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1 Introduction

As it is well-known, the curvature of a three-dimensional Riemannian manifold is
completely determined by its Ricci tensor. For a three-dimensional contact metric
manifold (M,n,g,p,&), D. Perrone [P1] expressed the Ricci tensor ¢ by means of
terms related to the contact metric structure of M. Further, D. Perrone, L. Vanhecke
and the author [CPV] computed the covariant derivatives of the vector fields forming
a p-basis of a non-Sasakian contact metric three-manifold M. So, this makes possible
to compute the covariant derivative of g, by means of its components with respect to a
p-basis, for an arbitrary non-Sasakian contact metric manifold of dimension three. In
this paper, such computation is made and it is used in order to classify Einstein-like
and conformally flat contact metric three-manifolds.

It is well-known that a three-dimensional Einstein manifold has constant sectional
curvature. For contact metric manifolds, D.E. Blair and R. Sharma [BS] proved that
locally symmetric (or equivalently, Ricci-parallel) contact metric three-manifolds must
have constant sectional curvature 0 or +1.

Einstein-like manifolds have been introduced by A. Gray [G]. Einstein-like metrics
are generalizations of both Einstein and Ricci-parallel metrics, so it is worthwhile
to try to give a classification of contact metric three-manifolds equipped with an
Einstein-like metric.

A Riemannian manifold (M, g) is said to belong to the class A if its Ricci tensor
is cyclic-parallel, that is,
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(L.1) (Vxo)(Y,2) + (Vyo)(Z,X) + (Vz0)(X,Y) =0

for all X,Y,Z tangent to M and where p is the Ricci tensor of type (0,2). This
condition is equivalent to the fact that g is a Killing tensor, that is,

(1.2) (Vxo)(X, X) = 0.

(M,g) is said to be in the class B if its Ricci tensor is a Codazzi tensor, that is,

(1.3) (Vxo)(Y,Z) = (Vyo)(X, Z).

Note that for connected spaces in class A or in class B the scalar curvature r is
necessarily constant.

In dimension three, Einstein-like manifolds have been studied in the class of homo-
geneous spaces [AGV] and in some generalizations of such class, like ball-homogeneous
spaces [CV] and curvature homogeneous spaces [BuV]. Moreover, Sasakian Einstein-
like manifolds have been studied in [AG].

In this paper, we study contact metric three-manifolds belonging to the class A
and we characterize them by proving the following

Theorem 1 Let (M,n,g) be a three-dimensional, simply connected, complete con-
tact metric manifold. Then the Ricci tensor of M is cyclic-parallel if and only if M
is a naturally reductive homogeneous space. If the manifold is not simply connected
or complete, then "naturally reductive” has to be replaced by ”locally isometric to a
naturally reductive space”.

We also give the explicit classification of contact metric three-manifolds in the class
A.

The case of a contact metric three-manifold whose Ricci tensor p is a Codazzi
tensor seems much more difficult to treat. Many authors ([BaKo], [BS], [Pa], [G-AX1])
studied contact metric three-manifolds having harmonic curvature tensor (a condition
which is equivalent to (1.3)), classifying some special classes of such spaces. Using our
method, we extend some of these classification results by proving the following

Theorem 2 Let (M, 7, g) be a three-dimensional contact metric manifold whose Ricci
tensor is a Codazzi tensor. Suppose that

(14) Vet = 2a7p,

where T = Leg is the torsion of (M,n,9) and a is a smooth function which is constant
along the geodesic foliation generated by £&. Then M has constant sectional curvature
0 or +1.

As it was proved in [CP], (1.4) with a constant is a necessary but not sufficient
condition for the homogeneity of a three-dimensional contact metric manifold.

Theorem 2 is also interesting because it does not hold any more if the scalar
curvature of M is not constant, as for example for conformally flat contact metric
three-manifolds. The classification of conformally flat contact metric manifolds is an-
other problem which has been investigated by many authors. At one hand, in many
cases conformally flat contact metric manifolds must have constant sectional curvature
(see [T], [GA-X2], [CPV]). On the other hand, D. E. Blair [B2] constructed examples
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of conformally flat contact metric three-manifolds which do not have constant sec-
tional curvature. We show that Blair’s examples satisfy Ve = 2a7¢ with {(a) = 0.
Moreover, we prove the following result, which generalizes Theorem 3.2 of [GA-X2].

Theorem 3 A three-dimensional conformally flat contact metric manifold such that
Ve = 2atyp, where a # 2 is a constant, has constant sectional curvature 0 or +1.

2 The covariant derivative of the Ricci tensor for a three-
dimensional contact metric manifold

We first collect some basic facts about contact metric manifolds. All manifolds are
supposed to be connected and smooth.

A contact manifold is a (2n + 1)-dimensional manifold M equipped with a global
1-form 7 such that n A (dn)™ # 0 everywhere on M. It has an underlying almost
contact structure (n,p, &) where £ is a global vector field (called the characteristic
vector field) and ¢ a global tensor of type (1.1) such that

nE) =1, ¢t=0, np=0, ¢*=-T+ne¢.

A Riemannian metric g can be found such that

n=g&-), dp=g(,¢), g ¢)=—g(e,")

We refer to (M, 7, g) or to (M,n,g,&, ) as a contact metric (or Riemannian) manifold.
If L denotes the Lie derivative, we consider the tensors

1
h= §L§(,0, T = ng.

The tensors h and 7 are symmetric and satisfy

(2.1) V&= —p—¢h, Vep=0,

(2.2) T =2g(p-,h), hp=—ph, h{=0

and hence,

(2.3) Vet =29(p,Veh), (Veh)p=—p(Veh), (Veh)§=0.

A K-contact manifold is a contact metric manifold such that £ is a Killing vector
field with respect to g. Clearly, M is K-contact if and only if 7 = 0 (or, equivalently,
h = 0). If the almost complex structure J on M x IR defined by

T F5) = (X — fEn(X) )

is integrable, M is said to be Sasakian. Any Sasakian manifold is K-contact and
the converse is also true for three-dimensional spaces. We refer to [B1] for more
information about contact metric manifolds.
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From now on, let (M, 7, g) be a three-dimensional contact metric manifold and m
a point of M. Let U be the open subset of M where h # 0 and V the open subset of
points m € M such that h = 0 in a neighbourhood of m. Then U UV is an open dense
subset of M. For any point m € UUV there exists a local orthonormal basis {¢, e, pe}
of smooth eigenvectors of h in a neighbourhood of m. We call {&, e, pe} a ¢-basis of
(M,n,g). On U we put he = Xe, where A is a non-vanishing smooth function. From
(2.1), we have hpe = —Ape. We recall the following

Lemma 2.1 [CPV] On U we have

Vee = —aype, Vepe = ae,
Vel =—(A+ L)pe, Vel = —(A=1)e,
(2.4) Vee = 3 {(pe)(N) + Alpe,  Vyepe = 5-{e()) + Ble,

Vepe = —55{(pe)(\) + Ate + (A + 1)¢,

Voee = —55{e(A) + Blpe + (A - 1)¢,

(2.5) Veh = 2ahg + €(N)s,

where a is a smooth function, A = (€, e), B = 0(§, pe) and s is the (1,1)-type tensor
defined by s€ =0, se = e and spe = —pe.

From (2.5) we obtain at once the following

Proposition 2.2 Let (M,n, g) be a three-dimensional contact metric manifold. Then
on M we have Veh = 0 (equivalently, Ver = 0) if and only if a = {(X) = 0, while
Veh = 2ahy (equivalently, Ver = 2atg) if and only if £(X) = 0.

So, the condition given in Theorem 2 for V¢7 is weaker than "V, = 2atp, with
a constant”, and this last condition is weaker than V7 = 0.

In what follows, we shall denote by V the Levi Civita connection of M and by R
the corresponding Riemannian curvature tensor given by

Rxy =Vixy] - [Vx,Vy].

The Ricci tensor of type (0,2), the corresponding operator and the scalar curvature
are respectively denoted by g, @) and r.

It was proved in [P1] that the Ricci operator on a three-dimensional contact metric
manifold is given by

Q=al +Bn@E+pVeh—a(¢®) @&+ a(e)n ® e+ o(pe)n @ pe

where o = 9(&, ) |kern, @ = 5 —1+ A% and f = —% + 3 — 3\%. Using (2.5), we get

Q=al+pn®E&+2ah+EN)ps — a(th) ®E&+o(e)n®e+o(pe)n @ pe.
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Hence, applying @ to the vector fiels of a y-basis, we get

{ Q& = 2(1 — \?)¢ + Ae + Be,

(2.6) Qe = AL+ (5 — 1+ X2 +2a))e + (M) e,

Qe = BE+E(N)e+ (5 — 1+ A% — 2a))pe.

If m € U, we can use (2.4) and (2.6) to compute the components of the covariant
derivative Vo with respect to a ¢-basis {¢, e, pe} defined in a neighbourhood of m.
After some standard computations, we get the following

Theorem 2.3 Let (M,n,g9) be a three-dimensional non-Sasakian contact metric
manifold. On U, the components of Vo with respect to a p-basis {{, e, pe} are given

by

(2.7) (Ve@Q)§ = —4M(N)E + {£(A) + aBle + {{(B) — ad}e,

(2.8) (VeQ)e = {&(A) + aB}E + {&(a + 2a)) + 2a6(N)}e +
+{E(EN)) — 4a®A} e,

(2.9) (VeQ)pe = {£(B) — aA}e + {¢(6(V) — 4a’A}e +
+{&(a — 2aX) — 2a€(N) }ee,

(2.10) (Ve@)€ = {—4Xe(N) +2(A + 1)B}¢ +

+He(A) + A+ 1DEN) - %[(we)(k) + Al}e +{e(B) +

+(A 4 1)(a — 2aX — 2+ 2)\%) + %[(g@e)(/\) + A} e,

- oY) + Al +

+{e(a + 2aX) — i;‘)[(gpe)(/\) + Alle +
+{e&(\) + 2a(pe)(A) + (2a — A — 1) A} e,

(2.11) (VeQ)e = {e(4) + (A + 1)EN)

(2.12) (VeQ)pe = {e(B) + (A + 1)(a — 2aX — 2+ 2)%) +
+%[(<pe)()\) + A]}E + {e€(N) + 2a(pe)(A) + (2a — A — 1)A}e +

+{e(a —2a)\) —2(A+1)B + Q[(@e)()\) + A} e,

(2.13) (Ve @)€ = {=4A(pe)(A) +2(A = 1A} +

+{(pe)(A) + (A = 1)(a +2aX — 2 +2)%) + %[e()\) + Bl}e +

A
~ = [e() + Bljve,

(2.14) (VoeQ)e = {(we)(A) + (A = 1)(a + 2aX — 2 + 2)\?) +

+H(pe)(B) + (A = 1))
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| &

+—[e(A) + B]} + {(pe)(a + 2aX) —2(A — 1)A +

A

Iy DN
—~
Nai?

+ [e(A) + B]te + {(pe)éX — 2ae(X) + (1 — XA — 2a)Bl}e,

|

(2.15) (VoeQ)pe = {(pe)(B) + (A = 1)§(A) — %[G(A) + BJ}¢ +
+{(pe)éX — 2ae(N) + (1 — X\ — 2a)B}e +

+{(pe)(a — 2a)) — %”[e(x) + Blve.

We recall that a contact metric manifold (M, n,g) is said to be homogeneous if
there exists a connected Lie group of isometries acting transitively on M and leaving
71 invariant. It is said to be locally homogeneous if the pseudogroup of local isometries
acts transitively on M and leaves 7 invariant. Note that a three-dimensional locally
homogeneous contact metric manifold is locally isometric to a homogeneous one. The
classification of homogeneous contact metric three-manifolds is given by the following

Proposition 2.4 [P2] Let (M,n, g) be a simply connected homogeneous contact met-
ric 3-manifold. Then M is a Lie group and (n,g) is a left invariant contact metric
structure.

The explicit classification of three-dimensional homogeneous contact metric manifolds
is also given in [P2] in terms of the Webster scalar curvature and of the torsion
invariant |7].

We end this section by a lemma which will permit to simplify some of the next
proofs. Such lemma can be easily proved by induction.

Lemma 2.5 Let M be a smooth manifold, m € M, X a vector tangent to M at m
and f a real-valued smooth function defined in a neighbourhood of m. Suppose there
exist n € IN and ayg, ..., an real-valued smooth functions defined in a neighbourhood of
m, an # 0, such that X(anf™ + ... + a1 f + ap) = 0 and X (a;) = 0 for all i. Then
X(f) =0.

3 The class A for contact metric three-manifolds

We start recalling the characterization of three-dimensional homogeneous manifolds
in the class A given in [AGV].

Proposition 3.1 [AG V] A three-dimensional, connected, simply connected Riemann-
ian manifold is a naturally reductive space if and only if it is a homogeneous manifold
with cyclic-parallel Ricci tensor.

We are now ready to give the
Proof of Theorem 1

Let (M,n,g) be a three-dimensional, simply connected, complete contact metric
manifold. If M is naturally reductive, then from Proposition 3.1 it follows at once
that M belongs to the class A.
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Conversely, assume that the Ricci tensor g of (M, n, g) is cyclic-parallel. If (M, n, g)
is Sasakian, since the scalar curvature r is constant, it follows that M is locally ¢-
symmetric [W] and so, it is homogeneous [Tk]. Therefore, the result follows from
Proposition 3.1. From now on, we assume that M is not Sasakian. Then, Theorem 2.3
holds. We now apply equations (1.1) and (1.2) to the components of Vg with respect
to {e1 =&, e2 = e,e3 = e, } on U. First, since V1911 = 0, from (2.7) follows
(3.1) &N =0.

Next, taking into account (3.1) and the constancy of r, we have

(3.2) Va022 = 0= e(\? +2a)) =0,

(33) V3933 =0= (,06(/\2 — 20)\) =0,

(3.4) Vioi2+ Vioa + Vaoi1 =0= §(A4) —2Xe(A) + (A +a+1)B =0,
(3.5) Vioiz + Vios1 + Vo = 0= §(B) — 2 pe(A) + (A —a—-1)A =0,
(3.6)

B
V2021 + Vap12 + Vige2 =0 = e(4) — ﬁ[(gae)(/\) + A] + Aé(a) =0,

A
(3.7) V3031 + V313 +Vigss =0= ((pe)(B) — ﬁ[e()\) + B] — )\f(a) =0,
(3.8) V2023 + V2032 + V3022 = 0 = 4a(pe)(N) + ((,06)()\2 +2a\) —4(A—a)A =0,
(3.9) V3032 + V3003 + Vap3s = 0= —4dae(N) + e()\2 —2a\) —4(A+a)B =0.

Since e(A\?) = 2Xe()), (3.2) becomes

(3.10) Ae(a) = —(A +a)e(A).

In the same way, (3.3) gives

(3.11) A(pe)(a) = (A = a)(pe)(N).
Using (3.10) in (3.9), we have

(3.12) (A—a)e(A) =(A+a)B
and, using (3.11) in (3.8), we get

(3.13) (A +a)(ge)(A) = (A — a) A.

Consider Uy = {m € U : A = ain aneighbourhood of m}, Uy = {m € U : A =
—a in a neighbourhood of m} and Us = {m € U : A\(m) # £a(m)}. It is easy to check
that U; UU,UUs is an open dense subset of U. We now prove that e(A) = (¢e)(A) =0
on Uy, Uy and Us and hence, on U. On U; and on Us, (3.10) and (3.11) imply at once
e(A) = (¢e)(A) = 0. We now prove that e(A) = (¢e)(A) = 0 also holds on Us. Since
A # +a on Us, from (3.12) and (3.13) it follows

(A+a)
A—a

(3.14) e(\) = B

and
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(A—a)

(3.15) (PO = S04,

respectively. So, from (3.10) and (3.11) we also have

(3.16) e(a) = —%

and

(3.17) (ve)(a) = %A.
Next, (3.6), together with (3.15), gives

(3.18) e(A) = AAfa ~ ¢(a).
In the same way, (3.7) and (3.14) imply

(3.19) (pe)(B) = T 4 Aela).

We now differentiate (3.15) with respect to e and we use (3.14), (3.16) and (3.18) to
express e()\), e(a) and e(A), respectively. We get

o = (R ot 0

§(a)-

In the same way, differentiating (3.14) with respect to we and using (3.15), (3.17) and
(3.19), we obtain

(00e) = (25— + G aszdaB + 25 D ega)

Therefore, since [e, pe] = e(pe) — (pe)e, we have

(3.20) [e, pe](A) = {A28_aa2 + (;;5)2 _ (;j—aa) 2A(\? + a?)

On the other hand, [e, pe] = V.(pe) — V,ee. Thus, using (2.4) together with (3.14)
and (3.15), we get

(3.21) [e, pe](A) = —%AB.

Comparing (3.20) and (3.21), we then obtain

2a(\? — 3a?)

S ER AB — A\ +a*)¢é(a) =0

and so,
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2a(A\? — 3a?)
A\t —a?)
In the same way, [e, pe](a) = e(pe)(A) — (we)e(A) can be computed by differen-
tiating (3.16) and (3.17) with respect to we and e, respectively. On the other hand,
[e, ve](a) = (Vepe — Vyee)(a) can be computed using (2.4). Hence, comparing the
two expressions of [e, pe](a), we have

(3.22) £(a) = AB.

3At —2)%a? + Tat) a(3\? + a?)
(3.23) N2 — ) AB + {W —1}¢(a) = 0.
Using (3.22), (3.23) becomes
(3.24) (3X8 + 7A%a? — 11X%a* — 20%a 4+ 8)\2%a® — 6a®)AB = 0.

We now prove that (3.24) implies AB = 0. In fact, if AB # 0, (3.24) gives

(3.25) 3A6 + 7Aa? — 110%a* — 20%a + 8M\%a® — 6a° = 0.

Since &£(A) = 0, we can use Lemma 2.5 and (3.25) to conclude that £(a) = 0. Hence,
(3.22) gives a(A\? — 3a?) = 0. But if a = 0, then e(a) = (¢e)(a) = 0 and if \? = 3a?,
using (3.10) and (3.11), we can conclude again that e(a) = (pe)(a) = 0. So, in both
cases (3.16) and (3.17) give B = 0 and A = 0, respectively, contrary to the assumption
AB # 0. Then, AB = 0 and (3.22) gives {(a) = 0. When A = 0, (3.15) and (3.17)
imply (¢e)(A) = (pe)(a) = 0. Since £(A) = 0, we also get [€, pe](A) = 0. On the other
hand, from (2.4) we obtain

[£; pe](N) = (A +a = 1e(X)

and so, (A4+a — 1)e(A) = 0, from which it follows easily e(\) = 0. In fact, if e(\) # 0,
then A +a — 1 = 0 and so, differentiating with respect to e, e(\) + e(a) = 0. This,
together with (3.10), gives a = 0, since e(A) # 0. In particular, e(a) = 0 and so, (3.10)
gives e(A) = 0, contrary to the assumption. So, e(A) = 0 and, from (3.14) and (3.16),
we also get B = 0 and e(a) = 0. In the same way, it is possible to show that when
B =0 we have e(\) = e(a) = 0 and also (¢pe)(\) = A = (¢e)(a) = 0. Thus, we proved
that A and a are constant on Us and hence, on U. Since A and a are continuous and
M is connected, we can conclude that A and a are globally constant on M.
So, using (2.4) we obtain

[6, (pe] = le, [(,06,5] = C26€, [57 6] = C3pe

where ¢; =2, ¢ =1—X—a and ¢cg = A+ 1 — a are constant. From this we may
conclude that (M,n,g) is isometric to a unimodular Lie group with a left-invariant
contact metric structure. In particular, M is homogeneous and so, Proposition 3.1
implies that M is a naturally reductive space O

Theorem 3.4 of [CPV] gives the classification of contact metric three-manifolds
with cyclic-parallel Ricci tensor, satisfying o = o(, -)|gern = 0. As it follows from the
proof of Theorem 1, on a contact metric three-manifold (M,n, g) with cyclic-parallel
Ricci tensor we always have A = B = 0, that is, 0 = 0. Therefore, the following
classification holds.
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Theorem 3.2 Let (M,n,g) be a three-dimensional contact metric manifold. Then
o 1is cyclic-parallel if and only if the manifold is locally isometric to a unimodular
Lie group G equipped with a left-invariant metric structure and satisfying one of the
following conditions, given in terms of T and the Webster scalar curvature W :

(i) 7 = 0 (that is, the structure is Sasakian). Then G is the Heisenberg group Hs
ifW=0,SU(Q2)if W>0o0rSL(2,R) if W <0;

(i) 7T#0 and W =1+ %. In this case G = SU(2);

(if)) 7 # 0 and W = 1 — LZL. Then G is SU(2) if |7l < 2v2, SL(2,R) if
II7Il > 2v2 or E(2) if ||7|| = 2V/2. (In this last case, g is a flat metric.)

4  The class B for contact metric three-manifolds

The curvature of a Riemannian manifold (M, g) is said to be harmonic if the diver-
gence of its curvature tensor is zero. A Riemannian manifold has harmonic curvature
if and only if its Ricci tensor satisfies

(4.1) (VxQ)Y = (VyQ)X,

for all tangent vector fields X and Y. Clearly, (4.1) is equivalent to (1.3), that is, a
Riemannian manifold has harmonic curvature if and only if it belongs to the class B.

Several authors studied contact metric manifolds with harmonic curvature ten-
sor. In [Pa], generalizing a previous result of [BaKo], the classification of (2n + 1)-
dimensional contact metric manifolds with harmonic curvature tensors and such that
¢ belongs to the (k, u)-nullity distribution has been given. The three-dimensional case
is particularly interesting because D. E. Blair and R. Sharma [BS] proved that a lo-
cally symmetric contact metric three-manifold is either flat or a Sasakian manifold of
constant sectional curvature +1. This result was extended in [G-AX1] to the broader
class of contact metric three-manifolds with harmonic curvature, assuming V¢7 = 0.

A three-dimensional Riemannian manifold (M, g) is conformally flat if and only if
its Ricci tensor satisfies

1
(4.2) Vigjk — vk@ij = Z((Sjkvi’r' — 5ijvk7“),

where {e;} is a local orthonormal frame on M. So, (M, g) has harmonic curvature if
and only if it is conformally flat and has constant scalar curvature. With respect to a
local p-basis, taking into account Proposition 2.2 and applying (4.2) to (2.7)-(2.15),
we can easily prove the following Lemma, which will be used in the proof of Theorems
2 and 3.

Lemma 4.1 Let (M,n,g) be a conformally flat non-Sasakian contact metric three-
manifold and {e; = £,e2 = e,es = pe} a local p-basis. If (1.4) holds with a constant
along the geodesic foliation generated by &, then
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(4.3) £(4) = ~Axe(N) + (2A —a +2)B — 7e(r),

@Y EB) =~ + (A +a-2)d - 1pe)(r)

(15)  eld) = s lpe)) + 4]+ 1€0),

(46)  (pe)(B) = Sy [e(N) + B+ 1(r)

(4.7) (pe)(A) = —da?X — 2'%\[6(/\) +B]-(\— 1)(% +2a\ — 3 +3)2),
(4.8) e(B) = —4a®) — %[((pe)()\) + A - (A + 1)(% — 2a\ — 3+ 3)\3),
(4.9) 2e(A—a) = (A—2a+3)B — ie(r),

(410)  2M(pe)(A +a) = (A +2a — 3)A — ~(pe)(r).

4

Before proving Theorem 2, we recall the following characterization of three-dimen-
sional homogeneous manifolds belonging to class B, given in [AGV].

Proposition 4.2 [AGV] A three-dimensional, connected, simply connected Riemann-
ian manifold is a symmetric space if and only if it is a homogeneous space whose Ricci
tensor is a Codazzi tensor.

We are now ready to give the
Proof of Theorem 2

Let (M,n,g) be a three-dimensional contact metric manifold whose Ricci tensor
satisfies (1.3). Suppose first that (M,n,g) is Sasakian. The scalar curvature r being
constant, M is locally @-symmetric [W] and so, it is homogeneous [Tk]. Therefore,
Proposition 4.2 implies that M is locally symmetric, from which it follows that M
has constant sectional curvature 0 or +1, as proved in [BS].

From now on, we assume that M is non-Sasakian. Then, (4.3)-(4.10) hold with
&(r) = e(r) = (pe)(r) = 0. We compute {e(A — a) differentiating (4.9) with respect to
¢. On the other hand, Proposition 2.2 gives {(\) = £(a) = 0 ans hence, {(A —a) = 0.
So, ¢e(A —a) = [€,e](A — a), which can be computed using (2.4). Comparing the two
expressions of {e(\ — a), we get

A—2a+3

(4.11) (A —a+1)(pe)(A—a) = T{—4)\(<pe)()\) + (22X +a —2)A}.
From (4.10) it follows

(4.12) (pe)(a) = 2224~ (pe) ().

Using (4.12), (4.11) becomes

(4.13) 4N(2X — 3a + 4)(pe)(\) = {3X% — 2(a — 1)\ — (2a — 3)*}A.

We differentiate (4.13) with respect to ¢ and we get



28 G.Calvaruso

(4.14) 4N(2) = 3a + )E(pe)(N) = {3X% — 2(a — 1)A — (2a — 3)?}£(A).

But &(pe)(N\) = [€, pe](A) can be computed using (2.4), while £(A) is given by (4.3).
From (4.14) it then follows

ANBX — (3a —4)\ — (a — 1)(3a — 4) — (2a — 3)*}e()) =
(2X —a+2){3)\* —2(a — 1)\ — (2a — 3)*} B.

On the other hand, differentiating (4.10) with respect to £ and taking into account
E(pe) (A +a) = €, pe](A +a) and (4.3), we get

2X(A+a—1e(A+a) = (A+2a—3){—4Xe(A) + (2\ —a + 2)B}
from which, using (4.9) to compute e(a), it follows

(4.15) 4N(2X + 3a — 4)e(N) = {3A\? +2(a — 1)\ — (2a — 3)*} B.

As we did for (4.13), we differentiate (4.15) with respect to £ and use (e)(\) = [, e](N)
and (4.4), to obtain

ANBX + (3a —4)A — (a—1)(3a — 4) — (2a — 3)*}(pe)(\) =
(2A +a —2){3)\? + 2(a — D)X — (2a — 3)?} A,

Thus, e(\) and B satisfy

UN2A + 3a — 4)e(\) = {3X? + 2(a — 1)A — (20 — 3)%}B,
(4.16) IN(5X2 — (3a — )X — (a—1)(3a — 4) — (2a— 3)2}e()) =
(22X —a+2){3\2 = 2(a — 1)\ — (2a — 3)?} B,

while (¢e)(\) and A satisfy

AN2X — 3a + 4)(pe)(A) = {322 — 2(a — 1)A — (2a — 3)*} 4,
(4.17) INBA? + (30 — )X — (a— 1)(3a — 4) — (2a — 3)2}e(\) =
(2\+ a — 2){3\2 + 2(a — DA — (2a — 3)} B.

To end the proof, we shall show that if e(A\) = B = 0, then (¢e)(A\) = A =0, and
conversely. So, if some of these functions are different from zero, then necessarily the
determinants of the matrices of both systems (4.16) and (4.17) must vanish. But we
prove that also in this case e(\) = B = 0 and so, (¢e)(A) = A = 0. Thus, in any case
we can conclude that e(A) = (pe)(A) = A= B =0 on M. Moreover, (4.9) and (4.10)
also give e(a) = (pe)(a) = 0, that is, A and a are globally constant on M. Then,
as in the proof of Theorem 1, we can conclude that M is locally homogeneous and
Proposition 4.2 implies that M is locally symmetric. So, M has constant sectional
curvature 0 or +1, as proved in [BS]. The following steps complete the proof.

Step 1: We prove that if e(A\) = B =0, then (pe)(A) = A =0, and conversely.
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Let e(A) = B = 0 and suppose that A # 0. Since also £(A\) = 0, using (2.4) we
have

0=1[5el(N) = A —a+1)(pe)(N).

So, either (pe)(A\) =0ora=X—-1.
If (pe)(A) =0, since A # 0, from (4.4) and (4.13) we get

2 +a—2=0,
3N —2(a— 1A - (2a—3)2 =0,

from which A = 1/3 and a = 4/3 follow. But this case can not occur. In fact, if
A =1/3 and a = 4/3, taking also into account B = 0, (4.8) gives

3 2 64
4.1 SA Y (Er—- ) =
(4.18) g T (3r—57) =0

Differentiating (4.18) with respect to e, since A # 0, we get (pe)(A) = 0. Then, using
3 128
A=1/3,a=4/3 and B =0, (4.7) gives r = 32/7. So, from (4.18), §A2 +—==0
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follows, which is impossible. Therefore, in this case A = 0.

If a =\+1, (4.10) becomes

(3A—1)

4.1 = A
(4.19) (pe)(A) 5

and (4.8) gives

(4.20) (TA — 1) A% + 40X° + 56* + 4(r — 2)A* +4(r — 6)A* = 0.

We differentiate (4.20) with respect to pe. Taking into account (4.19) and A # 0, we
obtain

(4.21) SA(TA — 1)(pe)(A) + 7(3X — 1) A% +
+(3X — 1){200\* + 22423 + 12(r — 2)A? +8(r — 6)A} = 0.

We can express (pe)(A) using (4.7). So, (4.21) becomes

(4.22) 7T(3X\ — 1) A% + A{96A* + 264\ + 8(r — 25) A% + 4(11r — T4)A} = 0.

Note that if A = 1/3, then a = A + 1 = 4/3 and we proved already that this leads
to a contradiction. So, 3\ — 1 # 0 and we can use (4.22) to compute A%. Comparing
(4.20) and (4.22) we then get

168\ — 8563 + 4(7r + 276)A\% — 4(61r + 88)A + 16(r — 8) = 0.
Lemma 2.5 then implies (pe)(A) = 0 from which it follows A = 0, as we already

proved. So, in any case A = 0, from which, using (4.17), it follows easily (¢e)(A) = 0.
In the same way, assuming (ye)(A) = A = 0, we obtain e(A) = B = 0.
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Step 2: We prove that e(A) = B = 0 also holds when the determinants of the matrices
of both systems (4.16) and (4.17) vanish.
Computing these determinants, after some easy but long computations we get

301 — (14a? — 37a + 24)A2 + (402 — 12 + 9)(4a? — 9a + 5) = 0,
(4.23)
3(2 — a)\? + 8a® — 38a% +59a — 3 = 0.

Note that if ¢ = 2, the last equation of (4.23) gives 32 = 0, which is impossible.
Therefore, a # 2 and we can use the second equation of (4.23) to express A2 by means
of a. Substituting in the first equation of (4.23), we get

(4.24) — 164’ + 676a* + 4338a> + 4698a” — 4464a = 0.

Using Lemma 2.5, from (4.24) we obtain e(a) = (ve)(a) = 0. Differentiating the
second equation of (4.23) by e and by e, we then get at once e(\) = 0 and (pe)(\) =
0, respectively. Next, from (4.9) and (4.10) it follows (A — 2a + 3)B = 0 and (\ +
2a — 3)A = 0, respectively. Since A # 0, if A —2a+ 3 = 0 then A+ 2a — 3 # 0 and
conversely. So, either A = 0 or B = 0. In any case, proceeding as in Step 1, we can
conclude that A = B = 0 and this ends the proof O

5 Conformally flat contact metric three-manifolds

Conformally flat contact metric manifolds have been studied by several authors. S.
Tanno [T] proved that a conformally flat K-contact space has constant sectional cur-
vature +1. In [O] it was proved that Sasakian conformally flat manifolds of dimension
> 5 have constant sectional curvature +1. Conformally flat contact metric manifolds
such that Q¢ = ¢Q have constant sectional curvature 0 or +1, as proved in [BKo].
For three-dimensional manifolds, this result was generalized in [GA-X2] where it was
proved that a conformally flat contact metric manifold with V¢7 = 0 has constant
sectional curvature 0 or +1. We now prove Theorem 3, which extends this last result.
Proof of Theorem 3

We assume M is non-Sasakian, since the Sasakian case has been already studied
in [T]. Then, Lemma 4.1 holds, with e(a) = (ve)(a) = 0, since a is constant. Using
(4.9) in (4.3) and (4.10) in (4.4), we get

(5.1) E(A)= -2 e(N)+(A+a—1)B
and
(5.2) E(B) = —2X(¢pe)(A) + (A —a+ 1)A,

respectively. We now compute [e, pe](A) = e(pe)(A) — (pe)e(A) by differentiating (4.9)
with respect to pe and (4.10) with respect to e, respectively. Moreover, [e, pe](A) =
(Vepe — Vyee)(A) can also be computed using (2.4). Comparing the two expressions
of [e, pe](N), we obtain
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(5.3) 20 D) + 2 AB + e, el(r) + 22 e +
At2a-3 eM(pe)(r) = e(r)(pe)(N) _
AL 20 Bey ) + " =0
Using (2.4), we get
e, el(r) = 55 1(0e)(A) + Ale(r) — 55 [6(A) + Bl(oe) () — 26(0)
and so, (5.3) becomes
Gy e+ 2P an e A2 ) AT g (1) +
1 1

sl = (PO Nelr) — 151 — e(N](we) () =0.

Using (4.9) and (4.10) to express e(r) and (pe)(r), from (5.4) it follows

a—2
2\

§(r) =0

and so, &(r) = 0, since a # 2.
Next, we differentiate (4.9) with respect to . Using (4.4), we get

~ e(r) ++()\—2a+3)()\—a+1)A.

Ee(A) = —(A —2a+ 3)(pe)(N) 3\ 2\

Since £(A\) = 0 (see Proposition 2.2), using (2.4), we also get

Ee(A) = [€e](A) = (A —a+1)(pe)(N).
Hence,
Ce(r) =4(A —2a+3)(A—a+1)A — 8A(2X — 3a + 4)(pe)(N),

that is, using (4.10) to express (pe)(A),

(5.5) Ce(r) = 4{—X?*—2(2a —3)A\+ (2a —3)(4a — 5)} A +
+(2X — 3a + 4)(pe)(r).
In the same way, we compute £(pe)(\) by differentiating (4.10) with respect to &
and we compare with £(pe)(A) = [, pe](A) = (A +a — 1) obtained using (2.4). So, we
have

E(pe)(r) =4(A+2a—3)(A+a—1)B —8A(2A + 3a — 4)e(N),

that is, using (4.9),
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(5.6) E(pe)(r) = 4{=A? +2(2a — 3)A + (2a — 3)(4a — 5)} B + (2\ + 3a — 4)e(r).

Since £(r) = 0, we also have

ge(r) = [€,€](r) = (A —a+1)(pe)(r)

and

£(pe)(r) = [, pel(r) = (A +a = De(r).
Comparing with (5.5) and (5.6), we then get

(5.7)  4{=X? —2(2a —3)A + (2a — 3)(4a — 5)}A + (A — 2a + 3)(pe)(r) =0

and

(5.8) 4{=X? +2(2a — 3)A + (2a — 3)(4a — 5)} B + (A + 2a — 3)e(r) = 0.

We now differentiate (5.7) with respect to &. Taking into account &(pe)(r) =
(A +a — 1)e(r), we obtain

4(3a — 4){—X\* — 2(2a — 3)A\ + (2a — 3)(4a — 5)} B +
+{(8 = 5a)\ + (—2a + 3)(3a — 4)}e(r) = 0.

Therefore, B and e(r) satisfy

4{-2N2 +2(2a — 3)A + (2a — 3)(4a — 5)} B + (A + 2a — 3)e(r) = 0,

(590 4(3a — 4){-\? — 2(2a — 3)A + (24 — 3)(da — 5)} B+

+{(8 = 5a)\ + (2a — 3)(3a — 4)}e(r) = 0.

If B =e(r) =0, then (4.9) implies e(A) = 0. We now prove that e(A) = 0 also holds
when (5.9) admits other solutions. In fact, in this case the determinant of the matrix
of the system (5.9) vanishes, that is,

4{—=X\? +2(2a — 3)A\ + (2a — 3)(4a — 5)}H{(8 — 5a)\ — (2a — 3)(3a — 4)} +
—4(3a —4) (A +2a — 3){-A\* — 2(2a — 3)A + (2a — 3)(4a — 5)} = 0.

from which it follows

(5.10) 4(2a —3)MN 4+ (2—a)A+ (2a—3)(1 —a)} =0

Note that if a = 3/2, then (5.8) gives e(r) = 4\B which, together with (4.9), gives at
once e(\) = 0. If a # 3/2, using Lemma 2.5, from (5.10) it follows again e(\) = 0.

A very similar argument also shows that (pe)(\) = 0 on M. Therefore, A is locally
constant and hence, M being connected, it is globally constant on M.

Using the constancy of A, we now prove that A and B are constant on M. On
the one hand, we compute [£,€](A) = Ee(A) — e£(A) by differentiating (4.3) and (4.5)
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with respect to e and &, respectively. On the other hand, using (2.4) and (4.7), we can
compute [€,e](A) = (Vee — V&) (A). Comparing the two expressions, we then obtain

(5.11) A% + B2 + 6\ + (r + 44> 4+ 6a — 12)A% + (a — 1)(r — 6) = 0.

We now differentiate (5.11) with respect to £&. We take into account the constancy of A
and a and ¢(r) = 0 and we use (4.3) and (4.4) to express £(A) and £(B), respectively.
So, we get 4AAB = 0, that is, AB = 0.

If A=0, (5.1) gives (A\+a — 1)B = 0. Suppose B # 0. From (5.2) and (4.6) we
get £(B) = 0 and (pe)(B) = 0. Differentiating (4.7) with respect to e, we obtain
(5.12) ?e(B) + A 5 !
from which, using B # 0 and (4.3), it follows e(B) = 2A(A—1)(3A+1). Comparing with
(4.8) and differentiating with respect to e, we get 2tLe(r) = 0. Note that a = 1—X # 2
and so, A # —1. Thus, e(r) = 0 and (5.12) gives e(B) = 0, that is, B is constant. In
the same way, assuming B = 0, we get that A is constant on M. In any case, we have

e(r) =0,

Eel= (v —atDpe, lepd =2~ cet Dge, [pe.l]= (a1,

2\
whith A, a, A and B constant on M. Therefore, M is locally homogeneous, since it is
locally isometric to a Lie group. Hence, M is locally symmetric [Tg] and, according
to [BS], we conclude that M has constant sectional curvature 0 or +1 O
Remark 5.1. In Theorem 3 we assumed a # 2, but this assumption is not very restric-
tive, because there do not exist conformally flat locally homogeneous non-Sasakian
contact metric three-manifolds with ¢ = 2. In fact, if (M,7,g) is such a manifold,
then (4.9) and (4.10) give (A—1)B = 0 and (A+1)A = 0, respectively. If B = 0, (4.4)
also gives A = 0 and conversely, if A =0, then B = 0 by (4.3). Thus, A = B =0 and,
comparing (4.7) and (4.8), we eventually get A + 8 = 0, which cannot occur.
Remark 5.2. Even if the conformal flatness implies the constancy of the sectional
curvature for many classes of contact metric manifolds, there also exist examples of
conformally flat contact metric three-manifolds which do not have constant sectional
curvature. These examples were constructed by D.E. Blair in [B2]. We now show that
such examples satisfy Ve7 = 2ate with {(a) = 0. On the one hand, this implies that
Theorem 2 cannot be extended considering conformal flatness instead of harmonicity
of the curvature. On the other hand, this also means that Theorem 3 is somehow the
"maximal” result which can be proved in this direction for conformally flat contact
metric manifolds.

We consider IR* with cylindrical coordinates (r,0,z). Let  be the contact form
on IR? given by

1
n= §(ﬂrd0 +vdz),

where 8 and 7 are smooth functions depending only on r. 8 and +y satisfy

{ BB =B+,
—7' = VB2 + .
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Moreover, 8 # 0 and v # 0 [B2].
The Riemannian metric

2s

g= %(er +r2d0* + dz?),

where e?® = 82 + 42, is a conformally flat metric associated to n. The tensor ¢ is
given by

0 rfy —fp
(5.13) p=e>| —Ly 0 0 :

B0 0
where f = e®. The characteristic vector field is

_ —2s B 9 2

(5.14) &=2e (r80+ 5% )-

For more details, see [B2]. A vector field X belongs to Kern if and only if it is

orthogonal to &. Therefore, if X € Kern, then X = X1% %% — —X2 g for some

real functions X; and X, on IR®.
We now compute the Christoffel coefficients of the Riemannian connection of
(IR?, g) with respect to the basis {e; = %,62 = %,63 = 8%}. Using the well-known

formula
1
Iy = 3 Xr:{aigjr +8jgir — Orgij tg™",

where g;; are the coefficients of g with respect to the basis {e;} and g% = (g;;)7!,
after some easy computations we obtain

\v4 0 _ 0 \vi 0 _ \v4 0 10
aar%r_sar’ a 36% -G +8)80’a o % — 2o
— (1 ! _ —
(5.15) Vaagag—(;;s)—ae, Va 7 = —(r+r’s) 5, Va 85_0 .
v — o \vi _ \V4 _ !
aazaT_S 20 838 —0, aa 5 — Sar'

We now compute the tensor h. Since hé = 0, we get

B0 0
“h(gg) +vh(5

Next, we compute V o £ using (2.1) and (5.17). We then get

) =0.

0 0
_ ,—2s . —2s il
V€= i — e ().
On the other hand, taking into account (5.18) and (5.19), we also have

, 0

E=—2e"%ys prs

Comparing the previous expressions of V 2 &, we obtain
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0, 27ys' 0

Therefore, % is an eigenvector of h. Using (5.17), we finally obtain

0 _s, v O 0
¥, = ¢ (—;% +3&)-
So, {{,e = 26’5%,@6 = 26:23(—%% + Ba%)} is a @-basis for (IR®,7,g). Note that
2

he = Xe, with A = 1+ ﬁzzfa
Z(X) =0 and so, by (5.18), £(A) = 0.

From (2.4) it follows that a satisfies Vee = —aype. Thus, we can use (5.19) to
compute a. We get

. Since 3, v and s only depend on r, we have %()\) =

281 N 2vs" 2By
_f_y(;+s)__f[3 T opeds’

As we noted for A, £(a) = 0, because 3, v and o only depend on r. Therefore, we can
conclude that (1R3, 7,9) is a conformally flat contact metric three-manifold satisfying
VeT = 2aty (since £(\) = 0, see Proposition 2.2), with ¢(a) = 0. However, (IR?,7, g)
is not locally homogeneuo s [B2] and so, it does not have constant sectional curvature.
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