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Abstract

In this paper we shall consider the Riemannian manifold under some sup-
posed curvature conditions and investigate some properties about a complete
minimal hypersurface in a locally symmetric space. In particular, we obtain
characterizations of a totally geodesic minimal hypersurface in a locally sym-
metric space.
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1 Introduction

Let M™(c) be an m-dimensional Riemannian manifold of constant curvature ¢ which
is called a space form and M be a hypersurface of M™(c¢). Many differential geometers
have studied M from various points of view. For example, the study of hypersurfaces
with constant mean curvature of M™(c) was initiated by Nomizu and Smyth [4],
who proved some results. Later, Okumura [5] and Hasanis [2] characterized totally
umbilical hypersurfaces of M™(c), ¢ > 0, under a certain condition given by an
inequality between the length of the second fundamental form and the mean curvature.
Moreover, Cheng and Nakagawa [1] also generalized their results.

In consideration of these subjects, it seems interesting to the authors to investigate
some properties about complete hypersurfaces with constant mean curvature in a
locally symmetric space. This is closely relevant to the generalization of the so-called
Bernstein problem.

The purpose of this paper is to obtain the characterization of totally geodesic
hypersurfaces in a locally symmetric space under some supposed curvature conditions
and also to characterize complete minimal hypersurfaces in the same one.
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2 Preliminaries

We begin with recalling basic properties of hypersurfaces of a Riemannian manifold.
Let (M',¢") be an (n + 1)-dimensional Riemannian manifold with the Riemannian
metric g’'. Throughout this paper, manifolds are always assumed to be connected and
the differentiability of any geometric object is assumed to be of class C'*°. For any
point z in M’ we choose a local field of orthonormal frames {e4} = {eg,e1,---,en}
around z adapted the Riemannian metric ¢’. We denote {wa} = {wo,w1, -+, wn}
by the dual frames on M' which consists of 1-forms on M’ such that wa(eg) = dap.-
Here and in the sequel, the following convention on the range of indices is used, unless

otherwise stated :
AB,---=0,1,---,n,

'L,],"':l,"',n.

Associated with the frame field {ea}, there exist 1-forms {wap}. They are usually
called connection forms on M’ so that they satisfy the structure equations of M’ :

(2.1) de—l-ZwAB ANwp =0, wap+wpa=0,
A
(2.2) dwap + Y wpe Adwop = Usp,
! ]' !
(2.3) AB = 75 Z Rypopwe Awp,
c,D

where Q' = (4 p) (resp. Ry gp) denotes the curvature form (resp. the components
of the Riemannian curvature tensor R') of M.

Now, relative to the frame field chosen above, the Ricci tensor S’ of M’ can be
expressed as follows :

(2.4) S'=Y" Shpwa®ws,
A,B

where Sy = >~ R s = Spa- The scalar curvature 1 is also given by
(2.5) " =3 S
A

The components Ry ;g of the covariant derivative of the Riemannian curvature
tensor R’ are obtained by

Z RapcppwE = ARy pep
(2.6) o

! ! ! !
- Z(REBCDWEA + RapcpweB + Rypppwec + RypcopwED)-
E
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By M™(c) we denote an m-dimensional Riemannian manifold of constant curva-
ture ¢, which is called a space form. Then the Riemannian curvature tensor R’ g p
of M™(c) is given by

(2.7) R;&BC’D = C((SAD(sBC — 5AC’6BD)-

Next, let (M',¢') be an (n + 1)-dimensional Riemannian manifold and let M be an
n-dimensional hypersurface of M'. We choose a local field of orthonormal frames
{ea} = {eo,e;} = {eo,e1,---,en} on a neighborhood of M’ in such a way that
restricted to M, e, -+, e, are tangent to M and eg is normal to M. With respect to
this frame field, let {wa} = {wo,w;} be its dual frame field. Then the Riemannian
metric tensor g’ of M’ is given by ¢’ = >, w4 ® wa. The connection forms on M’
are denoted by wap. Restricting these forms to the submanifold M, we have

(28) Wy = 0,

and the induced Riemannian metric tensor g of M is given by g = Z]. wj ® wj.
Then {e;} is a local field of orthonormal frames with respect to this metric and {w;}
is a local dual frame field due to {e;}, which consists if 1-forms on M. Moreover,
w1, - ,wy, are linearly independent, and they are said to be canonical 1-forms on M.
It follows from (2.8) and the Cartan lemma that the exterior derivative of (2.8) gives
rise to

(2.9) Wo; = Z hijwj, — hij = hji.
J

The quadratic form o = ZZ ; h;jw;®@w;j®ep with values in the normal bundle is called
the second fundamental form of the submanifold M. From the structure equations of
M’ it follows that the structure equations for M are similarly given by

(2.10) dw; + Zwij ANwj = 0, Wij + Wj; = 0,
J

dwij + Zwik Nwrj = Qij,
k

Qij = ZRijlek A wy.
Tl

(2.11)

For the Riemannian curvature tensor R and R’ of M and M’, respectively, it follows
from (2.3) and (2.11) that we have the Gauss equation

(2.12) R = Réjkl + (hilhjk - hikhjl)-
The components of the Ricci tensor S and the scalar curvature r of M are given by

ij

(2.13) Sij =Y Ripij + hhij — b3
k
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j.k

where h = El hiia hZQ] = Er hirhrj and hQ = Zj h?]
Now, the components h;;; of the covariant derivative of the second fundamental
form a on M are given by

(2.15) > hijrwr = dhij =Y (hrjwri + hirw;).
k k

Using (2.1) ~ (2.3), and (2.9) ~ (2.11), it follows from the coefficients of w; A wy, that
(2.16) hijk — hirj = Ro;jp-

Similarly the components h;jx; of the covariant derivative of h;;;, can be defined
by
(2.17) Z hijriwr = dhgjp — Z(hzjszi + harwij + hijiwm).

1 1

On the other hand, differentiating (2.15) exteriorly and using the properties d? = 0,
(2.10) and (2.11) we see

Z(dhijk A wr, — hiji Z Wit A wy)
1

k

1
= _ zk: dhkj N Wi — hjk(zl: Wel N\ wyi + 5 Z Ryiimwr N\ wm)

l,m

1
+ dhii, A Wij — h’k(z wir AN wij + 3 ZRkjlle A wm)

l I,m

Substituting (2.15) and (2.17) into the above equation, we have the following Ricci
formula for the second fundamental form on M

(2.18) hijrr — hijie = — Z(hirRrjkl + hjr Rrikt)

from the coefficient of wy A wy.
Let us denote the covariant derivative of Ry 5~ p, as a curvature tensor of M', by
Ry pcp.p- Then, restricting on M, R}, is given by

oijk;
(2.19) Riika = Roijrn — Roiorhjt — Rosjohw + Z Ryijkhmi,

m
where R(’)i]-kl denotes the covariant derivative of R(’)i]-k as a tensor on M so that

] _ / / ,
E Roijkz‘*’l = dROijk - E ROljkwll
l

1
! !
- ZROilkwlj - E :ROijlwlk'
1 1

(2.20)
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For the sake of brevity, a tensor hj and a function hy, on M for any integer
m(> 2) are introduced as follows :

(2.21) W= > hii iy hi s

21,0 bm o1

(2.22) hm = B

Here we introduce a fundamental property for the generalized maximal principle
due to Omori [6] and Yau [7] and quote the following in order to prove our results.
Theorem 2.1. Let M be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below. Let f be a C*-function bounded from above on
M, then for any e > 0, there exists a point p in M at which it satisfies

sup f —e < f(p), |grad f(p)] <e and Af(p) < e,legno(2.23)

where A is the Laplacian operator on M.

3 The Laplacian operator

In this section we shall consider the Laplacian of the second fundamental form. Let
M be a hypersurface of an (n + 1)-dimensional Riemannian manifold M’ and let us
denote by a the second fundamental form on M. Then the Laplacian Ah;; of the
components h;; of a is defined by

(3.1) Ahgj = Z hijrr.-
k

From (2.16) and (2.18) it follows that
Ahy; = Z hikjk + Z Rk
k k
> hwije + Y Ry
k k

Z{hkikj - Z(hiZlejk + hia Rigjr) + Roijwe }-
% 1

Replacing hpir; with hrgg; + ngikj in the above equation, we get
Ahg; = Z Prri;  + Z(Ré)ijkk + Ropinj)
k k

- Z(hillejk + hii Riijr).
kil

Combining (2.12) and (2.19) with the above equation, we obtain
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AVITIES Z hkkij + Z(R{)ijk;k + Rogir.;)

k k

+ Z(hij(l)iOk + hirRoj0 — Z hi Ry;jp,)
k 1

+ Z(hinf)kOk + hijRopio — Z Rt Rigir)
k 1

- Z(R;cjkl + hiihjr — hirhj)ha

k,l

- Z(R;fjil + hyihi; — hujhik) hi
ol

and hence we have

Ah;j = Z hirij  + Z(Réijk;k + Ropirsj)
% %

+  (hRy;0 + ZhinBkOk)
k

(3.2)
- Z(QhklR;cijl + R + hitRigjir)
kL
+  hhi; — hahij.

4 The curvature conditions

In this section we shall consider the Riemannian manifold under some supposed cur-
vature conditions and estimate Ahy from below. Let M’ be an (n + 1)-dimensional
Riemannian manifold and let M be a hypersurface of M'. For a point x in M’ let
{eo, €1, -+,en} be a local field of orthonormal frames of M’ on a neighborhood of
z in such a way that, restricted to M, the vectors e1,---, e, are tangent to M and
the other is normal to M. For linearly independent vectors v and v in the tangent
space T, M' we denote by K'(u,v) the sectional curvature of the section spanned by
w and v in M’ and by R’ or Ric'(u,u) the Riemannian curvature tensor in M' or
the Ricci curvature in the direction of u in M, respectively. Let us denote by V' the
Riemannian connection on M'. We assume that the ambient space M’ satisfies the
following conditions :

(4.1) Ric(eg,e0) < c1,

(4.2) K'(ei,ej) > ¢ for any i and j such that i # j
and

(4.3) VR|< 2

for some constant ¢q,cs and c3.
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When M’ satisfies the above conditions (4.1), (4.2) and (4.3), it is said simply for
M’ to satisfy the condition (x) .
Remark 4.1. If ¢3 = 0, then the ambient space M’ is locally symmetric. Conversely
if the ambient space M’ is locally symmetric, then without loss of generality, we may
regard as ¢z = 0.
Remark 4.2. If M’ is a space form M"™*!(c) of constant curvature ¢, then it satisfies

the condition (*), where a_ cy =cC.
n
In the sequel, we assume that the ambient space M’ satisfies the condition () and
hypersurface M is minimal. Namely we assume that the function A vanishes. Then
the Laplacian of the squared norm hs of the second fundamental form a of M is given
by
Ahy = A hijhig) =2 (hijrhij)
i,J

i,5,k

2 Z(hijkkhij + hijrhijr)
i3,k
= 2|Va|2 + 2 Z hijkkhij,
i,5,k
where V,, is the covariant derivative of the second fundamental form a and |Va|? is

the squared norm of Va. i.e., |[Va|> = >, . hijrhijr. Hence from (3.1) and (3.2) it
follows that

i,5,k

Ahy =2|Val* + 2 Z {Z(Rﬁkik;j + Roijpr) + Z hij Ropor,
%

ij Uk
- 2 Z(hklR;ijk + i Ry + iRy j) — hahig ¢ hij.
k.l
Thus we have
Ahy =2|Val* + 2 Z(R(I)kik;j + Ry ) hij + ho ZR(I)kOk
ik k
(4.4)

— Y 2(hijhu Ry + Wi Riyy,) — b3
k,l

On the other hand, since the matrix H = (h;;) can be diagonalized, we can
expressed by

(45) hij = )\iéij,
where A; is the principal curvature on M. By definition, we see

hy =Y X >\
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and hence we have

(4.6) —Vha <X < Vha,

(4.7) —hy < AiAj < hy.

Now in order to prove our results, we need to estimate Ahy of (4.4) from below.
First of all, we treat with the second term of (4.4). It is seen that

2 Z(Rﬁkik;j + Rojjgp)hij = 2 Z i (Rogje.j + Rojir)
5,k J.k
> -2 Z IN (RO i | + 1ROk ])-
J.k

So by (4.3) and (4.6) we have

(4.8) the second term of (4.4) > —4czv/ho.

Next, we consider the third term of (4.4). It is estimated as follows :

2hs Z Rf)kmc = —2h Z Rf)kko
k k
= —2h2 ZR(I)kkO Z —2h201,
k

where we have used (4.1). Hence we have
(4.9) the third term of (4.4) > —2¢ hs.

It is evident that if the ambient space M’ is a space form M"t!(c) of constant
curvature ¢, then (4.9) also holds and hence

the third term of (4.4) > —2¢ n hs.

Last, we estimate the fourth term of (4.4). We have by (4.2)

—4 Z(hijhklR;ijk + h?ijkjk) =-4 Z(/\j/\kR;cjjk - A? kijk)
Kl ok

= —4> (N = M) Rpie =2 (A — M) Ry
jok jok
> 2¢ Z()\] - )\k)Q.
jok
Accordingly we obtain
(4.10) the fourth term of (4.4) > 4canhs.

Thus, substituting (4.8), (4.9) and (4.10) into (4.4), we can prove the following
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Lemma 4.1. Let M' be an (n + 1)-dimensional Riemannian manifold satisfying the
condition (%) and let M be a minimal hypersurface of M' Then we have

(4.11) Ahy > —dezv/hy +2(2ncy — ¢1)hy — 2h3.

In particular, if M’ = M"™*!(c), then substituting o cs = ¢ and ¢3 = 0 into
n
(4.11) we obtain

(4.12) Ahg > 2(n ¢ hy — h3).

5 Locally symmetric spaces

Let M’ be an (n+1)-dimensional locally symmetric space which satisfies the condition
(¥) and let M be a complete minimal hypersurface of M’. For a point z in M let
{eo,e1,---,en} be a local field of orthonormal frames of M’ around of z in such a
way that, restricted to M, the vectors ey, ---,e, are tangent to M and the other is
normal to M. Then for two constants ¢; and cs

Ric(eg,e9) < c1,

K'(e;,ej) > ¢, for any i and j such that i # j.

Moreover, since M’ is locally symmetric, we have ¢3 = 0 and the inequalities (4.11)
implies

(5.1) Af? > 2{(2ncy — 1) — nha} f2,

where f is the non-negative function defined by f2 = h,.
Theorem 5.1. Let M' be a locally symmetric space which satisfies the condition (x)
and let M be a complete minimal hypersurface. If it satisfies

(5.2) n sup hs < 2ncy — ¢y,

then M 1is totally geodesic.
Proof. We define a non-negative function f by f2 = hy. Then it is bounded by
the assumption. Let Ay, ---, A, be principal curvatures on M. It is easily seen that
f? =3, A7 and hence the function f vanishes identically on M if and only if A; = 0
for any indices i, i.e., M is totally geodesic.

First of all, we will show that the Ricci tensor is bounded from below. The Ricci
tensor S;; is expressed by

Sij = Z( rije T hijhie — hixhjr)
K
Z (n — ].)C2 — /\?5”

Since the principal curvatures satisfy A;A; > —ha, we have

Sij Z (n — 1)62 — hz,
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which yields the Ricci curvature of M is bounded from below under the assumption.
This means that Theorem 2.1 due to Omori [5] and Yau [6] can be applied to the
function f2. Therefore given any positive number € there exists a point pin M at which
f? satisfies (2.23). Accordingly, for a converge sequence {e,,} so that it converges to
zero as m tends to infinity, there exists a point sequence {p,,} so that the sequence
{f(pm)} converges to fo by taking a subsequence, if necessary. By (2.23) we see

f(pm) = fo =sup f.

By (5.1) we can estimate A f2 from the below, and hence by (2.23) we obtain

em > Af*(pm) 2 2{(2nc2 — e1) = nf* (pm) } f* (Pm),
from which it follows that we have
2{(2nca —c1) —nfiYfi <0
as m tends to infinity. Under this inequality we have
fo=0 or nfl>2nc—cp).

Under the assumption of the present theorem, the above restriction of the supremum
of the function f yields that fy = 0, which implies f vanishes identically on M and
hence M is totally geodesic. O

Remark 5.1. An (n+ 1)-Euclidean space M’ = R"" satisfies the condition (%) with

¢, = ¢ = c3 = 0. The complete hypersurface M = S~ '(c) x R' in M’ = R"™" is
2

not umbilic and it satisfies hy =
h2
equivalent to sup hy < —.
n

1> 0. In this example, the condition (5.2) is

6 Minimal hypersurfaces

Let M' be an (n + 1)-dimensional Riemannian manifold which satisfies the condition
(x). That is, for any point  in M let {eg,ey, -, e,} be a local field of orthonormal
frames of M' around of x in such a way that, restricted to M, the vectors e, -, e,
are tangent to M and the other is normal to M. Then for three constants ¢;,co and
c3 we have

Ric'(eg,e9) < c1,

k'(ei,ej) > co for any i and j such that i# j,
VR < 2.
n

Let M be a complete minimal hypersurface of M'. From the inequality (4.11) it follows
that

(6.1) Af? > —desf 4+ 2(2ney — 1) 2 — 24,

where f is the non-negative function defined by f2 = h,.
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Theorem 6.1. Let M' be an (n+1)-dimensional Riemannian manifold which satisfies
the condition (%) and let M be a complete minimal hypersurface. If the Ricci curvatures
of M is bounded from below and if it satisfies

(6.2) (2ncy —c1) > 27c5 > 0,
then there exists constants as and a3 depending only on c1,cz,c3 and n such that

0 <suphy <ay or suphy > as.

Proof. Let A\, -+, A, be principal curvatures on M. Since the hypersurface M is
minimal, the Ricci tensor S;; is given by
Sij = Z(R;cijk = hirhj)

k
- ZR;”jk - /\125” Z (n - ].)CQ — /\12(5”
k

Here, we suppose that the squared norm hs is not bounded from above, then there
exists at least one index j so that the principal curvature )A; is not bounded, from
this fact together with the above inequality it follows that the Ricci curvature of M is
not bounded from below. Thus we have a contradiction. Therefore the squared norm
hs is bounded from above, which implies Theorem 2.1 due to Omori [5] and Yau [6]
can be applied to the function f2. Given any positive number ¢ there exists a point
p in M, at which f? satisfies (2.23). Accordingly, for a converge sequence {&,,} so
that it converges to zero as m tends to infinite, there exists a point sequence {pn,} so
that the sequence {f(p.,)} converges to fo, by taking a subsequence, if necessary. By
(2.23) we see

f(pm) = fo =sup f.

By means of (6.1) we can estimate A f2 from the below, and hence by (2.23) we obtain
em > Af*(pm) > 2{=2¢5 + (2nc2 — 1) f(Pm) — f° (Pm) } f (Pm),

which implies

(6.3) {—2c3 + (2nez —c1)fo— fa1fo <0

as m tends to infinity. On the other hand, the quadrant expression y is defined by

(6.4) y=y(z) = —2{2® — (2ncy — c1)x + 2¢c3} 7,

then we have

y' = —4{22% — 2ncy — ¢1)x + c3},
(6.5) y" = —4{62> — (2nc2 — 1)},
y" = —48g,

which implies that 3’ has the relative maximum on the interval (0, 00), whose value

2
is 4{—(2n02 —c)%? - 03}, which implies that if 2(2nca — ¢1)® > 27¢3, then

3v6
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2 - 2 —
Y ( %) > 0. Thus under the assumption (6.2) we get 3’ (\/@) >

0. This yields that there exist two positive roots bs and b3 (b2 < b3) of the algebraic
equation y'(z) = 0. Thus from (6.4) it follows that

(66) y(b3) = {(QnCQ — Cl)b3 — 3C3}b3.
On the other hand, by the direct calculation, we have

( 3c3 ) _ 62 27¢2 — (2ncz2 — c1)?

2ncs — ¢ (2ncy — ep)*
So, under the assumption (6.2), the value is positive. Because y'(b3) = 0 and
lim y'(z) = —o0 and y'|j5,,00) < 0, we obtain
T—>00
3c
o= < b3,
2necs — ¢

from which together with (6.6) it follows that
y(b3) > 0.

By (6.4) we see y(0) = 0 and 1i_>m y(z) = —oo and also by means of (6.5) we have
T o0

Y'lj0,5,) < 0, this yields that there exists two positive roots az and az of the equation
y(xz) =0. By (6.3) and (6.4) we obtain

0< fo=supf<ay or fo=supf>as.

It completes the proof. O
Remark 6.1. The values as and a3 are two positive roots of the cubic equation

(6.7) 2% —2(2ncy — 1) + 23 =0

and hence we can require concretely the values. They are depended on the constant
c1,C2,c3 and n.

Owing to Theorem 5.1, Theorem 6.1 and Remark 6.1, the following property is
easily verified.
Corollary 6.2. Let M' be an (n + 1)-dimensional locally symmetric space which
satisfies the condition (x) and let M be a complete minimal hypersurface. If it satisfies

(6.8) sup hs < 2ncy — ¢y,

then M 1is totally geodesic.
Proof. By the assumption (6.8) the Ricci curvature on M is bounded from below,
because we see

Sij Z (’TL — 1)02 — )\?6” Z (’TL — 1)02 — hQ

On the other hand, since M’ is locally symmetric, we see c3 = 0, from which it follows
that the algebraic equation (6.7) is reduced to

2% —2(2ncy — 1)z = 0.
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So the supremum fy of the function f = hs, i.e., the squared norm of the second
fundamental form, satisfies

f03 - 2(2n02 - Cl)f() =0.

The assumption (6.8) implies fo = 0, which yields that M is totally geodesic.
It completes the proof. O
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