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Abstract

A variational Action Principle is introduced, in the Rosen’s Theory of Grav-
itation, in view of deriving field equations, motion equations and a canonical
energy tensor. Using the constraint of metric invariance during the variational
process along the trajectory, a certain relationship between the canonical tensor
and the motion equations is established as a test for selfconsistency. Gravitostat-
ics for spherical bodies is worked out, and the Equivalence Principle between
gravitational mass and inertial mass does hold in a weak version (equality of
masses, but not also of their space distributions).

Mathematics Subject Classification: 83CXX
Key words: General Relativity, Bimetric Theories, Field Equations, Gravitation

The field and motion equations, as well as the canonical energy tensor, may by de-
rived, in the case of Rosen’s theory of gravitation [1], from a certain Action Principle.
Adopting the perfect fluid scheme for the Riemannian Matter tensor and specify-
ing the field part of the Action as depending on Minkowskian quantities of definite
variance, not exceeding the first order derivatives, the Action integral takes the form

1) A=J—/£\/—_}([A§),

where,
(2) L = Lm+Lf;
Lp, = [(C2+H)p_p]R'K7K:f:Z;
4
C « «
Ly = 1ol (X7 7080 h°7)

Here , a subscript R stands for specifying that the labelled quantity is defined in
a Riemannian space-time, whose metric is
(3) (dSRr)” = ywda"dz”, (dSg) > 0.
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Besides this, a flat space-time metric is adopted [2]
(4) (dSar)’ = guudatdz”, (dSar) > 0.

For ensuring coherence of the whole variational process, not only the coordinates
z® and the signatures (time-like) should be the same for the two metrics, but also
the metric tensor vy,, of the Riemannian space-time must be considered as a tensor
in My (Minkowskian space time) [3], [4]. Arbitrary coordinates in My are adopted
(necessary for carrying out the variational calculations) and z° = ct is taken as the
time coordinate (with physical dimension of a length). So, the role of the two metrics
is strongly dissymmetrized, vy,, are some quantities preserving only the meaning of
gravitational potentials, and the metric (dSR)2 turns out to be a simple mathematical
artifact necessary to formulate the specific coupling of gravitational field to its sources.
This bimetric philosophy (which restricts the main role of Riemannian metric to the
motion equations) entitles us to treat the quantities v,, as true potentials, distinct
from the metric functions g,,. Now, performing the variations against v,,, in the
action integral, we come to field equations; variation against g, delivers a canonical
energy tensor, while the variation against the coordinates of a fluid particle delivers
motion equations.

For preventing confusion with respect to raising and lowering of indices, we denote
distinctly the co- and contra- variant aspects of the metric tensors, always keeping in
mind the Minkowskian character of the involved quantities. So, we write

(5) 'Y;LAX)‘V = 6;:; gu)\h)‘y = 6,‘:
'yaﬁ = 'YMthahVB # onﬁ’ XaB = X,“/guaguﬁ 7£ Yaps -
The quantity K (in (2)) is a Minkowskian scalar, while the quantities p (mass density),

p (pressure) and H (Helmoltz potential) are scalar in both M, and R4. H is defined
as

B p(p) dp
(6) H = / L.

this implying the existence of a reciprocal relationship between pressure and mass
density

(7) p=p(p), p=p(p)-

Finally, as a rule,

(8) v = Det|vull, g = Det||gull
v < 0,g<0

The Minkowskian covariant derivatives are denoted by a vertical bar followed by a
certain (Greek) subscript, or (equivalently) by a derivative symbol (D) followed by
the same subscript. For instance

9) Yasx = Drvas = Yapr — GoaYos — G%wm,

where 1
(10 Gl = S (o + G~ )
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are the Christoffel symbols of the Minkowski space time, and (,) stands for the usual
partial derivative.

For obtaining the field equations and the energy canonical tensor, we resort to the
following identity

4

1 1 c 1
11 ——6 (vV=gL) =Dy¢* - =K (T, ——E,5 | 0x*° — =To30(*
( ) \/__g( g) Aq 2 <a6+8ﬂ'G aB)X 20(3( 9
where
(12) @ = PNy +2,yaypu'/|lngzgllaﬁgha6’
PozBH)\ = 6Lf
87aﬁ|)\
1
ngnaﬁ = 1 (62\65.9#& + 6365.9#5 + 62\6291/0("‘
+6362—gu6 - hkaguaguﬁ - hkaguﬁgua) y
Tog = {(+H)pUsUs —prag}p »
1 v
Bag = Rap = 5% (X" Buv),
1 of 1 w Of
R = _E{<8Xa5 —5%16)( —8)(!“’ +
1
+ <7W7,,B - QVQB%V) D)‘puullx} :
167G
BN _ B
e R — 4 poBll ’
, oLy 1
Tap = DysQgp —2 ((3}1—045 - §ga6Lf> ,
o _ vOAo
e = AncPrIa s

The (trivially) conservative tensor (2 is coming from variation against g, of the
Minkowskian affine connections [5].

Putting the variation of the action integral against x*? to vanish, one obtains the
field equations

| ) e
(13) Rog — 3 Yas (X" Ruv) = —87rc—4Ta3.

The denotation are intentional, so as to reach just the Einsteinian expression. How-
ever, R,p is not, necessarily, the Ricci curvature tensor, excepting the case when a
certain special function is chosen for L. Even so, the tensor E,g (defined in (12)) has
more in common with its Einsteinian homologous, because it satisfies the Einsteinian
conservative condition

(14) Vi (XHQXVBEaB) =0;

justifying the statement that Rosen’s Theory is the most likely theory to the Einstein’s
one. The result (14) may be proved in the following way. Performing the variation of
the action integral against the coordinates of a fluid particle one obtains (just as in
Einstein’s theory) [6] the geodetic type motion equation
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1
(15) 6/ <1 + c_2H> vV Ywdzidzy = 0.

At the same time, the respective motion equations may be obtained by putting the
Riemannian covariant divergence of the tensor 7" to vanish, accounting equally for the
particle current conservation in both R4 and M. Accordingly, V,, (x**x"?Tag) = 0
emerges as a consequence of the motion equation (15) and, through the result (13)
one reach the result (14). To a certain extent, this may justify the interpretation
of the bimetric theories as a natural extension of the Einstein’s Gravitation Theory.
Einstein’s theory itself may be considered as a special bimetric theory for which the
following identity does hold

(16) Vi (X**x"PE.5) = 0;

Rosen’s gravitation theory may be obtained out of the general bimetric theory so
far presented by specifying the function f

1 07 (o T
(17) f = _gh BW(A ) )7>\a|a7p‘r\6>
W(Aa)(pr) = (XAanT + XapX)\T _ X)\axpr) )

The expression of the tensor R, acquires the form

1 o o (67
(18) Ry = 9K (D'Yuv - X)\ ’YuA\a'ler ) ,O=h BDaDB,

and the tensor 7,4 turns out to be

C4 A, vo 1 \
(19) ,Taﬁ = 327G {X“ X (’Yul/la')/)\aw - igaﬁfy;u/n')/)\gn> -

-2 |:(ln K)’a (In K),B — %gaﬁhul’ (In K)’u (In K)’V:| — Pag} ,

@0 Pas = (usiaX™), + Ouaisx™), + (15xd) +

12

+ ('Yu‘ayxﬁu) B - ('Vuylaxﬁu) v - (%LV\BX:) v —2gap0In K.

The contravariant derivative (...“’) is lift via h®P.
4

There is a close analogy between the tensors 7,5 and Ty5 + SC—GEQB, both being

canonical energy tensors-the first one defined in My and the second one in Ry. Their
conservative character is conditioned-through the intermediary of motion equations-
by the semi-local connection (i. e. along the trajectory of a fluid particle) of the
metrical functions variation to the variation of the fluid particle coordinates [7]

(21) 6h*F = Dy (K627 + K 62) |

(22) ox*? =V (x027 + xMéz®) .
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Here, V, stands for the covariant derivative in Ry. The formulas (21), (22) are a
specific feature of the bimetric doctrine, because they mean conservation, under vari-
ational changes, of both curved and flat metrics. Out of (22) and (11) we obtain the
identity

4

1
_C E, 5) 6Xa6

(23) 4, (\/—_QL) = 8;2* (\/—_QPQBHA(S%(B) - == (Taﬁ + 3aG e

[\

9 Bl 9 o [(T5 + T
I (\/—_QP 5%6) oy V=7 (6z7) — ) T

¢ (EN+E) . T2 + T
g (P )| p e (B )+
n ¢ (EN+ED
G 2 ’

where T3 is a symmetrical tensor in both R4 and My and the index raising is made
with the help of xy#. By asking the condition

(24) 5 A=1,

we come to a (Riemannian) conservative tensor

4

c v
(25) Tap = TOKB + %Eaﬁy Vu (Xu X BTO(B) =0.

On the other hand, taking in view that (in Ry4)

(26) 0:Lr = %%p, 0zp = pU, UV, (027) — V4 (p0z7);

Vo (UY) = 0, 0% = S dS = (udetda), VTiLa = VgL,

we have equally

0 0L
o) 6 (VD) = e (VTR 0T, -6} -
oL d*a?
— V= (6z7) pa—pR%r)\ {W + FQBU“UB-F
Arrv Ay iaLR
+ (UMU” = x*) VyIn <c2—ap :

Now, taking in view that (onto the trajectory and with geodetic constraint (22))
&,A + (5§A =1,

we come to the relevant result

4 OL
2 T)\u C_E)\u — R m
(28) vA( o ) Pt
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where ,
d?z* 0 1 0Ly
2 = e uey? rgv — x*v In|——1.
(29) w d52+ WU U" + (UMY = x )8m”n<c2 8/))
But, equation (28) may be written (equivalently) as
(30) Vo (1 g = L g
A 8’ITG - mng A
where
d ([ oLC oL
1 = (=) (=
(31) @x ds <8U*>I <8x>‘>U’
OLgR
L = —mo=R [yasUeUSB,
mo ap Yap
OLgR
Qn = —moa—p’Yqu“,

and it is transparent that (), = 0 are the Euler-Lagrange equations of motion coming
from the variational problem

(32) o [ ers =6 (=t [ R Pualie ) =1

Asking the condition (25) in (28) we come to the geodetic motion equation (32). As
the equation (32) may be recovered asking only V,T* = 0, we reach the result (14),
Q.E.D.

One of the specific features of the General Relativity Theory, namely, the deriva-
tion of the motion equations out of the field equations is to be found equally in
Rosen’s Bimetric Theory. Indeed, by putting the tensor 7,3 to vanish all over the
4-dimensional space-time, we get the field equations (13). At the same time, this con-
dition entails the vanishing of the covariant derivative of the respective tensor as well
(25), which, through the intermediary of (28) or (30), delivers the motion equations
(wt = 0 or, equivalently, @, = 0).

An alternative way of calculating the total variation of action integral, along a
fluid particle trajectory, against the particle coordinates variations, is to resort to
the geodetic constraint (21) instead of (22). To notice that the condition (21) means
the keeping of the Minkowskian metrics invariance during the variational process,
while the condition (22) implies the same status for the Riemannian metrics. The
putting on the same footing the two metrics may be considered as a basic feature of
the bimetrism, regarded from the standpoint of the variational process. Thus, we can
write

E

(83) 0, (V=9L) + 6, (V=9L) = 5 {V=9 [290uP"1" - Q)0 5007~

A

N = Q)

(T2 + T2 62 +

() el

+
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+ v {0y (T ) -

oL
- K <Pa—> %Aw)‘};
P/ R

(34) 0g A+ 05 A =1,
oL
(35) DA\TM — K- <Pa—p> (“Fyarwt =1
R
whence (accounting for the motion equations w* = 0), we conclude about the

Minkowskian conservativity of tensor 7%,

An unsatisfactory aspect of the tensor 727 is the presence in its structure of the
second order derivatives of the potentials. These appear through the intermediary of
the tensor P,z and cannot be put all in D’Alembert form, in order to be avoided by
resorting to the field equations. Indeed, we can write

|v

(36) Pag = (x; DVua + X&' BYus — 29050 In K ) + (ng Xewt vu‘a”xg"\y) + 1Lag,

(37) My = (wg\ax“” + YVua X" = V4 (o X5 — v,j’\gxi) 5
If the tensor II,s (which gathers all the non-D’Alembertian second order terms of
T28) would have an identically vanishing covariant divergence, any difficulty will no
longer survive. Unfortunately, this is not the case, because we have instead

(38) = H“lﬁﬁ - (ryualvxuﬁ _ %muxua)w £0),

(39) £l =0.

Further on , we shall prove that, however, the tensor 77 does agree with the
equivalence principle in a weak version (i. e. equality between inertial and gravitational
masses, but not between their spatial densities). In this respect, we need first to write
down the field equations for a static spherically symmetric mass distribution. We
denote

1 1 i
(40) Rﬁ“’ = ENHV’ Nul/ = 5 (D’Yuu - Euu), Epv = XA 'Yu)\|a’)/yl-a7

and write down the field equations in the form
&G 1
(41) NozB = K (Taﬁ — 5’)@5T> .
¢ R

Thereafter we adopt polar coordinates and a diagonal form for metrical tensor v,z

(42) 2 = ¢, at=r 2=6, 3=y

A 2 2 2
Y0 = e, v =—et, yo2 = —r?e™?, q33 = —r?sin? e,

and, after a long and tedious calculation, we obtain [8]
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4

(43) Oe” = _A’I"eya _DGA = AreA o r_2 (eA — ea’) )
—0(r?e”) = r*Aqe” +2(e* —¢7),
—O(r?sin®fe”) = sin?@ [rPA.e” +2 (et —€7)];
(44) €00 = —1/126',, £l = )\12 + %e—o’ (ea' _ 6)\)2 :
g2 = r?0%e” +e (e - e>‘)2 ,
€33 = sinZ6 [rzame” +e M (e” - e)‘)2] :
45 Noo = —te'Aw, Nip = L6 [AA + - sinh A
(45) 00 = —56 rV, 11—56 r +r—2s1n (c =N,

N22

1 2
5%“ {ATU — = sinh (o — A)} , N33 = Ny sin? 6.
r

But, as a result of the specific form of the tensor T,z in the perfect fluid scheme,
we get the subsidiary condition among the components of the N,z tensor

(46) N22 = TQCO'_)\Nll -

The previous condition may be written, in explicit form as

(47) Ar(o—/\)—%sinh(a—)\)zo.
r
So, we come to the solution
(48) o=2A.
Now, by denoting
U1 Yo
(4:9) vV = —20—2, A= +20—2,

we reach the so called exponential metric

¥1

(50)  (dS)% = e ZF (cdt)® — etFE {(ar)” + 7 [(d6)” + sin? 0 (d)’] }

where

g - 1 p
(51) Ny = —4nGe R [p <1+ c_2H> +20_2

R

Ya—v 1
—drGe = [p <1+ _2H> —2%} )
c s

Taking the source body to be a sphere of radius R, we define two masses, namely

Arz/}2

R R
(52) M, :/ drr’pidr |, My :/ 47’ podr,
0 0
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where the densities (p1, p2) are those from (51),1. e. Apthy (r) = —4nGpy, Dpihs (r) =
—47Gp,. To notice that, even outside the mass distribution, the metric (dSg)> con-
tains two potential functions, (unlike the simple exponential metric of Yilmaz and
Rastall, which contains a single such function) [9], [10]

(53) (dSg)* = ¢ 2" (cdt)” — ™ (di)?,
GM G M.
(54) Mlzc—21; szc—gz, My # M.

The presence of two masses M; and M, in the static metric may be considered as a
second unsatisfactory aspect of the Rosen’s bimetric theory of gravitation.

Coming back to the canonical energy tensor, and calculating the 7, component,
we obtain, in the static case of a spherical source body

A
(55) W,:BJEWQ[AJrB—P,,],
56 A = 1 Ao . v lae 2 3 2 2
(56) = ToXT X MulaYow —0—4(% +‘/J1),
o 1
B = (WK),WK)" == @30 -v),
2 87G
Py = ?Ar(3¢2+¢1):_:—2(3p2+p1)'

We notice the elimination of the non-D’Alembertian terms of 7,, in the static case.
Thus
00

— 2 E € s ! I e
61 = (Fre+ o) 1+ 5og WIS+ v = 30)
Using the Eddington’s definition of the gravitational mass together with the cor-

respondence principle between a relativistic theory of gravitation and the Newtonian
theory, we come to the formula

1 R
(58) M, = rILHolo <ar¢1> :/0 42 py (r) dr .
At the same time, the inertial mass is defined as
1 o0
(59) M= / Ty ATVE[V.
0

The weak version of the equivalence principle between the two kinds of mass
requires the vanishing of the following integral

* 71
(60) I= / (c—277, — poo> dr3dr .
0

Accounting for (57), the respective integral becomes

(3 1
o 1= [ G000+ g WP+ oulu - 302) panrtar.



40 I.Dobrescu and N.Ionescu-Pallas

But from (49) and (50), we obtain for the difference p; — p; the expression

PR 3¥2—t1
(62) p2—pr=—dge =

so that the integral I may be thought to the form

1 > 3¥2—4g 1
(63) I= _6_2/ {3pRe e (Y7 + 6piaph — 3¢g2)}47rr2dr.
0

In the Newtonian approximation, we can write
1 1 1
(64) pr=pN +O 2 , Y1 =9N+ 0 = s Y2 =9YN+0 =)

and the integral (63) becomes

1 (o] 12 1
I=-—= — N ) 4nr?d — .
(65) = <3pN 87TG> wredr + O <c4>

The equilibrium pressure p and the gravitational potential i) are expressed, in the
nonrelativistic approximation, by the formulas

R
(66) PN = / py'dr, Appn = —4nGpn,
_ (r) r€(0,R) _ (r) r€(0,R)
(67) pN—{pg r € (R, 00) _{pg r € (R, 00)

so that the integral we want to estimate may be transformed in a suitable way

1 (R 1 ) 1
(68) I= = ; <3pN — gpNzﬁN) drrdr + O (C—4> .

Now, inserting px from (66) in (68) and working out the necessary calculations we
come to the result we look for

R 1 1
(69) / <3PN — §pN1/JN> dnridr = 0, — I=0 <C_4> N
0
id est .
(70) M;—My;=0 <c_4> .

This is the quantitative expression of the statement made by Nathan Rosen (without
proof), that his theory does comply with the equivalence principle.

Conclusions

The variational formulation of the Rosen’s Theory of Gravitation in the perfect
fluid scheme and the derivation of the energy tensor are entirely original. The proof
of the equivalence principle between the inertial mass and the gravitational mass is
also given here for the first time. In the original Rosen’s work what is proved, in
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connection with this principle, is the equivalence between the inertial force and the
gravitational force. The similarity between the Einstein’s Theory and the Rosen’s one
is given in our paper, pointing out the bimetric feature of the two theories. Finally, a
clear difference between the Rosen’s exponential metric and the similar metrics from
the literature is put into evidence.

Acknowledgement. The authors would like to thank to the reviewer and editors
of BJGA for several helpful comments on our preliminary version of this paper. One
of the authors (I. D.) is obliged to Professor Ioan Gottlieb for his constant moral
assistance and useful advice. Thanks are also conveyed to Phys. Dr. Marius Piso, Chief
of the Gravitation Research Laboratory for his encouragement during the elaboration
of this work and to Miss Sylvia Onofrei for her interest in this subject in the initial
phase of the work.

Appendix
General static metric of spherical symmetry
Solving eq (47) for o # X one obtains

0.987606 7 x 10°p% +2.6757750 x 10 2p°
1.2045526 x 10 3p'0 4+ 6.421986 8 x 10 °p'4
3.718 2344 x 107 %' 4 2.2602554 x 1077 p*?
1.4188329 x 107 %p?® +9.1116261 x 107190

u (p)

+ + +

0<p<l,

1.0000000 x 10%°p™2 + 1.5151515 x 107 2p~°
4.6791444 x 107*p~15 417079236 x 107 5p~2!
6.7258452 x 10~ "p 27 +2.766 368 7 x 10 8p 33
1.1703560 x 10 °p 3% 4+ 5.0502359 x 10 11 p=1°

S

)

>
I

+ 4+

1<p< oo,

where u = 0 — A and p = r/rg, ro standing for an arbitrary constant with physical
dimension of a length. The metric acquires the form

(dS)? = e =V (cdt)? —etEY2 .
2 2
fope gl ol

For a constant mass density inside the spherical source, we have

GM GM 4GM
1/11—77 ¢2_T<1_3ﬁ>’r>R'

The equation

P2
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is fulfilled within a relative error of 107% and wu (p) is continuous in the point p = 1.
No prescription is made in the framework of Rosen’s bimetric theory for determining
ro. Fock’s gauge does not apply because ¢, # 5. However, if ro has the magnitude
order of GM/c?, then the gravitational tests are not changed by the presence of the
function wu (p) .

The following empirical rules concerning u (p) may be established

n=o0o
u(p) = Z a'np4n_2
n=1

ar = 0.9876067
1 1
Gl _ <7.339 3337 —6.720578 5— + 2.090 597 6—2> x 1072
an n n
0<p<1,
n=oo
ulp) = bnp” O H?
n=1
by = 1
brt1 1 1 _o
= [4.8299793 —3.652148 1— +0.3373203— ) x 10
by n n
1<p<o0.

For checking the efficiency of these approximations, we calculated

Uir—o = Ul40 = 1.0156372
Aug_g 7.1968494; Aujio =7.1968477

(% sinh u>
p 150

For determining the coefficients of the empirical formulas an11/an, bpt1/bn, the
first few terms of the series expansions of u (p) were directly calculated

7.1968519.

a = ia3 a _LGB a _AGF
2T 66 7T 14960 Y Tt T 10597664 1
1 1 281
by = —b3, by = —0b° by = —— B,
2 36 0 780 1 ' T 4009824 !
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