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Abstra
tIn this paper we modify the fundamental fun
tion of a Finsler spa
e withthe help of a parallel Finsler ve
tor �eld, getting a new Finsler spa
e whoseproperties are investigated.Mathemati
s Subje
t Classi�
ation: 53C60Key Words: modi�ed Finsler metri
, parti
ular Finsler spa
es.The terminology and notations are referred to Matsumoto's monograph [5℄.Let Fn be an n{dimensional Finsler spa
e with a fundamental fun
tion L(x; y)(y = _x); and we shall introdu
e in Fn the Cartan 
onne
tion C� = (Fj ik; N ik; Cj ik).Let us 
onsider a ve
tor �eld X i(x) in Fn: this �eld is 
alled parallel, if it satis�esthe partial di�erential equations(1) X ijj := �jX i �Nhj _�hX i +XhFhij = �jX i +XhFhij = 0;(2) X i��j := _�jX i +XhChij = XhChij = 0;where �j and _�j denote partial di�erentiations by xj and yj , respe
tively.From the Ri

i identities, the following integrability 
onditions hold:(3) XhRhijk = 0;(4) XhPhijk = 0;(5) XhShijk = 0;where Rhijk ; Phijk and Shijk are the 
omponents of the 
urvature tensors of C�:Remark. In parti
ular, the above equations (1) and (2) are satis�ed for a stationaryve
tor �eld X i(x):In terms of 
ovariant 
omponents Xi(x)'s, (1) and (2) are written as(1)0 Xijj = 0;(2)0 Xi��j = 0:Here we shall 
onsider the modi�
ation of a Finsler metri
 by a parallel ve
tor�eld X i(x), as follows. PuttingBalkan Journal of Geometry and Its Appli
ations, Vol.3, No.1, 1998, pp. 29-36
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30 M.Kitayama(6) �L2 = L2 + �2 (� = Xi(x)yi 6= 0);�L de�nes a new Finsler metri
 of M . It is said that �L is obtained by a �{
hange ofthe metri
 L [6℄. The metri
 tensor derived from �L is written as follows:(7) �gij = gij +XiXj ; �gij = gij �X iXj=(1 +X2);where X is the length of X i with respe
t to the original metri
. The 
oeÆ
ients ofCartan's 
onne
tion are written in the forms(8) �N ij = N ij ; �Fj ik = Fj ik;and we have �Fijk = (Æhj +XjXh)Fihk :From (7) we immediately get(9) �Cijk = Cijk ; �Cj ik = Cj ik:As a 
onsequen
e, (8) and (9) yieldProposition 1. If a Finsler spa
e with a fundamental fun
tion L admits a parallelve
tor �eld X i, then the ve
tor �eld X i is parallel with respe
t to the modi�ed metri
(6).In view of (9), we 
an 
on
lude immediately(10) �Shijk = Shijk :The 
omponents of the other two 
urvature tensors are(11) �Rhijk = Rhijk ; �Rhijk = Rhijk ;(12) �Phijk = Phijk ; �Phijk = Phijk ;For the later use, we shall show here two lemmas.Lemma 1. ([6℄) The 
ovariant ve
tor mi(:= Xi � �yi=L2) is a non{zero ve
tor or-thogonal to yi:Proof. Assuming that mi = 0; we have L2Xi � �yi = 0: Di�erentiating this by yjand denoting _�iL(= yi=L) by `i, we are led to a 
ontradi
tion hij(:= gij � `i`j) = 0:Lemma 2. For the angular metri
 tensor hij and the 
ovariant ve
tor mi; we have(13) hijXj = mi (6= 0);(14) miX i = m2 (6= 0);where m2 = gijmimj and mi = gijmj :Proof. Assuming that m2 = 0; we get L2X2 � �2 = 0: Then _�j _�i(L2X2 � �2) = 0gives us gij = XiXj=X2;whi
h 
ontradi
ts rank(gij) = n.Remark. It follows from � 6= 0 that the 
ovariant ve
tors mi and Xi are non{zerove
tors.



Finsler Spa
es Admitting a Parallel Ve
tor Field 31Now, we shall 
onsider the T{
ondition(15) Thijk := LChij��k + `hCijk + `iChjk + `jChik + `kChij = 0;where the T{tensor Thijk is 
ompletely symmetri
.If we 
ontra
t (15) by Xh; we have Xh`hCijk = 0 in virtue of (2). But fromXh`h = �=L 6= 0, we �nd Cijk = 0: Consequently, from (9) we �ndTheorem 1. If a Finsler spa
e Fn satisfying (15) admits a parallel ve
tor �eld, thenboth the Finsler spa
es Fn and �Fn are Riemannian.The generalized T{
ondition is de�ned by(16) Tij := Tijrsgrs = LCi��j + `iCj + `jCi = 0;where the tensor Tij is 
alled the 
ontra
ted T{tensor and Ci = Cijkgjk being thetorsion ve
tor.Contra
ting (16) by X i and using (2), we have Cj = 0: A

ording to Dei
ke'stheorem and (9), we haveTheorem 2. If a Finsler spa
e Fn satisfying (16) admits a parallel ve
tor �eld, thenboth the Finsler spa
es Fn and �Fn are Riemannian.We are 
on
erned with a spa
e of s
alar 
urvature in Berwald's sense. It is 
har-a
terized by the equation(17) Ri0k(= Rijkyj) = L2Khik;or(18) Rijk = hikKj � hijKk; Kj = L2 _�jK=3 + LK`j;where hik is the angular metri
 tensor and the s
alar 
urvature K is a Finsler s
alar�eld.Contra
ting (17) by X i and using (3) and (13), we obtainProposition 2. If a Finsler spa
e Fn of s
alar 
urvature K admits a parallelve
tor �eld, then the s
alar 
urvature K vanishes.From Proposition 2 and (18), we immediately get Rijk = 0: In terms of (9) and(11), the Berwald's 
urvature tensor Hhijk(:= _�hRijk � 2CihrRrjk) 
oin
ides with�Hhijk ; so we �ndTheorem 3. If a Finsler spa
e Fn of s
alar 
urvature K admits a parallel ve
tor�eld, then both Berwald's 
urvature tensors Hhijk and �Hhijk vanish.A Finsler spa
e Fn (n > 2) is 
alled quasi{C{redu
ible, if the torsion tensor Cijkis written as(19) Cijk = AijCk +AjkCi +AkiCj ;



32 M.Kitayamawhere Aij is a symmetri
 Finsler tensor �eld satisfying Ai0(:= Aijyj) = 0:Contra
ting (19) by X iXj and using (2), we immediately get �Ck = 0; where� = AijX iXj : Therefore, taking into a

ount (9) we haveProposition 3. If a quasi{C{redu
ible Finsler spa
e Fn (n > 2) admits a parallelve
tor �eld, then both the Finsler spa
es Fn and �Fn are Riemannian, provided that�(= AijX iXj) 6= 0:The 
ondition we 
onsider next is the C{redu
ibility. A Finsler spa
e Fn (n > 2)whi
h satis�es the equation(20) (n+ 1)Cijk = hijCk + hjkCi + hkiCj ;is said to be C{redu
ible.Contra
ting (20) by X iXj and using (2), we obtain hijX iXjCk = 0: Payingattention to Lemma 2, we get Ck = 0: Thus, taking into a

ount of (9) we haveTheorem 4. If a C{redu
ible Finsler spa
e Fn (n > 2) admits a parallel ve
tor �eld,then both the Finsler spa
es Fn and �Fn are Riemannian.A Finsler spa
e Fn (n > 2) with non{zero length C of the torsion ve
tor Ci is
alled semi{C{redu
ible, if the torsion tensor Cijk is of the form(21) Cijk = p(hijCk + hjkCi + hkiCj)=(n+ 1) + qCiCjCk=C2;where C2 = gijCiCj and p+ q = 1:As the ex
eptional 
ase (p = 0) of semi{C{redu
ibility, we are led to the followingde�nition:A Finsler spa
e Fn (n � 2) with C2 6= 0 is 
alled C2{like, if the torsion tensorCijk is written in the form(22) Cijk = CiCjCk=C2:Contra
ting (21) by X iXj and using (2) and Lemma 2, we get pCk = 0: Then weobtain p = 0 be
ause of C2 6= 0: In virtue of p+ q = 1; we have q = 1: Consequently,taking into a

ount of (9), we obtainTheorem 5. If a semi{C{redu
ible Finsler spa
e Fn (n > 2) admits a parallel ve
tor�eld, then both the Finsler spa
es Fn and �Fn are C2{like.A Finsler spa
e Fn (n � 2) will be 
alled Ch{re
urrent, if the torsion tensor Cijksatis�es the equation(23) Cijkj` = CijkKl;where K` = K`(x; y) is a 
ovariant ve
tor �eld.The following expressions are well{known,(24) Phijk = U(hi)fCijkjh + ChjrCirkj0g;(25) Pijk = Cijkj0;(26) Shijk = U(jk)fChkrCirjg;



Finsler Spa
es Admitting a Parallel Ve
tor Field 33where the index 0 means 
ontra
tion by yi and the notation U(hi) denotes the inter-
hange of indi
es h; i and subtra
tion.Contra
ting (24) by Xh and using (1),(2) and (4), we haveLemma 3. For a torsion tensor Cijk and a parallel ve
tor �eld Xh, we have(27) XhCijkjh = 0:Contra
ting (23) by X` and using (27) and (9), we obtainProposition 4. If a Ch{re
urrent Finsler spa
e Fn (n > 2) admits a parallel ve
tor�eld, then both the Finsler spa
es Fn and �Fn are Riemannian, provided that �(=X`K`) 6= 0:Diferentiating (26) h-
ovariantly we obtain(28) Shijkj` = U(jk)fChkrj`Cirj + ChkrCrijj`g:Contra
ting this by X` and using (27), we get X`Shijkj` = 0:A P2{like Finsler spa
e Fn (n > 2) is 
hara
terized by(29) Phijk = KhCijk �KiChjk ;where Kh = Kh(x; y) is a 
ovariant ve
tor �eld.Contra
ting this by Xh and using (2) and (4) we get XhKhCijk = 0: Therefore,taking into a
ount (9) we haveTheorem 6. If a P2-like Finsler spa
e Fn (n > 2) admits a parallel ve
tor �eld, thenboth the Finsler spa
es Fn and �Fn are Riemannian providing that �(= XhKh) 6= 0:A Landsberg spa
e is 
hara
terized by Pijk(= Cijkj0) = 0: Further, a Finsler spa
eis 
alled P{redu
ible, if the torsion tensor Pijk is written as(30) Pijk = (hijPk + hjkPi + hkiPj)=(n+ 1);where Pi = P rir = Cij0:Contra
ting (30) by X iXj and using (25),(1) and (2), we obtain X iXjhijPk = 0:From Lemma 2, we get Pk = 0: Thus, taking into a

ount (12), we haveTheorem 7. If a P{redu
ible Finsler spa
e Fn admits a parallel ve
tor �eld, thenboth the Finsler spa
es Fn and �Fn are Landsberg spa
es.A Finsler spa
e Fn (n > 3) is 
alled S3{like if the 
urvature tensor Shijk is writtenin the form(31) L2Shijk = S(hhjhik � hhkhij);where the s
alar 
urvature S(= Shijkghjgik) is a fun
tion of position alone.Contra
ting (31) by Xhgik and using (5), (13) and Lemma 1, we get S = 0:Therefore, taking into a

ount (10), we have



34 M.KitayamaTheorem 8. If an S3{like Finsler spa
e Fn (n > 3) admits a parallel ve
tor �eld,then both the 
urvature tensors Shijk and �Shijk vanish.Similar to the 
ase of the S3{likeness, we are 
on
erned with the following:A Finsler spa
e Fn (n > 4) is 
alled S4{like if the 
urvature tensor Shijk is writtenin the form(32) L2Shijk = hhjMik + hikMhj � hhkMij � hijMhk;where Mij is a symmetri
 and indi
atory tensor. Then the tensor Mij of the abovede�nition is given by(33) Mhi = L2fShi � Shhi=2(n� 2)g=(n� 3);where Shi = Shrir:Here we shall prove a lemma.Lemma 4. For the angular metri
 tensors we have(34) �hij = hij + �mimj (� = L2=�L2);(35) hij =Mij=� + 2mimj=m2 (� = L2S=2(n� 2)(n� 3)):Proof. Contra
ting (32) and (33) by Xh and using (5) and Lemma 2, we obtain�(hikmj � hijmk) = Mikmj � Mijmk: Further 
ontra
ting this by Xj and usingLemma 2, we get (35).From (5), (7), (10), (33) and (34), we have�Shi = Shi; �S = S; �Mhi =Mhi=� � �mhmi:Thus, using (10) and Lemma 4, we obtainTheorem 9. If an S4{like Finsler spa
e (n > 4) Fn admits a parallel ve
tor �eld X i,then the modi�ed metri
 (6) is also S4{like.A Finsler spa
e Fn (n > 2) is said to be of h{isotropi
, if the 
urvature tensorRhijk is written as(36) Rhijk = K(ghjgik � ghkgij);where K is a Finsler s
alar. In 1961 Akbar{Zadeh proves that K is a 
onstant.Contra
ting (36) by Xhmj and using (3) and (14), we obtain K(m2gik�miXk) =0: Further, 
ontra
ting this by gik, we have K = 0: Hen
e, taking into a

ount (11),we getTheorem 10. If an h{isotropi
 Finsler spa
e Fn (n > 2) admits a parallel ve
tor�eld, then both the 
urvature tensors Rhijk and �Rhijk vanish.Next, we shall be 
on
erned with the notion of an R3{like Finsler spa
e whi
h isde�ned by the following:



Finsler Spa
es Admitting a Parallel Ve
tor Field 35A Finsler spa
e Fn (n > 3) is 
alled R3{like, if the 
urvature tensor Rhijk iswritten in the form(37) Rhijk = ghjLik + gikLhj � ghkLij � gijLhk:It follows from (37) that Rik = ghjRhijk = (n� 2)Lik + Lgik; where L = Lijgij andR = gikRik = 2(n � 1)L: Thus we obtain Lik depending on Rik and R. Sin
e Rikare not symmetri
 in general, so are Lik: Further, we have to 
al
ulate �Rik and �R.Using (3),(7) and (11) the results are as follows:�Rik = Rik ; �R = R:Hen
e, substituting these in the formula giving Lik, we obtain�Lik = Lik �RXiXk=2(n� 1)(n� 2):Using this and (7), and taking into a

ount (3), (11) and (37), we haveTheorem 11. If an R3{like Finsler spa
e Fn (n > 3) admits a parallel ve
tor�eld X i, then the modi�ed metri
 (6) is also R3{like.Referen
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