On Finite Type Closed Curves on the Pseudo-Hyperbolic Space $H^3(-c^2)$

Yong-Soo Pyo and Joo-Yeon Lee

Abstract

We obtain some nonexistence theorems of certain finite type closed curves on the pseudo-hyperbolic space $H^3(-c^2)$ in the Minkowski spacetime E_1^4 .

1991 Mathematics Subject Classification: 53C50

Key words: pseudo-Riemannian manifold, pseudo-Euclidean space, Minkowski spacetime, pseudo-hyperbolic space, finite type closed curve

1 Introduction

First, we will survey briefly the fundamental concepts and properties in the pseudo-Riemannian geometry. We refer mainly to O'Neill([9]) and Chen([3],[4]). For the general concepts in the Riemannian geometry, refer to the book of Kobayashi and Nomizu([8]).

Let M be a C^{∞} -class differentiable manifold of dimension n and g a C^{∞} -class differentiable symmetric nondegenerate tensor field of type (0,2) on M. The pseudo-Riemannian metric g_p at every point p of M defines the scalar product on the tangent space $T_p(M)$ of M at p. The index of g_p is not necessarily constant in general. If the index of g_p is constant $t(0 \le t \le n)$ on M, then we call g a pseudo-Riemannian metric of signature <math>(t,n-t). And a C^{∞} -class differentiable manifold (M,g) furnished with a pseudo-Riemannian metric g is called a pseudo-Riemannian manifold. A pseudo-Riemannian manifold of signature (0,n) means a Riemannian manifold. Let v be a tangent vector to a pseudo-Riemannian manifold M with a pseudo-Riemannian metric g. Then v is said to be

spacelike if g(v, v) > 0 or v = 0; lightlike if g(v, v) = 0 and $v \neq 0$, timelike if g(v, v) < 0.

The simplest example of pseudo-Riemannian manifold is a pseudo-Euclidean space. Let (x^1, x^2, \dots, x^m) be a point in the set R^m of all ordered m-tuples of real numbers. For each $t(0 \le t \le m)$, we define a scalar product g_0 on $T_p(R^m)$ at the point p of R^m by

Balkan Journal of Geometry and Its Applications, Vol.3, No.2, 1998, pp. 111-120 B Balkan Society of Geometers, Geometry Balkan Press

$$g_0(v_p, w_p) = -\sum_{i=1}^t v^i w^i + \sum_{i=t+1}^m v^i w^i,$$

where $v_p = \sum_{i=1}^m v^i \partial/\partial x^i$ and $w_p = \sum_{i=1}^m w^i \partial/\partial x^i$. E_t^m denotes a R^m with a canonical pseudo-Riemannian metric g_0 . In this case, g_0 is called a *pseudo-Euclidean metric* of signature (t, m-t) and E_t^m is called a *pseudo-Euclidean space* of signature (t, m-t). In particular, E_1^m is called a *Minkowski spacetime*.

From now on, we will use <,> instead of a pseudo-Euclidean metric g_0 . And we denote by $H_t^m(-c^2)=\{p\in E_{t+1}^{m+1}|< p,p>=-c^2\}$. In this case, it is called the *pseudo-hyperbolic space* of radius c>0 and center 0 in E_{t+1}^{m+1} . For a vector $a_0=(a_1,a_2,\cdots,a_t,\cdots,a_m)$ in E_t^m ,

$$\bar{a}_0 = (-a_1, -a_2, \cdots, -a_t, a_{t+1}, a_{t+2}, \cdots, a_m)$$

is called the *conjugate vector* of a_0 . In [7] and [10], the authors proved the following **Theorem A.** Only 1-type closed curve $\gamma(s)$ on $H_t^m(-c^2)$ is an intersection of $H_t^m(-c^2)$ and a 2-plane P lying in Π_{a_0} , where P is determined by two spacelike vectors and Π_{a_0} denotes a hyperplane through a_0 which is orthogonal to the conjugate vector \bar{a}_0 in the sense of Euclidean scalar product.

Ishikawa([7]), and Shin and Pyo([11]) also proved some nonexistence theorems concerning finite type closed curves on pseudo-hyperbolic spaces $H^2(-c^2)$ and $H^4(-c^2)$. For instance,

Theorem B. There exists neither 2-type closed curves nor 3-type closed curves on $H^2(-c^2)$.

Remark. Finite type curves in a Euclidean space were investigated in [1], [2], [5], [6] etc.

The purpose of this article is to prove some theorems on nonexistence of certain finite type closed curves on the pseudo-hyperbolic space $H^3(-c^2)$ in the Minkowski spacetime E_1^4 .

2 Preliminaries

Every closed curve $\gamma:[0,2\pi r]\to E^m_t$ of the length $2\pi r$ in E^m_t may be regarded as an isometric immersion of a circle of radius r into E^m_t . We use the arc length s as a parameter of γ . Then the Laplacian Δ on the circle is given by $\Delta=-d^2/ds^2$ and the eigenvalues are $\{(l/r)^2; l=1,2,\cdots\}$. The corresponding eigenspace V_l is constructed by using $\cos(ls/r)$ and $\sin(ls/r)$. Hence, every closed curve $\gamma:[0,2\pi r]\to E^m_t$ has the spectral decomposition

$$\gamma(s) = a_0 + \sum_{l=1}^{\infty} \{ a_l \cos(ls/r) + b_l \sin(ls/r) \},$$

where a_l, b_l are some vectors in E_t^m (see [2],[5]). In particular, if γ is a k-type closed curve of the length 2π on $H_t^m(-c^2)$, then γ can be expressed as

(2.1)
$$\gamma(s) = a_0 + \sum_{i=1}^{k} \{a_i \cos(p_i s) + b_i \sin(p_i s)\},$$

where a_i or b_i is nonzero vector in E_t^m for each $i=1,2,\cdots,k,\ p_i$ are the positive integers with $p_1 < p_2 < \cdots < p_k$ and s is the arc length parameter of γ . Because of $\gamma(s)$ being on $H_t^m(-c^2)$ and a_0 the center of mass of γ , a_0 is a timelike vector in E_{t+1}^{m+1} (see [7]). Furthermore, from $<\gamma(s),\ \gamma(s)>=-c^2$, we have the following

(2.2)
$$2 < a_0, a_0 > +2c^2 + \sum_{i=1}^k D_{ii} = 0,$$

(2.3)
$$\sum_{p_i=l} M_i + \sum_{\substack{2p_i=l\\i>j}} A_{ii} + 2 \sum_{\substack{p_i+p_j=l\\i>j}} A_{ij} + 2 \sum_{\substack{p_i-p_j=l\\i>j}} D_{ij} = 0,$$

(2.4)
$$\sum_{p_i=l} \bar{M}_i + \sum_{\substack{2p_i=l \ i>j}} \bar{A}_{ii} + 2 \sum_{\substack{p_i+p_j=l \ i>j}} \bar{A}_{ij} - 2 \sum_{\substack{p_i-p_j=l \ i>j}} \bar{D}_{ij} = 0,$$

for each $l \in \{p_i, 2p_i, p_i + p_j, p_i - p_j ; 1 \le j < i \le k\}$, where

$$\begin{array}{ll} M_i = 4 < a_0, a_i >, & \bar{M}_i = 4 < a_0, b_i >, \\ A_{ij} = < a_i, a_j > - < b_i, b_j >, & \bar{A}_{ij} = < a_i, b_j > + < b_i, a_j >, \\ D_{ij} = < a_i, a_j > + < b_i, b_j >, & \bar{D}_{ij} = < a_i, b_j > - < b_i, a_j >. \end{array}$$

From now on, we call the real numbers M_i and \bar{M}_i (resp. A_{ii} and \bar{A}_{ii} , A_{ij} and \bar{A}_{ij} , or D_{ij} and \bar{D}_{ij}) to be corresponding to the integer p_i (resp. $2p_i$, $p_i + p_j$, or $p_i - p_j$). Since s is the arc length parameter of $\gamma(s)$, we have

$$(2.5) 2 = \sum_{i=1}^{k} p_i^2 D_{ii},$$

(2.6)
$$\sum_{\substack{2p_i=l\\2j=l\\i>j}} p_i^2 A_{ii} + 2 \sum_{\substack{p_i+p_j=l\\i>j}} p_i p_j A_{ij} - 2 \sum_{\substack{p_i-p_j=l\\i>j}} p_i p_j D_{ij} = 0,$$

(2.7)
$$\sum_{\substack{2p_i=l\\2p_i=l\\i>j}} p_i^2 \bar{A}_{ii} + 2 \sum_{\substack{p_i+p_j=l\\i>j}} p_i p_j \bar{A}_{ij} + 2 \sum_{\substack{p_i-p_j=l\\i>j}} p_i p_j \bar{D}_{ij} = 0.$$

Moreover, if $\langle \gamma^{(r)}(s), \gamma^{(r)}(s) \rangle$ is constant $(r = 1, 2, \dots)$, then we have

(2.8)
$$\sum_{\substack{2p_i=l\\i>j}} p_i^{2r} A_{ii} + 2 \sum_{\substack{p_i+p_j=l\\i>j}} (p_i p_j)^r A_{ij} + (-1)^r 2 \sum_{\substack{p_i-p_j=l\\i>j}} (p_i p_j)^r D_{ij} = 0,$$

(2.9)
$$\sum_{\substack{2p_i=l\\ i>j}} p_i^{2r} \bar{A}_{ii} + 2 \sum_{\substack{p_i+p_j=l\\ i>j}} (p_i p_j)^r \bar{A}_{ij} - (-1)^r 2 \sum_{\substack{p_i-p_j=l\\ i>j}} (p_i p_j)^r \bar{D}_{ij} = 0.$$

Next, let γ be a k-type closed curve on $H^m_t(-c^2)$ given in (2.1). Divide the set $\mathcal{A} = \{ \sqrt{}, \in \sqrt{}, \sqrt{} + \sqrt{}, \sqrt{} - \sqrt{} \mid ; \infty \leq | < \rangle \leq | \}$ as the union of the subsets as follows:

$$(2.10) \mathcal{A} = \mathcal{A}_{\infty} \cup \mathcal{A}_{\in} \cup \cdots \cup \mathcal{A}_{\mathcal{N}},$$

where all elements in each subset $\mathcal{A}_{\setminus}(\setminus = \infty, \in, \cdots, \mathcal{N})$ are equal to each other and if $n_1 \neq n_2$, then every element in $\mathcal{A}_{\setminus \infty}$ is not equal to any element in $\mathcal{A}_{\setminus \epsilon}$.

3 Main Results

Let γ be a closed k-type curve on $H_t^m(-c^2)$ in E_{t+1}^{m+1} . Then γ is expressed as $\gamma(s) = a_0 + \sum_{i=1}^k \{a_i \cos(p_i s/r) + b_i \sin(p_i s/r)\}$, where a_i or b_i is nonzero vector in E_{t+1}^{m+1} for each $i = 1, 2, \dots, k$ and p_i are the positive integers satisfying $p_1 < p_2 < \dots < p_k$. Here s is the arc length parameter of γ and the length of γ is $2\pi r$. Therefore every k-type closed curve $\gamma(s)$ of the length 2π may be described as

(3.1)
$$\gamma(s) = a_0 + \sum_{i=1}^{k} \{ a_i \cos(p_i s) + b_i \sin(p_i s) \},$$

where $a_i \neq 0$ or $b_i \neq 0$ for each i. We prove our results for r = 1, because the proof for case $r \neq 1$ is the same as one for case of r = 1.

Lemma 3.1([7]). (1) If $\langle \gamma^{(r)}(s), \gamma^{(r)}(s) \rangle$ is constant $(r = 1, 2, \dots, l)$ and the number of members in A_{\setminus} is less than or equal to l + 1, then M_i and \bar{M}_i (resp. A_{ii} and \bar{A}_{ij} , and \bar{A}_{ij} , or D_{ij} and \bar{D}_{ij}) of corresponding to the integer p_i (resp. $2p_i$, $p_i + p_j$, or $p_i - p_j$) in A_{\setminus} vanish.

(2) In particular, for every k-type closed curve $\gamma(s)$ on $H_t^m(-c^2)$ in E_{t+1}^{m+1} , we have

$$\begin{split} A_{kk} &= \bar{A}_{kk} = 0, \\ A_{k(k-1)} &= \bar{A}_{k(k-1)} = 0, \\ A_{(k-1)(k-1)} &= \bar{A}_{(k-1)(k-1)} = 0. \end{split}$$

Now, let $\gamma(s)$ be a k-type closed curve on $H^3(-c^2)$ in a Minkowski spacetime E_1^4 as (3.1). Then we can obtain the following lemmas.

Lemma 3.2. If $\gamma(s)$ satisfies the following conditions

(3.2)
$$M_k = \bar{M}_k = M_{k-1} = 0 \text{ and } D_{k(k-1)} = \bar{D}_{k(k-1)} = 0,$$

then either (1) $\{a_0, a_{k-1}, a_k, b_k\}$ forms a basis for E_1^4 , or (2) b_{k-1} is a lightlike vector and $\{a_0, b_{k-1}, a_k, b_k\}$ is a basis of E_1^4 .

Proof. Since a_0 is a timelike vector in E_1^4 , from the first equation of (3.2), we know that a_{k-1} , a_k and b_k are spacelike vectors. Hence a_k and b_k are nonzero vectors because

 $\langle a_k, a_k \rangle = \langle b_k, b_k \rangle$ and $\gamma(s)$ is of k-type. From Lemma 3.1(2) and the second equation of (3.2), we have

$$< a_{k-1}, a_{k-1} > = < b_{k-1}, b_{k-1} >,$$

 $< a_k, b_k > = < a_{k-1}, b_{k-1} > = 0,$
 $< a_k, a_{k-1} > = < b_k, b_{k-1} > = 0,$

and

$$\langle a_k, b_{k-1} \rangle = \langle b_k, a_{k-1} \rangle = 0.$$

If $a_{k-1} \neq 0$, then a_0, a_{k-1}, a_k, b_k are linearly independent vectors in E_1^4 and hence $\{a_0, a_{k-1}, a_k, b_k\}$ is a basis of E_1^4 .

Suppose $a_{k-1}=0$. Since $< a_{k-1}, a_{k-1}> = < b_{k-1}, b_{k-1}> = 0$ and $\gamma(s)$ is of k-type, b_{k-1} is a lightlike vector. If we put $Aa_0 + Bb_{k-1} + Ca_k + Db_k = 0$, then we can obtain A=B=C=D=0 because $< a_0, b_{k-1}> \neq 0$ (see [11]). Therefore we complete the proof.

Remark. If the k-type closed curve γ on $H^3(-c^2)$ satisfies $M_{k-1} = 0$ and b_{k-1} is a lightlike vector in E_1^4 , then $a_{k-1} = 0$ because $\langle a_{k-1}, a_{k-1} \rangle = \langle b_{k-1}, b_{k-1} \rangle = 0$.

Lemma 3.3. Suppose that $\{a_0, a_{k-1}, a_k, b_k\}$ is a basis of E_1^4 satisfying (3.2). Then b_{k-1} is a parallel nonzero vector to a_0 .

Proof. Put $b_{k-1} = Aa_0 + Ba_{k-1} + Ca_k + Db_k$. Combining Lemma 3.1(2) and (3.2), we have B = C = D = 0 because a_{k-1}, a_k and b_k are nonzero spacelike vectors. Since $\langle a_0, b_{k-1} \rangle \neq 0$, $b_{k-1} = Aa_0 \neq 0$ for a constant A.

Next, we can obtain the following

Lemma 3.4. Suppose that $\{a_0, a_{k-1}, a_k, b_k\}$ is a basis of E_1^4 satisfying (3.2). If a pair $\{a_i, b_i\}$ $(i = 1, 2, \dots, k-2)$ satisfies

$$A_{ki} = \bar{A}_{ki} = 0$$

and

$$\langle a_{k-1}, a_i \rangle = \langle a_{k-1}, b_i \rangle = 0,$$

then $A_{ii} = \bar{A}_{ii} = 0$ if and only if $M_i = \bar{M}_i = 0$.

Proof. Put $a_i = Aa_0 + Ba_{k-1} + Ca_k + Db_k$ and $b_i = Ea_0 + Fa_{k-1} + Ga_k + Hb_k$. Combining Lemma 3.1(2), (3.2) and our assumptions, we have B = F = 0, C = H and D = -G. Hence $a_i = Aa_0 + Ca_k + Db_k$ and $b_i = Ea_0 - Da_k + Cb_k$ for some constants A, C, D and E.

Suppose $A_{ii} = \bar{A}_{ii} = 0$. Then we get AE = 0 and $A^2 - E^2 = 0$ because $< a_k, a_k > = < b_k, b_k >$ and $< a_k, b_k > = 0$, and hence A = E = 0. Therefore $M_i = 4 < a_0, a_i > = 0$ and $\bar{M}_i = 4 < a_0, b_i > = 0$.

Conversely, if $M_i = \bar{M}_i = 0$, then we have $a_i = Ca_k + Db_k$ and $b_i = -Da_k + Cb_k$ for some constants C and D. Hence $\langle a_i, a_i \rangle = \langle b_i, b_i \rangle$ and $\langle a_i, b_i \rangle = 0$.

Lemma 3.5. Suppose that $\{a_0, a_{k-1}, a_k, b_k\}$ is a basis of E_1^4 satisfying (3.2). If a pair $\{a_i, b_i\}$ $(i = 1, 2, \dots, k-2)$ is satisfying

$$A_{ki} = \bar{A}_{ki} = 0, \qquad D_{ki} = \bar{D}_{ki} = 0$$

and

$$\langle a_{k-1}, a_i \rangle = \langle a_{k-1}, b_i \rangle = 0,$$

then a_i and b_i are parallel to a_0 .

Proof. If we put $a_i = Aa_0 + Ba_{k-1} + Ca_k + Db_k$ and $b_i = Ea_0 + Fa_{k-1} + Ga_k + Hb_k$, then we have, from Lemma 3.1(2), (3.2) and our assumptions, B = C = D = 0, F = G = H = 0. It follows that $a_i = Aa_0$ and $b_i = Ea_0$ for some constants A and B. Finally, we have the following lemma.

Lemma 3.6. Suppose that $\{a_0, b_{k-1}, a_k, b_k\}$ is a basis of E_1^4 satisfying (3.2). If a pair $\{a_i, b_i\} (i = 1, 2, \dots, k-2)$ is satisfying

$$A_{ki} = \bar{A}_{ki} = 0$$

and

$$\langle b_{k-1}, a_i \rangle = \langle b_{k-1}, b_i \rangle = 0.$$

then $A_{ii} = \bar{A}_{ii} = 0$.

Proof. If we put $a_i = Aa_0 + Bb_{k-1} + Ca_k + Db_k$ and $b_i = Ea_0 + Fb_{k-1} + Ga_k + Hb_k$, Combining Lemma 3.1(2), (3.2) and our assumptions, we have C = H and D = -G. Since b_{k-1} is lightlike and $< a_0, b_{k-1} > \neq 0$, A = E = 0. Hence $a_i = Bb_{k-1} + Ca_k + Db_k$ and $b_i = Fb_{k-1} - Da_k + Cb_k$ for some constants B, C, D and F. Therefore $< a_i, a_i > = < b_i, b_i >$ and $< a_i, b_i > = 0$.

From now on, we prove the following nonexistence theorems for a k-type($k \ge 2$) closed curve $\gamma(s)$ on $H^3(-c^2)$.

Theorem 3.1. There exists no 2-type closed curve $\gamma(s)$ on $H^3(-c^2)$.

Proof. We assume the existence of the 2-type closed curve

$$\gamma(s) = a_0 + a_1 \cos(p_1 s) + b_1 \sin(p_1 s) + a_2 \cos(p_2 s) + b_2 \sin(p_2 s)$$

on $H^3(-c^2)$. From Lemma 3.1, we see

$$M_1 = \bar{M}_1 = 0, \qquad M_2 = \bar{M}_2 = 0.$$

Hence a_1, b_1, a_2 and b_2 are spacelike vectors in E_1^4 . Furthermore a_1, b_1, a_2 and b_2 are nonzero vectors because $A_{11} = A_{22} = 0$ and $\gamma(s)$ is of 2-type. We also have

$$\bar{A}_{11} = \bar{A}_{22} = 0, \ A_{21} = \bar{A}_{21} = 0, \ D_{21} = \bar{D}_{21} = 0.$$

Therefore a_0, a_1, b_1, a_2, b_2 are linearly independent vectors in E_1^4 . It contradicts.

Theorem 3.2. There exists no 3-type closed curve $\gamma(s)$ on $H^3(-c^2)$ satisfying $M_2 = 0$ and $D_{32} = \bar{D}_{32} = 0$.

Proof. We assume the existence of the 3-type closed curve

$$\gamma(s) = a_0 + a_1 \cos(p_1 s) + b_1 \sin(p_1 s) + a_2 \cos(p_2 s) + b_2 \sin(p_2 s) + a_3 \cos(p_3 s) + b_3 \sin(p_3 s)$$

on $H^3(-c^2)$ satisfying the assumptions $M_2=0$ and $D_{32}=\bar{D}_{32}=0$.

First, if we assume that $a_2 \neq 0$, then $\{a_0, a_2, a_3, b_3\}$ is a basis of E_1^4 satisfying (3.2) by Lemmas 3.1 and 3.2.

Case 1. In case of
$$\{p_1, p_2, p_3\} = \{p_1, 2p_1, 3p_1\}$$
, it follows that $\mathcal{A} = \{ \bigvee_{i=1}^{\infty}, \bigvee_{j=1}^{\infty} - \bigvee_{i=1}^{\infty}, \bigvee_{j=1}^{\infty} - \bigvee_{j=1}^{\infty} \cup \{ \bigvee_{i=1}^{\infty}, \bigvee_{j=1}^{\infty} - \bigvee_{j=1}^{\infty} \cup \{ \bigvee_{j=1}^{\infty}, \bigvee_{j=1}^{\infty}, \bigvee_{j=1}^{\infty} - \bigvee_{j=1}^{\infty} \cup \{ \bigvee_{j=1}^{\infty}, \bigvee_{j=1}^{\infty}, \bigvee_{j=1}^{\infty}, \bigvee_{j=1}^{\infty} - \bigvee_{j=1}^{\infty} \cup \{ \bigvee_{j=1}^{\infty}, \bigvee_{j=1}$

 $p_1, p_3 - p_2$ and $\{2p_1, p_2, p_3 - p_1\}$ of \mathcal{A} , and combining Lemmas 3.1 and 3.4, we obtain

$$A_{21} = \bar{A}_{21} = 0, \quad D_{21} = \bar{D}_{21} = 0,$$

 $A_{31} = \bar{A}_{31} = 0, \quad M_1 = \bar{M}_1 = 0,$
 $A_{11} = \bar{A}_{11} = 0, \quad D_{31} = \bar{D}_{31} = 0$

by our assumptions. Furthermore, we have $\bar{M}_2=0$. Hence b_2 is a spacelike vector in E_1^4 . It is a contradiction to Lemma 3.3.

Case 2. In case of $\{p_1, p_2, p_3\} = \{p_1, 2p_1, 4p_1\}$, it follows that $\mathcal{A} = \{ \sqrt{}, \sqrt{} \in -1 \}$ $\{2p_1, p_2, p_3 - p_2\}$ of A, we get $\bar{M}_2 = 0$ by the assumption $D_{32} = \bar{D}_{32} = 0$. Hence Lemma 3.3 leads a contradiction.

 $\sqrt{\infty}, \sqrt{3} - \sqrt{\epsilon} \} \cup \{\sqrt{\infty} + \sqrt{\epsilon}, \sqrt{3} - \sqrt{\infty} \} \cup \{\sqrt{\infty} + \sqrt{3}, \epsilon \sqrt{\epsilon} \} \cup \{\sqrt{\epsilon} + \sqrt{3}, \epsilon \sqrt{\epsilon} \} \cup \{\sqrt{\epsilon} + \sqrt{3}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\infty} + \sqrt{3}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\epsilon} + \sqrt{3}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{3}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta}, \epsilon \sqrt{\delta} \} \cup \{\sqrt{\delta} + \sqrt{\delta}, \epsilon \sqrt{\delta$

Case 4. Let $\{p_1, p_2, p_3\} \neq \{p_1, 2p_1, 3p_1\}, \{p_1, 2p_1, 4p_1\} \text{ or } \{p_1, 3p_1, 5p_1\}.$ In this case, each subset A_1 of A consists of at most two elements. Hence, we have $\bar{M}_2=0$ by Lemma 3.1(1). It contradicts.

Summarizing all cases, we complete the proof of this theorem in the case of $a_2 \neq 0$.

Now, let $a_2 = 0$. Then, by Lemmas 3.1(1) and 3.2, $\{a_0, b_2, a_3, b_3\}$ forms a basis for E_1^4 satisfying (3.2). In Case 1, applying (2.3), (2.4), (2.6) and (2.7) for the subclass $\{p_1, p_2 - p_1, p_3 - p_2\}$ of A, and combining the condition $D_{32} = \bar{D}_{32} = 0$ and Lemma 3.1(1), we have

$$A_{31} = \bar{A}_{31} = 0, \ A_{21} = \bar{A}_{21} = 0, \ D_{21} = \bar{D}_{21} = 0.$$

Hence $A_{11} = \bar{A}_{11} = 0$ by Lemma 3.6. Applying (2.3), (2.4), (2.6), (2.7) and the above equation for the subclass $\{2p_1, p_2, p_3 - p_1\}$ of \mathcal{A} , we get $\overline{M}_2 = 0$. Since b_2 is a lightlike vector by Lemma 3.2, it contradicts.

The other cases are also impossible.

Therefore we complete the proof of this theorem.

For a 3-type closed curve $\gamma(s) = a_0 + \sum_{t=1}^{3} \{a_t \cos(p_t s) + b_t \sin(p_t s)\}$ on $H^3(-c^2)$, if $a_2=0$, then we have $M_2=0$ and $\langle b_2,a_3\rangle=\langle b_2,b_3\rangle=0$ by Lemma 3.1(2). Hence $D_{32} = \bar{D}_{32} = 0$. Therefore, from Theorem 3.2, we have the following corollary.

Corollary 3.1. There exists no 3-type closed curve

$$\gamma(s) = a_0 + \sum_{t=1}^{3} \{ a_t \cos(p_t s) + b_t \sin(p_t s) \}$$

on $H^3(-c^2)$ satisfying $a_2 = 0$.

Corollary 3.2. There exists no 3-type closed curve with constant curvature on $H^3(-c^2)$.

Proof. Let

$$\gamma(s) = a_0 + a_1 \cos(p_1 s) + b_1 \sin(p_1 s) + a_2 \cos(p_2 s) + b_2 \sin(p_2 s) + a_3 \cos(p_3 s) + b_3 \sin(p_3 s)$$

be a 3-type closed curve with constant curvature on $H^3(-c^2)$. Then each subclass of \mathcal{A} consists of at most three elements. From Lemma 3.1(1), we get

$$M_2 = \bar{M}_2 = 0, \qquad M_3 = \bar{M}_3 = 0.$$

Hence a_2, b_2, a_3 and b_3 are spacelike vectors. Furthermore, they are nonzero vector because $A_{22} = A_{33} = 0$ and $\gamma(s)$ is of 3-type. Therefore a_0, a_2, b_2, a_3, b_3 are linearly independent vectors in E_1^4 by Lemma 3.1. This implies a contradiction.

Next, we get the following

Theorem 3.3. There exists no 4-type closed curve with constant curvature on $H^3(-c^2)$ satisfying $D_{43} = \bar{D}_{43} = 0$.

Proof. Assume the existence of the 4-type closed curve

$$\gamma(s) = a_0 + \sum_{t=1}^{4} \{ a_t \cos(p_t s) + b_t \sin(p_t s) \}$$

satisfying our assumptions. If $\{p_1, p_2, p_3, p_4\} = \{p_1, 2p_1, 3p_1, 4p_1\}$, then $\mathcal{A} = \{ \bigvee_{\infty}, \bigvee_{\leftarrow} - \bigvee_{\infty}, \bigvee_{\rightarrow} - \bigvee_{\leftarrow}, \bigvee_{\triangle} - \bigvee_{\rightarrow} \} \cup \{ \bigvee_{\leftarrow}, \bigvee_{\leftarrow} + \bigvee_{\rightarrow} \} \cup \{ \bigvee_{\infty} + \bigvee_{\rightarrow}, \bigvee_{\leftarrow} + \bigvee_{\rightarrow} \} \cup \{ \bigvee_{\infty} + \bigvee_{\infty} + \bigvee_{\rightarrow} \} \cup \{ \bigvee_{\infty} + \bigvee_{\infty} + \bigvee_{\infty} \} \cup \{ \bigvee_{\infty} + \bigvee_{\infty} + \bigvee_{\infty} \} \cup \{ \bigvee_{\infty} + \bigvee_$

$$M_3 = \bar{M}_3 = 0, \quad M_4 = \bar{M}_4 = 0,$$

 $A_{33} = A_{44} = 0, \quad A_{43} = \bar{A}_{43} = 0.$

Since $D_{43} = \bar{D}_{43} = 0$, we get a_0, a_3, b_3, a_4, b_4 are linearly independent vectors in E_1^4 by the same way as the proof Corollary 3.2. It contradicts.

In case of $\{p_1, p_2, p_3, p_4\} \neq \{p_1, 2p_1, 3p_1, 4p_1\}$, we can also imply a contradiction by the same way.

From Theorem 3.3, we can obtain the following corollary.

Corollary 3.3. There exists no 4-type closed curve

$$\gamma(s) = a_0 + \sum_{t=1}^{4} \{ a_t \cos(p_t s) + b_t \sin(p_t s) \}$$

on $H^3(-c^2)$ satisfying $a_3=0$.

Theorem 3.4. There exists no 5-type closed curve $\gamma(s)$ on $H^3(-c^2)$ with $D_{54} = \bar{D}_{54} = 0$ satisfying $\langle \gamma^{(l)}(s), \gamma^{(l)}(s) \rangle$ is constant (l = 2, 3).

Proof. Assume the existence of the 5-type closed curve

$$\gamma(s) = a_0 + \sum_{t=1}^{5} \{ a_t \cos(p_t s) + b_t \sin(p_t s) \}$$

satisfying our conditions. Let $\{p_1, p_2, p_3, p_4, p_5\} = \{p_1, 2p_1, 3p_1, 4p_1, 5p_1\}$, it follows that $\mathcal{A} = \{ \bigvee_{\nearrow}, \bigvee_{\longleftarrow} \bigvee_{\nearrow} \bigvee_{\nearrow}$

$$M_4 = \bar{M}_4 = 0, \qquad M_5 = \bar{M}_5 = 0.$$

Hence a_4, b_4, a_5 and b_5 are spacelike vectors in E_1^4 . Furthermore, from Lemma 3.1(2), we have

$$A_{44} = A_{55} = 0, \qquad A_{54} = \bar{A}_{54} = 0.$$

Therefore a_0, a_4, b_4, a_5, b_5 are linearly independent vectors in E_1^4 because $D_{54} = \bar{D}_{54} = 0$ and $\gamma(s)$ is of 5-type. It contradicts.

By the same way, in case of $\{p_1, p_2, p_3, p_4, p_5\} \neq \{p_1, 2p_1, 3p_1, 4p_1, 5p_1\}$, we can also imply a contradiction.

Finally, we get the following theorem.

Theorem 3.5. There exists no 6-type closed curve $\gamma(s)$ on $H^3(-c^2)$ with $D_{65} = \bar{D}_{65} = 0$ satisfying $\langle \gamma^{(l)}(s), \gamma^{(l)}(s) \rangle$ is constant (l = 2, 3).

Proof. Assume the existence of the 6-type closed curve

$$\gamma(s) = a_0 + \sum_{t=1}^{6} \{ a_t \cos(p_t s) + b_t \sin(p_t s) \}$$

satisfying our conditions.

Case 1. Let $\{p_1, p_2, p_3, p_4, p_5, p_6\} = \{p_1, 2p_1, 3p_1, 4p_1, 5p_1, 6p_1\}$, it follows that $\mathcal{A} = \{ \bigvee_{\infty}, \bigvee_{\in} -\bigvee_{\infty}, \bigvee_{\ni} -\bigvee_{\in}, \bigvee_{\triangle} -\bigvee_{\ni}, \bigvee_{\nabla} -\bigvee_{\triangle} \} \cup \{ \bigvee_{\in}, \in \bigvee_{\infty}, \bigvee_{\ni} -\bigvee_{\triangle} \} \cup \{ \bigvee_{\infty}, \bigvee_{\infty} +\bigvee_{\infty}, \bigvee_{\nabla} -\bigvee_{\infty}, \bigvee_{\infty} -\bigvee_{\infty} -\bigvee_{\infty}, \bigvee_{\infty} -\bigvee_{\infty}, \bigvee_{\infty} -\bigvee_{\infty} -\bigvee_{\infty}, \bigvee_{\infty} -\bigvee_{\infty} -\bigvee_{\infty}$

$$M_5 = \bar{M}_5 = 0, \qquad M_6 = \bar{M}_6 = 0.$$

And, from Lemma 3.1(2), we have

$$A_{55} = A_{66} = 0, \qquad A_{65} = \bar{A}_{65} = 0.$$

Hence a_0, a_5, b_5, a_6, b_6 are linearly independent vectors in E_1^4 by our assumptions. It contradicts.

In case of $\{p_1, p_2, p_3, p_4, p_5, p_6\} \neq \{p_1, 2p_1, 3p_1, 4p_1, 5p_1, 6p_1\}$, we can also imply a contradiction.

References

- [1] B.Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983), 65-81.
- [2] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite type, World Scientific, 1984.
- [3] B.Y. Chen, Finite Type Submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), 358-374.
- [4] B.Y. Chen, Finite type pseudo-Riemannian submanifolds, Tamkang J. Math. 17 (1986), 137-151.
- [5] B.Y. Chen, J. Deprez, F. Dillen, L. Verstraelen and L. Vrancken, Finite type curves, Geometry and Topology of Submanifolds II, World Scientific (1990), 76-110.
- [6] B.Y. Chen, F. Dillen and L. Verstraelen, Finite type space curves, Soochow J. Math. 12 (1986), 1-10.
- [7] S. Ishikawa, On Biharmonic Submanifolds and Finite Type Submanifolds in a Euclidean Space or a Pseudo-Euclidean Space, Doctal thesis, Kyushu Univ.
- [8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I and II, Wiley (Interscience), 1963 and 1969.
- [9] B. O'Neill, Semi-Riemannian Geometry, Academic press, 1983.
- [10] Y.S. Pyo and Y.J. Kim, Finite type closed curves on pseudo-hyperbolic spaces, Far East J. Math. Sci. 4(2) (1996), 149-162.
- [11] K.H. Shin and Y.S. Pyo, Some nonexistence theorems of finite type closed curves on the pseudo-hyperbolic space $H^4(-c^2)$, East Asian Math. J. 14(1) (1988), 205-217.

Division of Mathematical Sciences Pukyong National University Pusan 608-737, Korea email: yspyo@dolphin.pknu.ac.kr