, = ¢"/ Rpijr = (n — 2)Lix + Lgix, where L = L;;g" and
R = ¢"*R;; = 2(n — 1)L. Thus we obtain L;; depending on Rj; and R. Since Ry
are not symmetric in general, so are L;;. Further, we have to calculate *R;; and *R.
Using (3),(7) and (11) the results are as follows:

*Rir, = Rir,, "R =R.
Hence, substituting these in the formula giving L;;, we obtain
*Li, = Ly — RX; X1, /2(n — 1)(n — 2).
Using this and (7), and taking into account (3), (11) and (37), we have

Theorem 11. If an R3-like Finsler space F™ (n > 3) admits a parallel vector
field X', then the modified metric (6) is also R3-like.
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