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Abstract

We prove that the basic manifold of a submersion from a QR-hypersurface
of a quaternionic Kähler manifold to an almost quaternionic Hermitian mani-
fold is quaternionic Kähler. Then we prove some results involving the sectional
curvatures.
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Introduction

Real hypersurfaces of quaternionic space forms have been studied by many authors
([1], [2], [3], [4], [5], [11], [12]) under conditions concerning their shape operator.
It is known that real hypersurface of quaternionic Kähler manifolds are not CR-
hypersurface in general ([2]).
The study of CR-submanifolds of a quaternionic Kähler manifolds has been carried
out in the paper [1]. S. Kobayashi considered the similarity between the total space of a
Riemannian submersion and a CR-submanifold of a Kähler manifold in terms of distri-
butions ([9]). In this paper we study Riemannian submersions from QR-hypersurface
of a quaternionic Kähler manifold over an almost quaternionic Hermitian manifold
(second section). In the last section we study some curvature properties induced on
the basic manifold by the submersion.

1 Hypersurfaces of quaternionic Kähler manifolds

We say that a 4(m+1)− dimensional manifold M̃ with a metric g̃ is a quaternionic
Kähler manifold (m ≥ 1) if there exists a 3−dimensional vector bundle V of tensors
of type (1, 1) on M̃ satisfying the following conditions:
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(a) In any coordinate neighborhood Ũ on M̃ there is a local basis of almost Her-
mitian structures {Ja, g̃}, such that J 2

a = −Id, a ∈ {1, 2, 3} and Ja ◦ Jb =
−Jb ◦ Ja = Jc for any cyclic permutation (a, b, c) of (1, 2, 3).

(b) For any local section ϕ of V and any tangent vector X to M̃ , ∇̃Xϕ is also a
local section in V , where ∇̃ denotes the Levi-Civita connection of g̃.

Condition (b) is equivalent to the following:

(b′) There exist local 1 − forms ωab, a, b ∈ {1, 2, 3} on Ũ such that ωab + ωba = 0,
and

∇̃xJa = ωab(x)Jb + ωac(x)Jc(1)

for any cyclic permutation (a, b, c) of (1, 2, 3).
Given two local bases {Ja} and {J ′a} of V defined on coordinate neighborhoods

Ũ and Ũ ′ such that Ũ ∩ Ũ ′ 6=∅, we have on Ũ ∩ Ũ ′:

J ′a =
3∑

b=1

CabJb(2)

where [Cab] is an element of the special orthogonal group SO(3) (see [8]).
Let M be an orientable hypersurface of M̃ and ξ a unit normal field defined on M .
On Ũ ξa= −Ja(ξ), a ∈ {1, 2, 3} defines a tangent vector field to M . Similarly, we
define ξ′a on Ũ ′ and on Ũ ∩ Ũ ′ 6=∅ we have:

ξ′a =
3∑

b=1

Cabξb, b ∈ {1, 2, 3}(3)

so that one obtains a distribution V on M which is locally represented by {ξa},
1 ≤ a ≤ 3, on Ũ . Let H be the orthogonal complementary distribution to V with
respect to the Riemannian metric g induced by g̃ on M .
We see that for each x ∈ M , Hx is Ja − invariant, but Vx is not an anti-invariant
subspace of TxM̃ with respect Ja, a = {1, 2, 3}. It is easy see that Ja(Vx) = TxM⊥,
x ∈ M , where TxM⊥ is the normal space at x to the hypersurface M in M̃ . In general,
when the previous conditions are satisfied, we say that M is a QR − hypersurface
of M̃(see [3]). Now, let B be the second fundamental form of M in M̃ . Then, for any
E, F ∈ Γ(TM) we have the Gauss formula

∇̃EF = ∇EF + B(E,F ),(4)

where ∇̃ and ∇ are the Levi-Civita connections on M̃ and M , respectively.
If L denotes the fundamental tensor of Weingarten with respect to ξ, we have the
Weingarten formula

∇̃Eξ = −L(E),(5)

and for any E, F∈ Γ(TM) the following formula

g(L(E), F ) = g(B(E, F ), ξ)(6)
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holds.

The integrability of the distributions V and H on M has been studied by A.
Bejancu ([2]).
We recall that the vertical distribution V is integrable if and only if

B(U,X) = 0(7)

for any U ∈ Γ(V) and X ∈ Γ(H).
If (7) is satisfied, we say that M is a mixed geodesic QR− hypersurface of M̃ .

2 Riemannian submersions of QR-hypersurfaces

Let M be a mixed geodesic QR-hypersurface of a quaternionic Kähler manifold M̃ .
We denote by (M ′, g′,J ′a), a ∈ {1, 2, 3}, an almost quaternionic Hermitian manifold
( i.e. satisfying the condition (a)). We say that a Riemannian submersion π: M → M ′

is a QR-submersion if the following conditions are satisfied:

i) V is the kernel of π∗;

ii) for each x ∈ M , π∗ : Hx → Tπ(x)M
′ is an isometry with respect to each complex

structure of Hx and Tπ(x)M
′, where Tπ(x)M

′ denotes the tangent space to M ′

at π(x).

As in the paper [10], the letters U, V, W,W ′ will always denote vertical vector fields
and X, Y, Z, Z ′ horizontal vector fields. A horizontal vector field X on M is said to
be basic if it is π − related to a vector field X ′ on M ′.
We denote by T and A O’Neill’s fundamental tensors (see [13], [11]).

Lemma 2.1 Let X and Y be basic vector fields on M . Then the following conditions
hold:

a) The horizontal component h[X, Y ] of [X, Y ] is a basic vector field and π∗h[X,Y ] =
[X ′, Y ′] ◦ π;

b) h(∇XY ) is basic vector field corresponding to ∇′X′Y ′ where ∇ and ∇′ are the
the Levi-Civita connections on M and M ′, respectively;

c) [X, U ] ∈ Γ(V), for any vertical field U ∈ Γ(V);

where h denotes the horizontal component of a vector E on M .

We define a skew-symmetric tensor field C by

∇̃xY = h∇̃xY + C(X, Y )(1)

for all X, Y ∈ Γ(H).
The second fundamental form B of M in M̃ is:
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B(E, F ) = ∇̃EF −∇EF(2)

for all E,F ∈ Γ(TM).

Theorem 2.2 Let M be a mixed geodesic QR-hypersuface of a quaternionic Kähler
manifold M̃ . If π : M → M ′ is a QR-submersion of M on an almost quaternionic
Hermitian manifold, then M ′ is a quaternionic Kähler manifold.

Proof. By using Gauss formula and (1) we obtain

h∇XJaY − Ja(h∇XY ) = ωab(X)JbY + ωac(X)JcY,(3)

for any local basic vector fields X, Y on M and for any cyclic permutation (a, b, c) of
(1, 2, 3). Then we can define 1− forms ω′ab on M ′ by

ω′ab(X
′) ◦ π = ωab(X), a, b, c ∈ {1, 2, 3},(4)

for any local vector field X ′ on M ′ and X a real basic vector field on M such that
π∗X = X ′.
On the other hand, by the definition of a QR-submersion we have

π∗ ◦ Ja = J ′a ◦ π∗.(5)

Using Lemma 2.1, from (3)-(5) we obtain

h(∇′XJ ′a)Y ′ = ω′ab(X
′)J ′bY ′ + ω′ac(X

′)J ′cY ′,

where ∇′ is the Levi-Civita connection on M ′ and X ′, Y ′ any local vector fields on
M ′. We conclude that (M ′,J ′a, g′) is a quaternionic Kähler manifold. 2

3 Totally umbilical QR-hypersurfaces

In the sequel we shall denote by 〈 · , · 〉 the scalar product induced on the tangent
spaces of M and M̃ by the Riemannian metric g. We recall that a hypersurface M of
M̃ is totally umbilical if the first and the second fundamental forms are proportional,
that is

B(E,F ) = 〈E, F 〉H(1)

for any E, F∈ Γ(TM), where H is the mean curvature vector of M , defined by the
formula,

H =
1

4m + 3
TraceB.(2)

We have the Gauss equation:

R̃(E, E′, F, F ′) = R(E, E′F, F ′)− 〈B(E, F ), B(E′, F ′)〉+(3)
+〈B(E, F ′), B(F, E′)〉.

Taking account of the formula (1), the Gauss equation for a totally umbilical
hypersurface M in M̃ becomes:
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R̃(E, E′, F, F ′) = R(E,E′, F, F ′)− (〈E, F 〉〈E′, F ′〉+(4)

−〈E, F ′〉〈F, F ′〉)‖H‖2,

where ‖H‖2 = 〈H, H〉.
We see that, if M is a totally umbilical QR-hypersurface of M̃ , then it is a mixed
geodesic QR-hypersurface, i.e. B(V,X) = 0 for any V ∈ Γ(V) and X ∈ Γ(H). Conse-
quently, the vertical distribution V is integrable.

Moreover, it is easy to check that each leaf of V is totally geodesic in M (see, for
example [3], p. 121). Then we conclude that the first fundamental tensor T of the Rie-
mannian submersion π : M → M ′ vanishes, because TUV is the second fundamental
form of each fibre for any U, V ∈ Γ(V) (see [7], [13]).
Let us now recall the following two Gray-O’Neill curvature equations for a Riemannian
submersion:

R(U, V, U ′, V ′) = R̂(U, V, U ′, V ′) + 〈TUV ′, TV U ′〉+(5)
−〈TV V ′, TUU ′〉,

R(X, Y, X ′, Y ′) = R∗(X,Y, X ′, Y ′) + 2〈C(X, Y ), C(X ′, Y ′)〉+(6)
+〈C(Y, X ′), C(X, Y ′)〉 − 〈C(X, X ′), C(Y, Y ′)〉,

for all U, V, U ′, V ′ ∈ Γ(V) and X,Y,X ′, Y ′ ∈ Γ(H), where, for any quadruplet of hor-
izontal vector fields (X,Y,X ′, Y ′), R∗(X, Y, X ′, Y ′) = R′(π∗X, π∗Y, π∗X ′, π∗Y ′) ◦ π,
with R∗ Riemannian curvature on the fibres of H. Here R′ is the Riemannian curva-
ture of the metric g′ on M ′.

Lemma 3.1 Let M be a totally umbilical, not totally geodesic, QR-hypersurface of a
quaternionic Kähler manifold. Then the tensor field C wich measures the integrability
of the horizontal distribution H, is given by the formula

C(X,Y ) = ‖H‖
3∑

a=1

〈X,JaY 〉ξa.(7)

Proof. Using (1), (4), (5) and (7), we obtain

Ja(LX)−∇Xξa = ωac(X)ξb − ωab(X)ξc,(8)

for any X ∈ Γ(H). Now, by (6) in (8), we have

〈∇XY, ξa〉 = 〈B(X,JaY ), ξ〉,(9)

for any X,Y ∈ Γ(H), and a ∈ {1, 2, 3}. Taking into account that the mean curvature
vector H of M is a global vector field and it is non vanishing on M (see [3]), we take

ξ =
H

‖H‖ . Then we have

C(X, Y ) = V∇XY = ‖H‖
3∑

a=1

〈X,JaY 〉ξa,(10)
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from which formula (7) follows. 2

Theorem 3.1 Let M be a totally umbilical, not totally geodesic, QR-hypersurface of
a quaternionic Kähler manifold. Then,

a) K̃(U, V ) = K(U, V )−‖H‖2, where {U,V} is an orthonormal basis of the vertical
2− plane α, α ⊂ Vx, x ∈ M , and K̃, K denote the sectional curvatures of α on
M̃, M , respectively.

b) K(X,Y ) = K ′(X ′, Y ′) − 3‖H‖2
3∑

a=1

〈X,JaY 〉2, where X,Y is an orthonormal

basis of a horizontal 2−plane α ⊂ Hx, K(X, Y ) denoting the sectional curvature
of α, and K ′(X ′, Y ′) denotes the sectional curvature in M ′ of the 2 − plane
spanned by X ′ = π∗X and Y ′ = π∗Y .

Proof. Property a) is easily obtained from (4) and (5). From (6), as an immediate
consequence of the skew-symmetry of C, we have

R(X,Y, X, Y ) = R′(X ′, Y ′.X ′, Y ′)− 3‖C(X, Y )‖2.(11)

Lemma 3.1 and (11) directly give b). 2

We recall that a totally umbilical, not totally geodesic, hypersurface M of a Rie-
mannian manifold M̃ is an extrinsic hypersphere if the mean curvature vector field H
is parallel with respect to the linear normal connection ∇⊥ or, equivalently, ‖H‖ = c
is a constant c 6= 0 on M .
Then we have the following

Theorem 3.2 Let M be an extrinsic hypersurface of a flat quaternionic Kähler man-
ifold M̃ and π : M → M ′ a QR-submersion of M on a quaternionic Kähler manifold
M ′. Then M ′ is a quaternionic Kähler manifold with constant quaternionic sectional
curvature c > 0.

Proof. By (4), (6) and Lemma 3.1 we have

R′(X ′, Y ′)Z ′ = ‖H‖2{g′(Y ′, Z ′)X ′ − g′(X ′, Z ′)Y ′ +

+
3∑

a=1

(g′(J ′aY ′, Z ′)J ′aX ′ − g(J ′aX ′, Z ′)J ′aY ′) +

+2g′(X ′,J ′aY ′)J ′aZ ′).

where ‖H‖ is a constant on M ′ and X ′, Y ′, Z ′ ∈ Γ(TM ′). 2

Remark There exist no proper totally umbilical QR-submanifolds in positively or
negatively curved quaternionic Kähler manifolds (see [3]).
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