Rational Representations of Some Algebraic Varieties of M-Orthogonal Groups

Mircea Geanău

Abstract

The purpose of this paper is the study of the algebraic variety of the *M*-orthogonal group, insisting on the rational representations of *M*-orthogonal matrices. We shall follow the study of a certain subgroup of the *M*-orthogonal group and we will give a parametric rational representation of this variety.

Mathematics Subject Classification: 20G20

Key words: algebraic variety, rational representation, *M*-orthogonal group.

Let $GL(n, \mathbf{R})$ be the group of real non-singular matrices of *n*-th order and let M be a fixed matrix of *n*-th order that doesn't necessarily belong to $GL(n, \mathbf{R})$. We shall consider the following nonempty set denoted by

$$G_M = \{ A \in GL(n, R) | AM\tilde{A} = M \},$$

where \hat{A} is the transpose of A. It is almost obvious that the set G_M having as a law composition the multiplication of the matrices is a group.

By definition, G_M is the M-orthogonal group. In the study of the group G_M , two cases, M non-singular and M singular assert themselves.

a) Let suppose that M is non-singular and symmetric.

Because it exists $1+2+...+n=\frac{n(n+1)}{2}$ independent relations, it results that the variety depends of $n^2-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$ parameters.

Proposition 1. If M is non-singular and symmetric matrix, the relation $A = (M + X)^{-1}(M - X)$ with $\tilde{X} = -X$ and $M^2X = XM^2$, defines a rational parametric representation of the M-orthogonal group G_M in the neighbourhood determined by the condition $|M + X| \neq 0$.

Proof. We must show that the equality

(1)
$$(M+X)^{-1}(M-X)M(M+X)(M-X)^{-1}$$

Balkan Journal of Geometry and Its Applications, Vol.3, No.2, 1998, pp. 69-74 © Balkan Society of Geometers, Geometry Balkan Press

70 M. Geanău

is true.

Because $M^2X = XM^2$, the equality

$$(M - X)M(M + X) = (M + X)M(M - X)$$

is fulfilled which implies the valability of the relation (1).

Note: By keeping fulfilled the conditions from Proposition 1, it shows as above that the relation $A = (M + X)(M - X)^{-1}$, with $|M - X| \neq 0$, gives a parametric rational representation of the M-orthogonal group in the neighbourhood determined by $|M - X| \neq 0$.

From the equality $A = (M + X)^{-1}(M - X)$, multiplied at left by (M + X) it results that

$$X = M(E - A)(E + A)^{-1}$$
 with $|A + E| \neq 0$

and E is the identity matrix.

Example 1. Taking

$$M = E = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right)$$

it is obtained a parametric representation of the orthogonal group,

$$A = (E + X)^{-1}(E - X)$$
 with $|E + A| \neq 0$, $A \in O(n, R)$.

2. In the particular case

$$M = \begin{pmatrix} -1 & & & & & 0 \\ & -1 & & & & \\ & & -1 & & & \\ & & & -1 & & \\ & & & & 1 & \\ 0 & & & & 1 \end{pmatrix},$$

where -1 appears p times, with $M^2 = E$, it is obtained the parametric representation of the pseudo-orthogonal group.

b) Let's take the case when the matrix M is non-singular and antisymmetric.

Because $M=AM\tilde{A}$ is antisymmetric it results that the dimension n=2p and it exists $\frac{n(n-1)}{2}$ independent relations and in that case the algebraic variety has $n^2-\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$ parameters. Considering X a symmetric matrix and making similar reasonings with those from above its is proved just like in the case of Proposition 1 the following result

Proposition 2. If the matrix M is non-singular and antisymmetric, the equality $A = (M + X)^{-1}(M - X)$, with $\tilde{X} = X$ and $M^2X = XM^2$, defines a rational parametric representation of the M-orthogonal group G_M in the neighbourhood limited by $|M + X| \neq 0$.

Example. Let

$$M = \left(\begin{array}{cc} 0 & E \\ \dots & \dots \\ -E & 0 \end{array} \right)$$

be an antisymmetric matrix of 2n-th order where E is the identity matrix of n-th order. Because are fulfilled the conditions of Proposition 2 we get a parametric representation of the symplectic group $S_p(2n, \mathbf{R})$.

c) Let's suppose that M is a singular and symmetric matrix. There are

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

independent and distinct relations so the variety has

$$n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$

parameters.

In the case when n=2, due to the fact that M^2 is also symmetric and singular, if it exists an antisymmetric matrix X with $M^2X=XM^2$, it results that $M^2=0$, this one implies M=0, which shows that it doesn't exist a parametric representation of the form $A=(M+X)^{-1}(M-X)$.

If $n \geq 3$, using a similar computation with the one used at Proposition 1, it is shown that the equality $A = (M+X)^{-1}(M-X)$, with $\tilde{X} = -X$ and $M^2X = XM^2$, defines a rational parametric representation of the M- orthogonal group G_M in the neighbourhood given by the $|M+X| \neq 0$.

In the hypothesis that M is singular and antisymmetric, $n \geq 3$, analogous to the Proposition 2, the relation $A = (M+X)^{-1}(M-X)$, with $\tilde{X} = X$ and $M^2X = XM^2$, defines a rational parametric representation of the group G_M in the neighbourhood defined by $|M+X| \neq 0$.

Keeping the above results and notations we shall treat a more general case, that of the subset of G_M , noted $H_{M,N}$ defined such that,

$$H_{M,N} = \{ A \in GL(n,R), \quad AM\tilde{A} = M, \quad AN = NA \},$$

where M and N are two fixed matrices of n-th order.

It is obvious that H is nonempty and is a subgroup of G_M . We shall try to find rational parametric representations of these varieties. Because M and N are two fixed matrices, without specific forms, we shall assume that the variety obtained has p parameters.

Analogous to the M-orthogonal group, we shall treat more situations concerning the fact that M is non-singular or singular and MN = NM or MN = -NM.

Proposition 3. Let $H_{M,N}$ be the subgroup of the M-orthogonal group defined by

$$\begin{cases} AM\tilde{A} = M \\ AN = NA. \end{cases}$$

If M is non-singular and symmetric and N is involutive $(N=N^{-1})$ and verifies the equality MN=NM, then the algebraic variety V_p is rational, the formula $A=(M+X)^{-1}(M-X)$, with $\tilde{X}=-X$ and XN=NX, $XM^2=M^2X$, $|M+X|\neq 0$, defines

72 M. Geanău

a rational parametric representation of this variety in the neighbourhood determined by the condition $|M + X| \neq 0$.

Proof. From Proposition 1, we know that it is verified the equality $AM\tilde{A} = M$. We shall show that there exists the relation AN = NA if are fulfilled the conditions from Proposition 3.

The relation AN = NA is equivalent to $(M+X)^{-1}(M-X)N = N(M+X)^{-1}(M-X)$. Because MN = NM and XN = NX, it results (M-X)N = N(M-X), (M+X)N = N(M+X). Then

$$(M+X)^{-1}(M-X)N = (M+X)^{-1}N(M-X) =$$

$$= (M+X)^{-1}N^{-1}(M-X) = [N(M+X)^{-1}](M-X) =$$

$$= [(M+X)N]^{-1}(M-X) = N^{-1}(M+X)^{-1}(M-X) =$$

$$= N(M+X)^{-1}(M-X)$$

which shows that AN = NA. In the hypothesis MN = -NM, we have the following results

Proposition 4. Let $H_{M,N}$ be the subgroup of the M-orthogonal group G_M , defined by the relations $AM\tilde{A} = M$, AN = NA.

If M is symmetric non-singular matrix and $N = N^{-1}$ verifies the equality MN = -NM, then the equality $A = (M + X)^{-1}(M - X)$, with $\tilde{X} = -X$ and

$$\begin{cases} XM^2 = M^2X \\ XN = -NX \end{cases}$$

defines a rational parametric representation of the group $H_{M,N}$ in the neighbourhood determined by $|M + X| \neq 0$.

Proof. Analogous to the Proposition 3, we must show that is fulfilled the equality AN = NA. This one shows that the equality $(M + X)^{-1}(M - X)N = N(M + X)^{-1}(M - X)$ is true.

From those conditions it results that the relation N(M-X)=-(M-X) is true. The following equalities are true:

$$(M+X)^{-1}(M-X)N = -(M+X)^{-1}N(M-X) =$$

$$-(M+X)^{-1}N^{-1}(M-X) = -[N(M+X)^{-1}](M-X) =$$

$$= [(M+X)N]^{-1}(M-X) = N^{-1}(M+X)^{-1}(M-X) =$$

$$= N(M+X)^{-1}(M-X).$$

We'll continue to study the case when M is non-singular and antisymmetric. **Proposition 5**. If M is a non-singular antisymmetric matrix and N is an involutive matrix with MN = -NM, then the formula

$$A = (M+X)^{-1}(M-X) \ {\it with} \ |M+X| \neq 0 \ {\it and} \ XM^2 = M^2X,$$

XN = -NX, $\tilde{X} = X$, defines a rational parametric representation of the subgroup $H_{M,N}$.

Proof. We know that the equality $AM\tilde{A} = M$ is verified (Proposition 2).

It is remained to be shown that the equality

(2)
$$(M+X)^{-1}(M-X)N = N(M+X)^{-1}(M-X)$$

is true. We shall show that the right member of the equality (2) is the same as that from the left. We have then

$$\begin{split} &N(M+X)^{-1}(M-X) = N^{-1}(M+X)^{-1}(M-X) = \\ &= [(M+X)N]^{-1}(M-X) = (-NM-NX)^{-1}(M-X) = \\ &= [-N(M+X)]^{-1}(M-X) = -(M+X)^{-1}N(M-X) = \\ &= -(M+X)^{-1}(-MN-NX) = (M+X)^{-1}(MN+NX) = \\ &= (M+X)^{-1}(MN-XN) = (M+X)^{-1}(M-X)N \end{split}$$

which shows that the equality (2) it's true.

Example. Let

$$M_0 = \begin{pmatrix} I_2 & 0 & \dots & 0 \\ 0 & I_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & I_2 \end{pmatrix} \text{ and } N_0 = \begin{pmatrix} J_2 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & J_2 \end{pmatrix}$$

be cellular matrices of 2n-th order with

$$I_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

It verifies that $M_0N_0 = -N_0M_0$, $N_0^2 = E_{2n}$, where E_{2n} is the identity matrix of

2n-th order. In this particular case the subgroup H_{M_0,N_0} depends of n^2 parameters. If X is a non-singular symmetric matrix of 2n-th order which verifies the relation $XN_0 = -N_0X$, then the variety of the group H_{M_0,N_0} formed by the matrices A which $AM\tilde{A} = M_0$, $AN_0 = N_0A$, admits a rational parametric representation of the form $A = (M_0 + X)^{-1}(M_0 - X)$ in the neighbourhood determined by $|M_0 + X| \neq 0$. Remark. Let $H_{M,N}$ be the subgroup of G_M and let $B \in G_M$ be. In these condition the set $S = \{B^{-1}AB | A \in H_{M,N}\}$ is a subgroup of G_M , isomorphic which $H_{M,N}$.

Obviously the set S is nonempty. Let $B^{-1}A_1B \in S$ and $B^{-1}A_2B \in S$, then

$$(B^{-1}A_1B)(B^{-1}A_2B)^{-1} = B^{-1}A_1BB^{-1}A_2^{-1}B = B^{-1}(A_1A_2)^{-1}B \in S$$

because $H_{M,N}$ is a subgroup of G_M . The function $f: H_{M,N} \to S$ defined by $f(A) = B^{-1}AB$ is an isomorphism of $H_{M,N}$ on S.

74 M. Geanău

References

- [1] J.Dieudonné, Sur les groupes classiques, Hermann, Paris, 1967.
- [2] E.Grecu, Sur le groupe symplectique pseudo ortogonal, Bulletin Mathématiques de la Societé des Sciences Mathématiques de la Roumanie, Tome 24 (72), nr.3, 1980.
- [3] O.T. O'Meara, Symplectic groups, Amer. Math. Soc. Providence, RI 1978.
- [4] J.M.Smith, on the existence of certain matrices, Portugal Math., 30 (1971).
- [5] C.Teleman, Geometrie diferențială și globală, Ed. Tehnică, București, 1974.
- [6] G.Vrănceanu, Leçons de géométrie differentielle, III-e vol, Ed. Academiei, 1964.

University Politehnica of Bucharest Department of Mathematics I Splaiul Independenței 313 77206 Bucharest, Romania