On Finslerian Hypersurfaces Given by β -Changes

Masashi Kitayama

Abstract

In 1984 C.Shibata has dealt with a change of Finsler metric which is called a β -change of metric [12]. For a β -change of Finsler metric, the differential oneform β play very important roles. In 1985 M.Matsumoto studied the theory of Finslerian hypersurfaces [6]. In there various types of Finslerian hypersurfaces are treated and they are called a hyperplane of the 1st kind, a hyperplane of the 2nd kind and a hyperplane of the 3rd kind.

The purpose of the present paper is to give some relations between the original Finslerian hypersurface and another Finslerian hypersurface given by the β -change of Finsler metrics under certain conditions.

The terminology and notations are referred to the Matsumoto's monograph [8].

Mathematics Subject Classification: 53C60, 53B40 Key words: Finslerian hypersurface, hyperplane, curvature, Finsler metric

1 Preliminaries

Let M^n be an *n*-dimensional smooth manifold and $F^n = (M^n, L)$ be an *n*-dimensional Finsler space equipped with a fundamental function L(x, y) on M^n . Then the metric tensor $g_{ij}(x, y)$ and Cartan's *C*-tenson $C_{ijk}(x, y)$ are given by

(1.1)
$$g_{ij} = (\partial^2 L^2 / \partial y^i \partial y^j) / 2, \quad C_{ijk} = (\partial g_{ij} / \partial y^k) / 2,$$

and we can introduce in F^n the Cartan connection $C\Gamma = (F_j{}^i{}_k, N^i{}_j, C_j{}^i{}_k)$. A hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametri-

A hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametrically represented by the equation $x^i = x^i(u^{\alpha})$, where u^{α} are Gaussian coordinates on M^{n-1} and Greek indices run from 1 to n-1. Here, we shall assume that the matrix consisting of the pojection factors $B_{\alpha}{}^i = \partial x^i / \partial u^{\alpha}$ is of rank n-1. The following notations are also employed : $B_{\alpha\beta}^i := \partial^2 x^i / \partial u^{\alpha} \partial u^{\beta}$, $B_{0\beta}^i := v^{\alpha} B_{\alpha\beta}^i$, $B_{\alpha\beta...}^{ij...} := B_{\alpha}^i B_{\beta\beta}^j \dots$ If the supporting element y^i at a point (u^{α}) of M^{n-1} is assumed to be tangential to M^{n-1} , we may then write $y^i = B_{\alpha}^i(u)v^{\alpha}$, so that v^{α} is thought of as the supporting element of M^{n-1} at the point (u^{α}) . Since the function $\underline{L}(u,v) := L(x(u), y(u,v))$ gives rise to a Finsler metric of M^{n-1} , we get an (n-1)-dimensional Finsler space $F^{n-1} = (M^{n-1}, \underline{L}(u,v))$.

Balkan Journal of Geometry and Its Applications, Vol.7, No.2, 2002, pp. 49-55. © Balkan Society of Geometers, Geometry Balkan Press 2002.

M. Kitayama

At each point (u^{α}) of F^{n-1} , the unit normal vector $N^{i}(u, v)$ is defined by

(1.2)
$$g_{ij}B^i_{\alpha}N^j = 0, \quad g_{ij}N^iN^j = 1.$$

If (B_i^{α}, N_i) is the inverse matrix of (B_{α}^i, N^i) , we have

(1.3)
$$B^{i}_{\alpha}B^{\beta}_{i} = \delta^{\beta}_{\alpha}, \quad B^{i}_{\alpha}N_{i} = 0, \quad N^{i}B^{\alpha}_{i} = 0, \quad N^{i}N_{i} = 1,$$

and further

(1.4)
$$B^i_{\alpha} B^{\alpha}_j + N^i N_j = \delta^i_j.$$

Making use of the inverse matrix $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get $B_i^{\alpha} = g^{\alpha\beta}g_{ij}B_{\beta}^{j}$, $N_i = g_{ij}N^j$.

For the induced Cartan connection $IC\Gamma = (N^{\alpha}_{\beta}, F_{\beta}{}^{\alpha}{}_{\gamma}, C_{\beta}{}^{\alpha}{}_{\gamma})$ on F^{n-1} , the second fundamental *h*-tensor $H_{\alpha\beta}$ and the normal curvature vector H_{α} are given by

(1.5)
$$\begin{aligned} H_{\alpha\beta} &:= N_i (B^i_{\alpha\beta} + F_j{}^i_k B^{j\,k}_{\alpha\beta}) + M_\alpha H_\beta, \\ H_\alpha &:= N_i (B^i_{0\alpha} + N^i_j B^j_\alpha), \end{aligned}$$

where $M_{\alpha} := C_{ijk} B^i_{\alpha} N^j N^k$ and $B^i_{0\alpha} = B^i_{\beta\alpha} v^{\beta}$.

Contracting $H_{\beta\alpha}$ by v^{β} , we immediately get

(1.6)
$$H_{0\alpha} := H_{\beta\alpha} v^{\beta} = H_{\alpha}$$

Further we have put

(1.7)
$$M_{\alpha\beta} := C_{ijk} B^{ij}_{\alpha\beta} N^k, \quad Q_{\alpha\beta} := C_{ijk \ |0} B^{ij}_{\alpha\beta} N^k, \quad Q_{\alpha\beta\gamma} := C_{ijk|0} B^{ijk}_{\alpha\beta\gamma}$$

The Gauss equation with respect to $IC\Gamma$ is written as

(1.8)
$$R_{\alpha\beta\gamma\delta} = R_{ijkh}B^{ijkh}_{\alpha\beta\gamma\delta} + P_{ijkh}(B^k_{\gamma}H_{\delta} - B^k_{\delta}H_{\gamma})B^{ij}_{\alpha\beta}N^h + (H_{\alpha\gamma}H_{\beta\delta} - H_{\alpha\delta}H_{\beta\gamma}).$$

2 Hypersurfaces given by the β -change of a Finsler metric

Let $F^n = (M^n, L)$ be an *n*-dimensional Finsler space with a fundamental function L(x, y). For a differential one-form $\beta(x, dx) = b_i(x)dx^i$ on M^n , we shall consider a change of Finsler metric which is defined by $L(x, y) \longrightarrow \bar{L}(x, y) = f(L(x, y), \beta(x, y))$, where $f(L, \beta)$ is a positively homogeneous function of L and β of degree one. This is called a β -change of the metric. Then we can introduce in $\bar{F}^n = (M^n, \bar{L})$ the Cartan connection $C\bar{\Gamma} = (\bar{F}_j{}^i{}_k, \bar{N}{}^i{}_j, \bar{C}_j{}^i{}_k)$ from a β -change of the metric.

For the later use, we prepare here the following two lemmas. Lemma 1 (Shibata[12]). If the covariant vector $b_i(x)$ is parallel with respect to the

Cartan connection $C\Gamma$ on F^n , the difference tensor $D_j{}^i{}_k$ (:= $\bar{F}_j{}^i{}_k - F_j{}^i{}_k$) vanishes. This lemma leads us to $\bar{N}_j^i = N^i{}_j$ from $D^i{}_j \equiv \bar{N}_j^i - N^i{}_j = D_j{}^i{}_k y^k = D_j{}^i{}_0$.

Lemma 2 (Shibata[12]). Assume that the covariant vector $b_i(x)$ is parallel with respect to the Cartan connection $C\Gamma$ on F^n . Then the h-curvature tensor $\bar{R}_h{}^i{}_{jk}(x,y)$

of \overline{F}^n , obtained from F^n by the β -change, vanishes if and only if the h-curvature tensor $R_h^i{}^i{}_{ik}(x,y)$ of F^n vanishes.

We now consider a Finslerian hypersurface $F^{n-1} = (M^{n-1}, \underline{L}(u, v))$ of F^n and another Finslerian hypersurface $\overline{F}^{n-1} = (M^n, \underline{L}(u, v))$ of the \overline{F}^n given by the β change. Let N^i be a unit normal vector at each point of F^{n-1} , and (B^{α}_i, N_i) be the inverse matrix of (B^i_{α}, N^i) . The functions $B^i_{\alpha}(u)$ may be considered as components of *n*-1 linearly independent vectors tangent to F^{n-1} and they are invariant under the β -change. And so a unit normal vector $\overline{N}^i(u, v)$ of \overline{F}^{n-1} is uniquely determined by

(2.1)
$$\bar{g}_{ij}B^i_{\alpha}\bar{N}^j = 0, \qquad \bar{g}_{ij}\bar{N}^i\bar{N}^j = 1.$$

The fundamental tensor $\bar{g}_{ij} = (\partial^2 \bar{L}^2 / \partial y^i \partial y^j)/2$ of the Finsler space \bar{F}^n given by a β -change is as follows [12]:

(2.2)
$$\bar{g}_{ij}(x,y) = pg_{ij}(x,y) + p_0b_ib_j + p_{-1}(b_iy_j + b_jy_i) + p_{-2}y_iy_j$$

where we put $p = ff_L/L$

(2.3)
$$p_0 = f f_{\beta\beta} + f_{\beta}^2, \qquad p_{-1} = (f f_{L\beta} + f_L f_\beta)/L, \\ p_{-2} = (f f_{LL} + f_L^2 - f f_L/L)L^2,$$

and subscripts L, β denote partial differentiations by L, β respectively. Now contracting (1.2) by v^{α} , we immediately get

$$(2.4) y_i N^i = 0.$$

Further contracting (2.2) by $N^i N^j$ and paying attention to (1.2) and (2.4), we have

(2.5)
$$\bar{g}_{ij}N^iN^j = p + p_0(b_iN^i)^2.$$

Then we obtain

(2.6)
$$\bar{g}_{ij}(\pm N^i/\sqrt{p+p_0(b_iN^i)^2})(\pm N^j/\sqrt{p+p_0(b_iN^i)^2}) = 1,$$

provided $p + p_0(b_i N^i)^2 > 0$. Therefore we can put

(2.7)
$$\bar{N}^i = N^i / \sqrt{p + p_0 (b_i N^i)^2}$$

where we have chosen the sign "+" in order to fix an orientation.

Using (1.2) and (2.4), the first condition of (2.1) gives us

(2.8)
$$(b_i N^i)(p_0 b_j B^j_\alpha + p_{-1} y_j B^j_\alpha) = 0.$$

Now, assuming that $p_0 b_j B^j_{\alpha} + p_{-1} y_j B^j_{\alpha} = 0$ and contracting this by v^{α} , we find $p_0\beta + p_{-1}L^2 = 0$. By (2.3) this equation lead us to $ff_{\beta} = 0$, where we have used $Lf_{L\beta} + \beta f_{\beta\beta} = 0$ and $Lf_L + \beta f_{\beta} = f$ owing to the homogeneity of f. Thus we have $f_{\beta} = 0$ because of $f \neq 0$. This fact means $\bar{L} = f(L)$ and contradicts the definition of a β -change of metric. Consequently (2.8) gives us

$$b_i N^i = 0.$$

Therefore (2.7) is rewritten as

(2.10)
$$\bar{N}^i = N^i / \sqrt{p} \qquad (p > 0),$$

and then it is clear \bar{N}^i satisfies (2.1). Summarizing the above, we obtain **Theorem 2.1.** For a field of linear frame $(B_1^i, \ldots, B_{n-1}^i, N^i)$ of F^n , there exists a field of linear frame $(B_1^i, \ldots, B_{n-1}^i, \bar{N}^i = N^i/\sqrt{p})$ of the \bar{F}^n given by the β -change such that (2.1) is satisfied along \bar{F}^{n-1} , and then we get (2.9).

The quantities \bar{B}_i^{α} are uniquely defined along \bar{F}^{n-1} by

(2.11)
$$\bar{B}^{\alpha}{}_{i} = \bar{g}^{\alpha\beta} \bar{g}_{ij} B_{\beta}{}^{j}$$

where $(\bar{g}^{\alpha\beta})$ is the inverse matrix of $(\bar{g}_{\alpha\beta})$.

Let $(\bar{B}_i^{\alpha}, \bar{N}_i)$ be the inverse matrix of $(B_{\alpha}^i, \bar{N}^i)$, and then we have

(2.12)
$$B^{i}_{\alpha}\bar{B}^{\beta}_{i} = \delta^{\beta}_{\alpha}, \ B^{i}_{\alpha}\bar{N}_{i} = 0, \ \bar{N}^{i}\bar{B}^{\alpha}_{i} = 0, \ \bar{N}^{i}\bar{N}_{i} = 1,$$

and further

$$(2.13) B^i_\alpha \bar{B}^\alpha_j + \bar{N}^i \bar{N}_j = \delta^i_j$$

We also get $\bar{N}_i = \bar{g}_{ij}\bar{N}^j$, that is,

(2.14)
$$\bar{N}_i = \sqrt{p}N_i.$$

If each path of a hypersurface F^{n-1} with respect to the induced connection is also a path of the ambient space F^n , then F^{n-1} is called a hyperplane of the first kind. A hyperplane of the 1st kind is characterized by $H_{\alpha} = 0$.

From (1.5), (2.14) and Lemma 2, we have $\bar{H}_{\alpha} = \sqrt{p}H_{\alpha}$. Thus we obtain **Theorem 2.2.** Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hypersurface F^{n-1} is a hyperplane of the 1st kind, if and only if the hypersurface \bar{F}^{n-1} is a hyperplane of the 1st kind.

If each *h*-path of a hypersurface F^{n-1} with respect to the induced connection is also an *h*-path of the ambient space F^n , then F^{n-1} is called a hyperplane of the second kind. A hyperplane of the 2nd kind is characterized by $H_{\alpha\beta} = 0$.

From (1.5), (1.6), (2.14) and Lemma 2, we obtain

Theorem 2.3 Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hypersurface F^{n-1} is a hyperplane of the 2nd kind, if and only if the hypersurface \overline{F}^{n-1} is a hyperplane of the 2nd kind.

As to the torsion tensor \bar{C}_{ijk} of \bar{F}^n , Shibata [12] gave:

(2.15)
$$\bar{C}_{ijk} = pC_{ijk} + p_{-1}(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j)/2 + p_{0\beta}m_im_jm_k/2,$$

where we put

$$(2.16) m_i = b_i - \beta y_i / L^2.$$

Using (2.4) and (2.9), we easily get

(2.17)
$$m_i N^i = 0.$$

As for the angular metric tensor $h_{ij} = g_{ij} - l_i l_j$, (1.2) and (2.4) yield

$$h_{ij}B^i_{\alpha}N^j = 0.$$

Contracting (2.15) by $B_{\alpha\beta}^{ij}N^k$, (2.17) and (2.18) lead to

(2.19)
$$\bar{C}_{ijk}B^{ij}_{\alpha\beta}N^k = pC_{ijk}B^{ij}_{\alpha\beta}N^k.$$

On using (1.7) and (2.10), (2.19) is rewritten as

(2.19)
$$\bar{M}_{\alpha\beta} = \sqrt{p}M_{\alpha\beta}.$$

If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1} , then F^{n-1} is called a hyperplane of the third kind. A hyperplane of the 3rd kind is characterized by $H_{\alpha\beta} = M_{\alpha\beta} = 0$.

Thus, from Theorem 2.3 and (2.20), we obtain

Theorem 2.4. Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hypersurface F^{n-1} is a hyperplane of the 3rd kind, if and only if the hypersurface \overline{F}^{n-1} is a hyperplane of the 3rd kind.

Taking account of Lemma 1, as to $B\Gamma$ we have [6]

$$(2.21) G_{\beta}{}^{\alpha}{}_{\gamma} = B_i^{\alpha} A_{\beta}^i$$

where $A^i_{\beta\gamma} := B^i_{\beta\gamma} + G^{\ i}_{j\ k} B^{jk}_{\beta\gamma}$. Now using (1.4), then (2.21) becomes

(2.22)
$$A^i_{\beta\gamma} = B^i_\delta G_\beta{}^\delta{}_\gamma + N^i N_h A^h_{\beta\gamma}$$

Since Lemma 1 leads to $\bar{A}^i_{\beta\gamma} = A^i_{\beta\gamma}$, we immediately get

(2.23)
$$\bar{G}^{\alpha}_{\beta\gamma} = \bar{B}^{\alpha}_i A^i_{\beta\gamma}.$$

On substituting (2.22) in (2.23) and paying attention to (2.10) and (2.12), we find $\bar{G}_{\beta}{}^{\alpha}{}_{\gamma} = G_{\beta}{}^{\alpha}{}_{\gamma}$. Thus we obtain

Theorem 2.5. Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hyperplane F^{n-1} of the 1st kind is a Berwald space, if and only if the hyperplane \overline{F}^{n-1} of the 1st kind is a Berwald space.

Paying attention to Lemma 1, as to $C\Gamma$ the (v)hv-torsion tensor is written as

$$(2.24) P^{\alpha}{}_{\beta\gamma} = B^{\alpha}_{i} K^{i}_{\beta\gamma}$$

where $K^i_{\beta\gamma} := P^i_{jk} B^{jk}_{\beta\gamma}$. On using (1.4), then (2.24) becomes

(2.25)
$$K^{i}_{\beta\gamma} = B^{i}_{\delta} P^{\delta}{}_{\beta\gamma} + N^{i} N_{h} K^{h}_{\beta\gamma}.$$

Lemma 2 gives us $\bar{K}^i_{\beta\gamma} = K^i_{\beta\gamma}$, and then we immediately obtain

(2.26)
$$\bar{P}^{\alpha}_{\beta\gamma} = \bar{B}^{\alpha}_{i} K^{i}_{\beta\gamma}$$

On substituting (2.25) in (2.26) and taking account of (2.10) and (2.12), we find $\bar{P}^{\alpha}_{\beta\gamma} = P^{\alpha}{}_{\beta\gamma}$. Thus we obtain

Theorem 2.6. Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hyperplane F^{n-1} of the 1st kind is Landsberg, if and only if the hyperplane \overline{F}^{n-1} of the 1st kind is Landsberg.

From (1.8) the Gauss equation of hyperplane of the 1st kind is rewritten as

(2.27)
$$R_{\alpha\beta\gamma\delta} = R_{ijkh} B^{ijkh}_{\alpha\beta\gamma\delta} + (H_{\alpha\gamma}H_{\beta\delta} - H_{\alpha\delta}H_{\beta\gamma}).$$

Then Lemma 2 and $\bar{H}_{\alpha\beta} = \sqrt{p}H_{\alpha\beta}$ give us the following.

Theorem 2.7. Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then the curvature tensor $R_{\alpha\beta\gamma\delta}$ of a hyperplane F^{n-1} of the 1st kind of F^n with $R_{ijkh} = 0$ vanishes, if and only if the curvature tensor $\bar{R}_{\alpha\beta\gamma\delta}$ of the hyperplane \bar{F}^{n-1} of the 1st kind of \bar{F}^n with $\bar{R}_{ijkh} = 0$ vanishes.

Further Theorem 2.5 and Theorem 2.7 immediately give

Theorem 2.8. Let $b_i(x)$ be parallel with respect to $C\Gamma$ on F^n . Then a hyperplane F^{n-1} of the 1st kind of F^n with $R_{ijkh} = 0$ is a locally Minkowski space, if and only if the hyperplane \overline{F}^{n-1} of the 1st kind of \overline{F}^n with $\overline{R}_{ijkh} = 0$ is locally Minkowskian.

References

- P.L.Antonelli, R.S.Ingarden and M.Matsumoto, *The theory of sprays and Finsler spaces with applications in physics and biology*, Kluwer Academic Publishers, Dordrecht, 1993.
- [2] G.M.Brown, A study of tensors which characterize a hypersurface of a Finsler space, Canad. J.Math. 20(1968), 1025-1036.
- [3] S.Kikuchi, On the theory of subspace, Tensor, N.S., 2(1952), 67-79.
- [4] M.Kitayama, A.Sato and C.Shibata, The second fundamental H-tensor of a Hypersurface of Finsler spaces, J.Hokkaido Univ. of Education, 37-1(1986), 17-21.
- [5] M.Kitayama, On a hypersurface of Finsler spaces with $R^i_{ohk} = 0$, J. Hokkaido Univ. of Education, 40-1(1989), 23-26.
- [6] M.Matsumoto, The induced and intrinsic connections of a hypersurface and Finslerian projective geometry, J.Math. Kyoto Univ., 25(1985), 107-144.
- [7] M.Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
- [8] M.Matsumoto, Theory of Finsler spaces with (α, β) -metric, Reports on Math. Phys., 31(1992), 43-83.
- [9] R.Miron and M.Anastasiei, The geometry of Lagrange spaces. Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994.
- [10] H.Rund, The differential geometry of Finsler spaces, Springer Verlag, Berlin, 1959.
- [11] C.Shibata, U.P.Singh and A.K.Singh, On induced and intrinsic theories of hypersurface of Kropina spaces, J.Hokkaido Univ. of Education, 34-1(1983).

[12] C.Shibata, On invariant tensors of β-change of Finsler metrics, J.Math. Kyoto Univ., 24(1984), 163-188.

Department of Mathematics, Kushiro Campus Hokkaido University of Education, Kushiro, Hokkaido 085-8580, JAPAN