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Abstract

We prove that the basic manifold of a submersion from a QR-hypersurface
of a quaternionic Kéhler manifold to an almost quaternionic Hermitian mani-
fold is quaternionic Kahler. Then we prove some results involving the sectional
curvatures.
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Introduction

Real hypersurfaces of quaternionic space forms have been studied by many authors
(111, [2], [3], [4], [5], [11], [12]) under conditions concerning their shape operator.
It is known that real hypersurface of quaternionic K&hler manifolds are not CR-
hypersurface in general ([2]).

The study of CR-submanifolds of a quaternionic Kéhler manifolds has been carried
out in the paper [1]. S. Kobayashi considered the similarity between the total space of a
Riemannian submersion and a CR-submanifold of a Kéhler manifold in terms of distri-
butions ([9]). In this paper we study Riemannian submersions from QR-hypersurface
of a quaternionic Kéhler manifold over an almost quaternionic Hermitian manifold
(second section). In the last section we study some curvature properties induced on
the basic manifold by the submersion.

1 Hypersurfaces of quaternionic Kahler manifolds

We say that a 4(m + 1) — dimensional manifold M with a metric g is a quaternionic
Kahler manifold (m > 1) if there exists a 3—dimensional vector bundle V' of tensors
of type (1,1) on M satisfying the following conditions:
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(a) In any coordinate neighborhood U on M there is a local basis of almost Her-
mitian structures {J,, 3}, such that J2 = —Id, a € {1,2,3} and J, o Jp =
Ty 0 Jo = T for any cyclic permutation (a,b,c) of (1,2,3).

(b) For any local section ¢ of V' and any tangent vector X to M,V x is also a
local section in V', where V denotes the Levi-Civita connection of g.

Condition (b) is equivalent to the following:

(b’) There exist local 1 — forms wap, a,b € {1,2,3} on U such that wap + wpe = 0,
and

(1) ?zja - wab(-r)jb + Wac(x)jc

for any cyclic permutation (a, b, ¢) of (1,2, 3).
_ Given two local bases {J,} and {J,} of V' defined on coordinate neighborhoods
U and U’ such that U N U'#£D, we have on U N U':

3
(2) Ti=> Cab

b=1

where [Cy] is an element of the special orthogonal group SO(3) (see [8]).

Let M be an orientable hypersurface of M and ¢ a unit normal field defined on M.
On U &= —T,(€), a € {1,2,3} defines a tangent vector field to M. Similarly, we
define ¢ on U’ and on U N U'#() we have:

3
(3) &= Cupl, be{1,2,3}

b=1

so that one obtains a distribution ¥V on M which is locally represented by {{,},
1 <a<3, onl. Let H be the orthogonal complementary distribution to V with
respect to the Riemannian metric g induced by g on M.

We see that for each x € M, H, is J, — invariant, but V, is not an anti-invariant
subspace of T, M with respect J,, a = {1,2,3}. It is easy see that J,(V,) = TpM~*,
x € M, where T, M~ is the normal space at  to the hypersurface M in M. In general,
when the previous conditions are satisfied, we say that M is a QR — hypersur face
of M (see [3]). Now, let B be the second fundamental form of M in M. Then, for any
E, F € T(TM) we have the Gauss formula

(4) VgF =VgF + B(E,F),

where V and V are the Levi-Civita connections on M and M, respectively.

If L denotes the fundamental tensor of Weingarten with respect to &, we have the
Weingarten formula 3

() VEé = —L(E),

and for any F, Fe T'(TM) the following formula

(6) 9(L(E), F) = g(B(E, F),§)
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holds.

The integrability of the distributions V and H on M has been studied by A.
Bejancu ([2]).
We recall that the vertical distribution V is integrable if and only if
(7) B(U,X)=0

for any U € I'(V) and X € I'(H). )
If (7) is satisfied, we say that M is a mized geodesic QR — hypersur face of M.

2 Riemannian submersions of QR-hypersurfaces

Let M be a mixed geodesic QR-hypersurface of a quaternionic Kéhler manifold M.
We denote by (M, ¢',J'4), a € {1,2,3}, an almost quaternionic Hermitian manifold
(i.e. satisfying the condition (a)). We say that a Riemannian submersion =: M — M’
is a QR-submersion if the following conditions are satisfied:

i) V is the kernel of 7y;

ii) for each x € M, 7, : Hy — Tr(z)M' is an isometry with respect to each complex
structure of H, and Ty(,)M', where T} (,)M' denotes the tangent space to M’
at w(x).

As in the paper [10], the letters U, V, W, W' will always denote vertical vector fields
and X,Y, Z, Z’ horizontal vector fields. A horizontal vector field X on M is said to
be basic if it is m — related to a vector field X’ on M’.

We denote by T and A O’Neill’s fundamental tensors (see [13], [11]).

Lemma 2.1 Let X andY be basic vector fields on M. Then the following conditions
hold:

a) The horizontal component h|X,Y] of [X,Y] is a basic vector field and w.h[X,Y] =
X, V") om;

b) h(VxY ) is basic vector field corresponding to V', Y' where V and V' are the
the Levi-Civita connections on M and M’, respectively;

c) [X,U] € T(V), for any vertical field U € T'(V);

where h denotes the horizontal component of a vector E on M.

We define a skew-symmetric tensor field C' by
(1) V.Y = hV,Y + C(X,Y)

for all X,Y € T'(H). )
The second fundamental form B of M in M is:
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(2) B(E,F)=VgF —VgF

for all B, F € T'(TM).

Theorem 2.2 Let M be a mized geodesic QR-hypersuface of a quaternionic Kahler
manifold M. If 7 : M — M’ is a QR-submersion of M on an almost quaternionic
Hermitian manifold, then M’ is a quaternionic Kdihler manifold.

Proof. By using Gauss formula and (1) we obtain
(3) thJaY - ja(thY) = wab(X)ij+wac(X)jcK

for any local basic vector fields X,Y on M and for any cyclic permutation (a, b, c) of
(1,2,3). Then we can define 1 — forms w/,, on M’ by

(4) whip(X') o = wep(X), a,b,c € {1,2,3},

for any local vector field X’ on M’ and X a real basic vector field on M such that
m.X = X'
On the other hand, by the definition of a QR-submersion we have

(5) T*Oja:jaloﬂ'*.

Using Lemma 2.1, from (3)-(5) we obtain

h(Vix T)Y' = wip(X)TY" + wee(X)TY,
where V' is the Levi-Civita connection on M’ and X', Y’ any local vector fields on
M’. We conclude that (M', J!,¢') is a quaternionic Kahler manifold. O

3 Totally umbilical QR-hypersurfaces

In the sequel we shall denote by (-, -) the scalar product induced on the tangent
spaces of M and M by the Riemannian metric g. We recall that a hypersurface M of
M is totally umbilical if the first and the second fundamental forms are proportional,
that is

(1) B(E,F) = (E,F)H

for any E, Fe I'(TM), where H is the mean curvature vector of M, defined by the
formula,

1
(2) H = ooy 3TmceB.

We have the Gauss equation:

(3) R(E,E',F,F') = R(E,E'F,F') — (B(E,F),B(E',F")) +
+(B(E, F'"), B(F,E")).

Taking account of the formula (1), the Gauss equation for a totally umbilical
hypersurface M in M becomes:
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(4) R(E,E',F,F') = R(E,E',F,F') — ((E,F)}(E', F') +
—(B,F')(F.F")|H|”,

where ||H||* = (H, H).

We see that, if M is a totally umbilical QR-hypersurface of M, then it is a mixed
geodesic QR-hypersurface, i.e. B(V,X) =0 for any V € I'(V) and X € T'(H). Conse-
quently, the vertical distribution V is integrable.

Moreover, it is easy to check that each leaf of V is totally geodesic in M (see, for
example [3], p. 121). Then we conclude that the first fundamental tensor 7" of the Rie-
mannian submersion w : M — M’ vanishes, because Ty V is the second fundamental
form of each fibre for any U,V € T'(V) (see [7], [13]).

Let us now recall the following two Gray-O’Neill curvature equations for a Riemannian
submersion:

(5) RU,V,U" V'Y= RU,V,U V') + (TyV', Ty U") +
*<TVV/7 TUU/>>

(6) R(X,Y,X'\Y") = R(X,Y,X",Y'") + 2(C(X,Y),C(X",Y"))+
+<C’()/a X/)v C(Xv Y/)> - <C(X7 X/)v O(K Y/)>7

for all U, V,U’, V' e (V) and X,Y, X", Y’ € T(H), where, for any quadruplet of hor-
izontal vector fields (X,Y, X", Y"), R*(X,Y,X")Y’) = R/ (m. X, m.Y, 7. X', 1Y) o,
with R* Riemannian curvature on the fibres of H. Here R’ is the Riemannian curva-
ture of the metric ¢’ on M’.

Lemma 3.1 Let M be a totally umbilical, not totally geodesic, QR-hypersurface of a
quaternionic Kdahler manifold. Then the tensor field C wich measures the integrability
of the horizontal distribution H, is given by the formula

3
(7) C(X,Y) = [H|| Y (X, TuY ).
Proof. Using (1), (4), (5) and (7), we obtain
(8) ja(LX> - VXfu, = o-}ac()()gb - wab(X)gca
for any X € I'(H). Now, by (6) in (8), we have

for any X,Y € I'(H), and a € {1,2,3}. Taking into account that the mean curvature
vector H of M is a global vector field and it is non vanishing on M (see [3]), we take
13 H Th h
= ——. Then we have
IH]|

(10) C(X,Y) = VVxY = [H| Y (X, ToY)a,

a=1
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from which formula (7) follows. O
Theorem 3.1 Let M be a totally umbilical, not totally geodesic, QR-hypersurface of
a quaternionic Kdhler manifold. Then,

a) K(UV)=KUV)-|H|? where { U, V} is an orthonormal basis of the vertical
2 —plane a, a C Vy,x € M, and K, K denote the sectional curvatures of o on
M, M, respectively.

3
b) K(X,Y) = K'(X',Y') - 3HH||2Z (X, J.Y)?, where X,Y is an orthonormal
a=1
basis of a horizontal 2—plane o C H,, K(X,Y') denoting the sectional curvature
of a, and K'(X')Y") denotes the sectional curvature in M' of the 2 — plane
spanned by X' = 7, X andY' = 7,Y.

Proof. Property a) is easily obtained from (4) and (5). From (6), as an immediate
consequence of the skew-symmetry of C, we have

(11) R(X,Y,X,Y) = R(X',Y'.X",Y") = 3| C(X, V)|

Lemma 3.1 and (11) directly give b). a
We recall that a totally umbilical, not totally geodesic, hypersurface M of a Rie-

mannian manifold M is an extrinsic hypersphere if the mean curvature vector field H

is parallel with respect to the linear normal connection V+ or, equivalently, ||H|| = ¢

is a constant ¢ # 0 on M.

Then we have the following

Theorem 3.2 Let M be an extrinsic hypersurface of a flat quaternionic Kihler man-
ifold M and w: M — M’ a QR-submersion of M on a quaternionic Kdhler manifold
M'. Then M’ is a quaternionic Kahler manifold with constant quaternionic sectional
curvature ¢ > 0.
Proof. By (4), (6) and Lemma 3.1 we have

R(X'\YNZ' = |H|Md' (Y, 2 X" - ¢'(X', Z")Y' +

3
+ Z(g/(j/aY,7 Z/)j/aX/ o g(j'aX’, Z/)j/ayl) +
a=1

“l‘le(Xl,j/aY/)jlaZl).
where ||H|| is a constant on M’ and X', Y, Z' e T(TM'). O

Remark There exist no proper totally umbilical QR-submanifolds in positively or
negatively curved quaternionic Kéhler manifolds (see [3]).

Acknowledgment: The author thanks to Prof. V. Balan for his suggestions on im-
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