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Abstract

We obtain some nonexistence theorems of certain finite type closed curves
on the pseudo-hyperbolic space H*(—¢?) in the Minkowski spacetime E7.
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1 Introduction

First, we will survey briefly the fundamental concepts and properties in the pseudo-
Riemannian geometry. We refer mainly to O’Neill([9]) and Chen([3],[4]). For the gen-
eral concepts in the Riemannian geometry, refer to the book of Kobayashi and No-
mizu([8]).

Let M be a C'*°-class differentiable manifold of dimension n and g a C'*°-class
differentiable symmetric nondegenerate tensor field of type (0,2) on M. The pseudo-
Riemannian metric g, at every point p of M defines the scalar product on the tangent
space Tp,(M) of M at p. The index of g, is not necessarily constant in general. If the
index of g, is constant ¢(0 < ¢ < n) on M, then we call g a pseudo-Riemannian metric
of signature (t,n —t). And a C*°-class differentiable manifold (M, g) furnished with
a pseudo-Riemannian metric g is called a pseudo-Riemannian manifold. A pseudo-
Riemannian manifold of signature (0,n) means a Riemannian manifold. Let v be a
tangent vector to a pseudo-Riemannian manifold M with a pseudo-Riemannian metric
g. Then v is said to be

spacelike if g(v,v) > 0orv=0; lightlike if g(v,v) =0 and v # 0, timelike if
g(v,v) < 0.

The simplest example of pseudo-Riemannian manifold is a pseudo-Euclidean space.

Let (z',2%,---,2™) be a point in the set R™ of all ordered m-tuples of real num-
bers. For each ¢(0 < ¢ < m), we define a scalar product go on Tp,(R™) at the point p
of R™ by
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go(vp, wp) = va + va

i=t+1

where v, = E v!9/0z" and w, = E w'0/dx'. B denotes a R™ with a canonical

pseudo- Rlemanman metric go. In thls case go is called a pseudo-FEuclidean metric of
signature (¢,m — t) and E}" is called a pseudo Euclidean space of signature (t,m —t).
In particular, EJ" is called a Minkowski spacetime.

From now on, we will use <,> instead of a pseudo-Euclidean metric go. And
we denote by H/"(—c*) = {p € E{T"| < p,p >= —c*}. In this case, it is called
the pseudo-hyperbolic space of radius ¢ > 0 and center 0 in Et"fl'l For a vector
Qo = (a1)a2)"'>at)"'7am) in Etm7

5’0 = (_a17 A2,y O, Gt 1, At 42, " '7am)

is called the conjugate vector of ag. In [7] and [10], the authors proved the following
Theorem A. Only I-type closed curve v(s) on H™(—c?) is an intersection of
H™(—c?) and a 2-plane P lying in 1l,,, where P is determined by two spacelike
vectors and I1,, denotes a hyperplane through ap which is orthogonal to the conju-
gate vector ag in the sense of Euclidean scalar product.

Ishikawa([7]), and Shin and Pyo([11]) also proved some nonexistence theorems con-
cerning finite type closed curves on pseudo-hyperbolic spaces H?(—c?) and H*(—c?).
For instance,

Theorem B. There exists neither 2-type closed curves nor 3-type closed curves on
H?%(—c?).

Remark. Finite type curves in a Euclidean space were investigated in [1], [2], [5],
[6] ete.

The purpose of this article is to prove some theorems on nonexistence of certain
finite type closed curves on the pseudo-hyperbolic space H3(—c?) in the Minkowski
spacetime Ef.

2 Preliminaries

Every closed curve v : [0,27r] — EJ™ of the length 277 in E}™ may be regarded as
an isometric immersion of a circle of radius r into E}". We use the arc length s as a
parameter of 7. Then the Laplacian A on the circle is given by A = —d?/ds? and the
eigenvalues are {(I/r)?;l = 1,2,---}. The corresponding eigenspace V; is constructed
by using cos(ls/r) and sin(ls/r). Hence, every closed curve v : [0, 27r] — E}™ has the
spectral decomposition

~v(s) = ag + Z{al cos(ls/r) + bysin(ls/r)},

=1

where a;,b; are some vectors in E" (see [2],[5]). In particular, if v is a k-type
closed curve of the length 27 on H™(—c?), then vy can be expressed as
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k
(2.1) v(s) =ao+ Y {a;cos(p;s) + b;sin(p;s)},

i=1
where a; or b; is nonzero vector in Ej® for each i = 1,2,---,k, p; are the positive
integers with p; < ps < -+ < pg and s is the arc length parameter of +. Because

of v(s) being on H™(—c?) and ag the center of mass of v, ag is a timelike vector in

Ef" 1" (see [7]). Furthermore, from < y(s), v(s) >= —c?, we have the following

k
(2.2) 2 < ag,ag > +2c2 + ZD“ =0,
i=1
(2.3) SMi+ > Ai+2 > Ay+2 Y Dy =0,
pi=l 2pi=I pitp;=l pi—pj=l
i>7 i>j

(2.4) ZMi+ZAii+2 Z Aij—Q Z Dijzo,
pi=l 2p; =l pi+pj=l pi—pj=l

i>j i>j

for each I € {pi, 2ps, pi +pj, pi—pj; 1 <j <i <k}, where

M; =4 < ag,a; >, ]\_41':4<0,0,bi>,
Aij =<a;,a; > —< bi,bj >, 4ij =< ai,b]’ >+ < bi,aj >,
Dij =< ai,aj>+<bi,bj >, Dij =< ai,bj>—<bi,a]->.

From nOW on, we call the real numbers M; and M; (resp. A;; and A, A;;j and Aij,
or D;; and D;j) to be corresponding to the integer p;(resp. 2p;, p; + pj, Or p; — pj).
Since s is the arc length parameter of y(s), we have

k
(2.5) 2= p;Dy,
i=1
(2.6) > piAi+2 Y pipjAi;—2 Y pipiDij =0,
2p; =l pitpj=l pi—pj=l
i>j i>7
(2.7) Z p%A“ + 2 Z piijij + 2 Z pipjl_)ij =0.
2pi=l pitpj=l pi—pj=l
i>j i>7

Moreover, if < v(")(s), y(")(s) > is constant (r = 1,2, ---), then we have

(2.8) DopmAu+2 Y (p) Ay + (=12 > (pipy) Di; =0,
2pi=l pi+p;=l pi—p;j=l
i>j i>j
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(2.9) prrAu‘i‘Q Z plp] Aij - (=1"2 Z (pipj)rDijZO-
2p; =l pitp;=1l pi—pj=l

i>7 i>j

Next, let v be a k-type closed curve on H/™(—c?) given in (2.1). Divide the set

A={ ,, € ,, + — 3 00<| <)<} as the union of the subsets as
VIV T Y

follows:

(2.10) A=A UAcU---U Ay,

where all elements in each subset A\ (\ = oo, €,---, ) are equal to each other and if

n1 # n2, then every element in A\ _ is not equal to any element in A\ .

3 Main Results

Let be a closed k-type curve on H/"(—c?) in Eﬁjl Then ~ is expressed as y(s) =

ap + E{a, cos(pis/r) + bisin(p;s/r)}, where a; or b; is nonzero vector in E;}1" for

each z = 1,2,---,k and p; are the positive integers satisfying p; < p2 < -+ < pg.
Here s is the arc length parameter of v and the length of v is 27r. Therefore every
k-type closed curve 7(s) of the length 27 may be described as

k
(3.1) v(s) = ap + Z{ai cos(p;s) + bisin(p;s)},

i=1

where a; # 0 or b; # 0 for each i. We prove our results for » = 1, because the proof
for case r # 1 is the same as one for case of r = 1.
Lemma 3.1([7]). (1) If < v")(s), ¥")(s) > is constant (r = 1,2, ---,1) and the
number of members in A\ is less than or equal to | + 1, then M; and M; (resp.
Ay and Ay, A;j and Ay, or Dyj and D;j) of corresponding to the integer p; (resp.
2p;i, pi +pj, or p; —p;) in A\ vanish.

(2) In particular, for every k-type closed curve y(s) on Hj"(—c?) in E/"1", we have

Apr = Apr =0,
Agk—1) = Agr-1) =0,
Ak=1)(k=1) = A@—1)(k—1) = 0.

Now, let v(s) be a k-type closed curve on H3(—c?) in a Minkowski spacetime E} as
(3.1). Then we can obtain the following lemmas.
Lemma 3.2. If v(s) satisfies the following conditions

(32) M, = Mk =Mip_1 =0 and Dk(k—l) = Dk(k—l) =0,

then either (1) {ag,ax—1,ax, by} forms a basis for E}, or (2) by_; is a lightlike vector
and {ag,bx_1,ay, by} is a basis of Ef.

Proof. Since ag is a timelike vector in Ef, from the first equation of (3.2), we know
that ay_1,ar and by, are spacelike vectors. Hence ay, and b, are nonzero vectors because
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< ag,ar >=< bg,br > and v(s) is of k-type. From Lemma 3.1(2) and the second
equation of (3.2), we have

<ap_1,0p—1 > = <bp_1,bp_1 >,
< ag,by > = <ap_1,bp—1 >=0,
< ag,ag-1 > = <bg,bp—1 >=0,

and
< g, b1 >=<bg,ar_1 >=0.

If a1 # 0, then ag,ar_1,ax, b are linearly independent vectors in Eil and hence
{ag,ar_1,ax, by} is a basis of E}.

Suppose a1 = 0. Since < ag_1,ax—1 >=< bg_1,b_1 >= 0 and 7(s) is of k-type,
br_1 is a lightlike vector. If we put Aag + Bby_1 + Cay + Db, = 0, then we can obtain
A =B =C =D =0 because < ag, bg—1 >7# 0(see [11]). Therefore we complete the
proof.

Remark. If the k-type closed curve v on H3(—cz) satisfies My_1 = 0 and bi_1 is a
lightlike vector in Ef, then a;_1 = 0 because < ar_1,ar_1 >=<bg_1,b_1 >=0.
Lemma 3.3. Suppose that {ag,ar—1,ax,by} is a basis of E} satisfying (3.2). Then
br_1 is a parallel nonzero vector to ag.

Proof. Put by—1 = Aag + Baj—1 + Cay, + Dby,. Combining Lemma 3.1(2) and (3.2),
we have B = C' = D = 0 because ay_1, a; and b, are nonzero spacelike vectors. Since
< ag,bp_1 >#0, b1 = Aag # 0 for a constant A.

Next, we can obtain the following

Lemma 3.4. Suppose that {ag, ax—1,ax, by} is a basis of E} satisfying (3.2). If a pair
{a;,b;}(i = 1,2, -+, k — 2) satisfies

Api=Api =0

and
<ap_1,a; >=<ap_1,b; >=0,

Proof. Put a; = Aag + Bag_1 + Cay + Dby and b; = FEag + Fag_1 + Gay, + Hby,.
Combining Lemma 3.1(2), (3.2) and our assumptions, we have B=F =0, C = H
and D = —@. Hence a; = Aag + Cay + Dby, and b; = Eag — Day, + Cb;, for some
constants A, C', D and E.

Suppose A;; = A = 0. Then we get AE = 0 and A2 — E? = 0 because <
ag,ar >=< bg,br > and < ay,br >= 0, and hence A = E = 0. Therefore M; = 4 <
ag,a; >=0and M; =4 < ag,b; >=0.

Conversely, if M; = M; = 0, then we have a; = Cay + Dby, and b; = —Day, + Cby,
for some constants C and D. Hence < a;,a; >=< b;,b; > and < a;,b; >=0.
Lemma 3.5. Suppose that {ag,ar_1,ax, by} is a basis of E} satisfying (3.2). If a pair
{a;,b;}(i = 1,2,k — 2) is satisfying

Api = Api =0, Dyi=Dy; =0

and
< Gg—1,0; >=< Ag—1, b; >= 0,

then a; and b; are parallel to ag.
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Proof. If we put a; = Aag+ Bay_1+ Cay + Dby, and b; = Eag+ Fay_1 +Gay + Hby,
then we have, from Lemma 3.1(2), (3.2) and our assumptions, B = C = D = 0,
F =G = H = 0. It follows that a; = Aag and b; = Fag for some constants A and B.
Finally, we have the following lemma.

Lemma 3.6. Suppose that {ag,by_1,ax, by} is a basis of E{ satisfying (3.2). If a pair
{a;,b;}(i=1,2,---,k — 2) is satisfying

Api = A =0

and
<bg_1,0; >=<bp_1,b; >=0,

Proof. If we put a; = Aag+Bby_1+Cay+Dby and b; = Eag+Fby_1+Ga,+Hby,
Combining Lemma 3.1(2), (3.2) and our assumptions, we have C' = H and D = —G.
Since b1 is lightlike and < ag, bx—1 ># 0, A = E = 0. Hence a; = Bby_1+Cay+ Dby,
and b; = Fbi_1 — Day, + Cby for some constants B, C', D and F. Therefore <
a;,a; >=<b;,b; > and < a;,b; >=0.

From now on, we prove the following nonexistence theorems for a k-type(k > 2)
closed curve y(s) on H3(—c?).

Theorem 3.1. There exists no 2-type closed curve (s) on H?(—c?).
Proof. We assume the existence of the 2-type closed curve

~v(s) = ap + a1 cos(p1s) + by sin(p1s) + a2 cos(p2s) + b sin(pas)
on H3(—c?). From Lemma 3.1, we see
M, =N, =0, M= N,=0.

Hence ay,bi,as and by are spacelike vectors in E}. Furthermore ay, b1, as and by are
nonzero vectors because A1 = Ass = 0 and 7(s) is of 2-type. We also have

Ayp = Ay =0, Ay = Ay =0, Doy = Doy =0.

Therefore ag, a1, b1, az, bz are linearly independent vectors in Ef. It contradicts.
Theorem 3.2. There exists no 3-type closed curve (s) on H?(—c?) satisfying My =
0 and D32 = D32 =0.

Proof. We assume the existence of the 3-type closed curve

v(s) =ap + a1cos(pis)+ bisin(pis) + as cos(pss)
+ b sin(p2s) + ag cos(pss) + bs sin(pss)

on H?(—c?) satisfying the assumptions Mo = 0 and D3y = D3y = 0.
First, if we assume that az # 0, then {ag,az,as3,b3} is a basis of E} satisfying
(3.2) by Lemmas 3.1 and 3.2.
Case 1. In case of {p1, p2, p3s} = {p1, 2p1, 3p1}, it follows that A ={ ~, c—
0o 2 E}U{\/Ea € 9_\/00}U{\/00+\/€a 9}U{\/oo+\/97 E\/G}U
{\/e +\/9}U{e\/9}. Applying (2.3), (2.4), (2.6) and (2.7) for the subclasses {p1, p>—
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p1, p3 — p2} and {2p1, p2, p3 —p1} of A, and combining Lemmas 3.1 and 3.4, we
obtain _ _

Asy = A2 =0, Dy =Dy =0,

Az = A3 =0, M, =M =0,

An=An =0, D3 =D3 =0

by our assumptions. Furthermore, we have M, = 0. Hence b; is a spacelike vector in
E}. It is a contradiction to Lemma 3.3.
Case 2. In case of {p1, p2, ps} = {p1, 2p1, 4p1}, it follows that A = {\/oo, \/e —

\/OO}U{\/Eﬂ e\/ooa \/B_VE}U{}/OO-i_\/Ev \/9_\/OO}U{\/95 E\/E}U{\/OO+
\/9} u {\/e + \/9} u {E\/a}. Applying (2.3), (2.4), (2.6) and (2.7) for the subclass

{2p1, p2, p3 — p2} of A, we get My = 0 by the assumption D3y = D3» = 0. Hence
Lemma 3.3 leads a contradiction.
Case 3. In case of {p1, p2, p3} = {p1, 3p1, 5p1}, A = { o} U{€ , \/e -

S \/9—\/e}U{\/e}U{\/oo+\/e, wa_\/m}ij{\/a}u{\/oo"‘\/a: E\/e}U{\/e+
5tU{€ 5}. From Lemma 3.1(1), we obtain M, = 0. This is a contradiction.

Case 4. Let {p1, p2, p3} # {p1, 2p1, 3p1}, {p1, 2p1, 4p1} or {p1, 3p1, 5p1}. In this
case, each subset A\ of A consists of at most two elements. Hence, we have My = 0
by Lemma 3.1(1). It contradicts.

Summarizing all cases, we complete the proof of this theorem in the case of ay # 0.

Now, let ay = 0. Then, by Lemmas 3.1(1) and 3.2, {aq, b2, as, b3} forms a basis for
E{ satisfying (3.2). In Case 1, applying (2.3), (2.4), (2.6) and (2.7) for the subclass
{p1, P2 —p1, p3 — P2} of A, and combining the condition D3, = D35 = 0 and Lemma
3.1(1), we have

Az1 = A31 =0, Aoy = Ay =0, Dyy = Dy =0.

Hence A;; = A;; = 0 by Lemma 3.6. Applying (2.3), (2.4), (2.6), (2.7) and the above
equation for the subclass {2p1, p2, p3 —p1} of A, we get My = 0. Since by is a lightlike
vector by Lemma, 3.2, it contradicts.

The other cases are also impossible.

Therefore we complete the proof of this theorem.

3
For a 3-type closed curve v(s) = ag + Y. {a; cos(p;s) + by sin(p;s)} on H3(—c?), if
t=1

az = 0, then we have My = 0 and < by, a3 S=< ba, b3 >= 0 by Lemma 3.1(2). Hence
D3y = D3y = 0. Therefore, from Theorem 3.2, we have the following corollary.
Corollary 3.1. There exists no 3-type closed curve

3

v(s) = ao + Z{at cos(pgs) + by sin(ps) }

on H?(—c?) satisfying as = 0.

Corollary 3.2. There exists no 3-type closed curve with constant curvature on
H3(—c?).

Proof. Let
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v(s) =ap + ajcos(p1s) + by sin(pis) + as cos(pas)
+  bysin(p2s) + as cos(pss) + bs sin(pss)

be a 3-type closed curve with constant curvature on H?(—c?). Then each subclass of
A consists of at most three elements. From Lemma 3.1(1), we get

My =My =0, M= M;=0.

Hence as, bs, a3 and b3 are spacelike vectors. Furthermore, they are nonzero vector
because Ass = Azz = 0 and 7(s) is of 3-type. Therefore ag, az, ba, as, by are linearly
independent vectors in Ef by Lemma 3.1. This implies a contradiction.

Next, we get the following
Theorem 3.3. There exists no 4-type closed curve with constant curvature on
H3(—c?) satisfying Dy3 = Dy3 = 0.
Proof. Assume the existence of the 4-type closed curve

v(s) = ao + Z{at cos(p¢s) + by sin(pgs) }

satisfying our assumptions. If {p1, ps2, p3, pa} = {p1, 2p1, 3p1, 4p1}, then A =
AR eV Ve B W Y N e
{\/97 \/OO+\/67 \/A_\/OO}U{\/Aa E\/Ea \/OO+\/9}U{\/OO+\/A7 \/€+ \/9}U
{E\/g, /e + \/A} U {\/A + \/9} u {E\/A}. Let Ay be the subclass consisting of all

elements in A to be equal to p;. Then the number of elements in A5 (and Aa) is less
than or equal to three in this case. Hence, from Lemma 3.1, we have

M3:M3:0, M4:M4:0,
Azz = Ay =0, Agz=A433=0.

Since Dy3 = D43 = 0, we get ag,as, bz, a4, by are linearly independent vectors in E}
by the same way as the proof Corollary 3.2. It contradicts.

In case of {p1, p2, P3, Pa} # {p1, 2p1, 3p1, 4p1}, we can also imply a contradiction
by the same way.

From Theorem 3.3, we can obtain the following corollary.
Corollary 3.3. There exists no 4-type closed curve

v(s) = ao + Z{at cos(pts) + by sin(pes) }

t=1

on H3(—c?) satisfying a3 = 0.

Theorem 3.4. There exists no 5-type closed curve v(s) on H?(—c?) with D5y =
D54 = 0 satisfying < v)(s), v (s) > is constant (I = 2,3).

Proof. Assume the existence of the 5-type closed curve

v(s) = ap + Z{at cos(pts) + by sin(pes)}

t=1
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satisfying our conditions. Let {p1, p2, ps, pa, Ps} = {p1, 2p1, 3p1, 4p1, 5p1}, it
followsthatA:{\/oo, \/e—\/oo, \/9—\/6, \/A_\/g, \/v—\/A}U{\/e, 6\/00,\/9—
UV T I et e e e e e E e et
N R N N Y S N VAo
{\/e-i— v, 5+ A}U{E\/A, \/9+\/V}U{\/A+\/V}U{E <} Applying Lemma

3.1(1) for the subclasses {ps, 2p2, p1 +p3, p5 —p1} and {ps, p1 + P4, P2 +p3} of A,
we obtain ) )
My=My=0, Ms=Ms=0.

Hence ay, by, as and bs are spacelike vectors in E}. Furthermore, from Lemma 3.1(2),
we have B
Agq = As5 =0, Asy = A54 = 0.

Therefore ag, a4, by, as, bs are linearly independent vectors in E{ because D54 = Dy =
0 and 7(s) is of 5-type. It contradicts.

By the same way, in case of {ph D2, P3, P4, p5} ;é {p1> 2p1> 3p1> 4p1> 5p1}) we
can also imply a contradiction.

Finally, we get the following theorem.
Theorem 3.5. There exists no 6-type closed curve v(s) on H?(—c?) with Dg5 =
Dgs = 0 satisfying < v()(s), v()(s) > is constant (I = 2,3).
Proof. Assume the existence of the 6-type closed curve

v(s) = ap + Z{at cos(pts) + by sin(pes)}

t=1

satisfying our conditions.
Case 1. Let {ph b2, P3, P4, Ps, pﬁ} = {pl) 2p17 3p1> 4p17 5p17 6p1}) it follows that

A= o o T AT T Ty e S e T
T s «"“f}’ IR
VA VARV ARV Y AV VRV ALV ALV ARRVAV
T S et e e O et e p e et
\/}U{E\/Aa \/9+.\/V7 \/E+\/}U{\/A+\/V7 \/9+\/}U{€\/V’ \/A+\/}U{\/v+
}U{E\/}. Applying Lemma 3.1(1) for the subclasses {ps, p1 +ps, P2+ D3, D6 —D1}

and {ps, 2p3, p1 + ps, P2 + pa} of A, we obtain

M = M5 =0, Mg = Mg = 0.
And, from Lemma 3.1(2), we have

Ass = Ags =0, Ags = Ags = 0.

Hence ay, as, bs, ag, bg are linearly independent vectors in E{ by our assumptions. It
contradicts.

In case of {pla b2, P3, P4, Ps, pﬁ} ;é {ph 2171: 3171; 4p17 5171: 6p1}) we can also
imply a contradiction.
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