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Abstract

A Kähler-Nijenhuis manifold is a Kähler manifold M , with metric g, complex
structure J and Kähler form Ω, endowed with a Nijenhuis tensor field A that is
compatible with the Poisson structure defined by Ω in the sense of the theory of
Poisson-Nijenhuis structures. If this happens, and if AJ = ±JA, M is foliated
by im A into non degenerate Kähler-Nijenhuis submanifolds. If A is a non de-
generate (1, 1)-tensor field on M , (M, g, J, A) is a Kähler-Nijenhuis manifold iff
one of the following two properties holds: 1) A is associated with a symplectic
structure of M that defines a Poisson structure compatible with the Poisson
structure defined by Ω; 2) A and A−1 are associated with closed 2-forms. On a
Kähler-Nijenhuis manifold, if A is non degenerate and AJ = −JA, A must be
a parallel tensor field.
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1 Definition and basic formulas

A Kähler manifold is a particular case of a symplectic 2n-dimensional manifold (M, Ω)
with a symplectic form defined as

Ω(X, Y ) = g(JX, Y ) (X, Y ∈ ΓTM),(1)

where Γ denotes the space of global cross sections, J is a complex structure on M ,
and g is a Hermitian metric on (M, J) [4]. Accordingly, on M one has the Poisson
bivector field Π defined by the Poisson brackets computed with the symplectic form
Ω. The aim of this note is to discuss Nijenhuis tensor fields A that are compatible
with Π in the sense of the theory of Poisson-Nijenhuis manifolds [5, 6, 8, 9]. If this
happens, the quadruple (M, g, J,A) will be called a Kähler-Nijenhuis manifold, and
A ∈ ΓEnd(TM) will be a Kähler-compatible Nijenhuis (K.c.N.) tensor field. The
interest in Poisson-Nijenhuis structures comes from their usefulness in the search of
first integrals of Hamiltonian dynamical systems [6].

In what follows, we will use musical morphisms defined by formulas of the type
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β(]Πα) = Π(α, β), ([ΩX)(Y ) = Ω(X, Y ),(2)

where Π may be any 2-contravariant and Ω any 2-covariant tensor field. In particular,
(1) is equivalent with [g ◦ J = [Ω, and we have ]Π ◦ [Ω = −Id and Π = ]ΠΩ = ]gΩ
(]g = [−1

g ) i.e.,
Π(α, β) = Ω(]Πα, ]Πβ) = Ω(]gα, ]gβ).(3)

Known results on Poisson-Nijenhuis structures [6, 9] tell that, on any symplectic
manifold (M, Ω), the tensor field A ∈ ΓEnd(TM) defines a Poisson-Nijenhuis struc-
ture on M iff A = ]Π ◦ [Θ, where Θ is a closed, differential 2-form such that one of
the following properties holds:
1) A is a Nijenhuis tensor field i.e.,

NijA(X, Y ) = [AX,AY ]−A[X, AY ]−A[AX, Y ] + A2[X,Y ] = 0;(4)

2) ]ΠΘ is a Poisson bivector field, i.e.,

[]ΠΘ, ]ΠΘ] = 0,(5)

where [ , ] is the Schouten-Nijenhuis bracket [7];
3) Θ is a complementary 2-form of Π i.e. [9],

{Θ, Θ} = 0,(6)

where { , } is the Koszul bracket [7];
4) the 2-form Θ̃ defined by

[Θ̃ = [Θ ◦ ]Π ◦ [Θ(7)

is closed.
Thus, if we add the request that M is a Kähler manifold, the above conditions

characterize K.c.N. tensor fields. Furthermore, a Kähler-Nijenhuis structure is also
defined by the closed form Θ with the properties 1)-4). We will say that Θ is the
associated K.c.N. form of A, which, in turn, is associated with Θ. Notice that

Θ(X,Y ) = −Ω(AX,Y ) = −Ω(X, AY )(8)

(use the skew symmetry of Θ), and

Θ̃(X,Y ) = −Ω(AX,AY ).(9)

In the rest of the paper, all the encountered (1, 1)-tensor fields A are supposed to
satisfy the second equality (8), called the Ω-skew-symmetry of A. Ω-skew-symmetry
ensures that A = ]Π ◦ [Θ, where Θ is a 2-form.

If (xi) (i = 1, ..., 2n) are local coordinates on M , characteristic property 2) becomes
([7], Proposition 1.5)

∑

Cycl(i,j,k)

ΩuvΘui∇vΘjk
(8)
=

∑

Cycl(i,j,k)

Au
i ∇uΘjk = 0,(10)

where ∇ is the Levi-Civita connection of g, and we use the Einstein summation
convention. Thus, the Ω-skew-symmetric tensor field A is K.c.N. iff
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∑

Cycl(X,Y,Z)

(∇XΘ)(Y, Z) = 0,
∑

Cycl(X,Y,Z)

(∇AXΘ)(Y, Z) = 0,(11)

∀X, Y, Z ∈ ΓTM , where the first condition is equivalent to dΘ = 0 and the second
condition is the coordinate-free equivalent of (10). Notice also that, in view of (8),
conditions (11) are equivalent to

∑

Cycl(X,Y,Z)

Ω[(∇XA)(Y ), Z] = 0,
∑

Cycl(X,Y,Z)

Ω[(∇AXA)(Y ), Z] = 0,(12)

respectively, and the Ω-skew-symmetric tensor field A is K.c.N. iff it satisfies (12).
On the other hand, characteristic property 3) has the interesting equivalent form

[7, 9]
δC(Θ ∧Θ) = 2(δCΘ) ∧Θ,(13)

where δ is the Riemannian codifferential, and δC = C ◦ δ ◦ C, with C defined by the
action of J on the arguments of a form (e.g., [2]).

On a Kähler manifold, it is natural to consider the following particular cases. We
will say that a tensor field A ∈ ΓEnd(TM) is complex-compatible (c.c.) if A◦J = J◦A,
and is skew-complex-compatible (s.c.c.) if A ◦J = −J ◦A. Furthermore, if A = ]Π ◦ [Θ
where Θ is a 2-form, A is c.c. iff Θ is of the complex type (1, 1) and A is s.c.c.
iff Θ has components of the complex type (2, 0) and (0, 2) only. This means that
Θ(JX, JY ) = ±Θ(X, Y ), respectively, and, if we denote by

P =
1
2
(Id⊗ Id + J ⊗ J), P̃ =

1
2
(Id⊗ Id− J ⊗ J)(14)

the projectors of 2-covariant tensors onto their components of complex type (1, 1) and
[(2, 0)+(0, 2)] (each factor of the tensor product acts on the corresponding argument),
such forms may be written as

Θ = PΞ, Θ = P̃Ξ,(15)

respectively, where Ξ is an arbitrary 2-form on M . In both cases, we are speaking of
a real form Θ, and we will say that Θ is c.c., in the first case, and s.c.c., in the second
case.

In these two cases, the conditions that ensure the K.c.N. property may be written
under specific forms. Let us denote

EA(X,Y ) = (∇XA)(Y ), FA(X, Y ) = (∇AXA)(Y ),

BA = alt(EA), CA = alt(FA),
(16)

where alt is the skew-symmetric part of a tensor. Then, we get

Proposition 1.1 1. The Ω-skew-symmetric, c.c. tensor field A is K.c.N. iff

P̃BA = 0, P̃CA = 0.(17)

2. The Ω-skew-symmetric, s.c.c. tensor field A is K.c.N. iff conditions (12) hold
∀X, Y, Z ∈ ΓT cM (T cM = TM ⊗C) that are of the complex type (1, 0), and

PEA = 0, PFA = 0.(18)
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Proof. If A is c.c. the extension of A to T cM preserves the complex type and, since
∇J = 0, the same holds for the operators ∇XA, ∀X ∈ ΓT cM . Now, using the
fact that Ω has the complex type (1, 1), we see that conditions (12) are identically
satisfied if X, Y, Z are of the same complex type. Furthermore, from the Ω-skew-
symmetry of A it follows easily that, ∀X ∈ ΓTM , the tensor field ∇XA is also Ω-
skew-symmetric. This implies that, for two arguments, say X, Y , of the same complex
type (e.g., (1, 0)) and the third, Z, of opposite type ((0, 1)), (12) is equivalent to
BA(X,Y ) = 0, CA(X, Y ) = 0. This happens iff (17) holds.

Similarly, if A is s.c.c., A and ∇XA change the complex type of the vectors from
(1, 0) to (0, 1) and conversely. This implies that, for two arguments of the same type
and the third of the opposite type, (12) is equivalent to EA(X, Y ) = 0, FA(X, Y ) = 0
whenever X, Y have opposite complex types. This is the same thing as conditions (18).
Of course, we must still ask (12) to hold for three arguments of the same complex
type. Q.e.d.

Notice also that in the c.c. and s.c.c. cases (13) becomes

δ(Θ ∧Θ)− 2(δΘ) ∧Θ = 0.(19)

We end this section by a number of examples.

Example 1.1 Any parallel 2-form Θ of a Kähler manifold is a K.c.N. form. In par-
ticular, if a Kähler manifold has a parallel Ricci tensor field, the Ricci form is a c.c.
form that defines a Kähler-Nijenhuis structure.

Example 1.2 Let M be a hyper-Kähler manifold with the metric g, the parallel com-
plex structures (J1, J2, J3) that satisfy the quaternionic identities, and the respective
Kähler forms Ω1,Ω2, Ω3. Then, the tensors J2, J3 are s.c.c., K.c.N. tensor fields on the
Kähler manifold (M, g, J1,Ω1). The corresponding K.c.N. forms are the Kähler forms
−Ω3,Ω2, which are parallel forms [1].

Example 1.3 On a compact Hermitian symmetric space, any real closed 2-form Θ
which has no (1, 1)-component is a K.c.N. form. Indeed, dΘ = 0 implies that the (2, 0)-
component of Θ is holomorphic hence, harmonic (e.g., [2]). Therefore, Θ is harmonic,
and, because the manifold is a compact Hermitian symmetric space, Θ∧Θ is harmonic
too (e.g., [3]). Thus, Θ satisfies condition (19). Moreover, since Θ is s.c.c., by a result
that will be proven at the end of this paper, Θ is a parallel form.

Example 1.4 On a compact Hermitian symmetric space any real, harmonic (1, 1)-
form Θ is a c.c., K.c.N. form. (Use again the final argument of Example 1.3).

Example 1.5 On M = Cn, with the flat Kähler metric and the natural complex
coordinates (zα), the (1, 1)-form Θ = z1dz1 ∧ dz̄2 is closed and satisfies condition
(19). Hence, Θ is a c.c., K.c.N. form. It is easy to check that Θ is not a parallel form.

2 Geometric properties

Let (M, g, J,A) be a Kähler-Nijenhuis manifold. The basic geometric object that we
detect beyond the usual Kählerian objects is the differentiable, generalized distribu-
tion A = im A. It is well known that this distribution is completely integrable. For
the record, we write down a straightforward proof below.
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Proposition 2.1 If A is a Nijenhuis tensor field (i.e., (4) holds), the generalized
distribution A = im A is completely integrable.

Proof. Condition (4) shows that A is an involutive distribution. Hence, integrability
will follow from the Sussmann-Stefan-Frobenius theorem (e.g., [7]) if we prove that
A is invariant i.e., ∀X, Y ∈ ΓTM one has [exp(tAX)]∗(AY ) ∈ A, ∀t ∈ R such that
exp(tAX) exists.

Denote Ax(t) = [exp(tAX)]∗(Aexp(−tAX)(x)) (x ∈ M). Then,

dAx(t)
dt

= lim
s→0

1
s
{[exp((t + s)AX)]∗(Aexp[−(t+s)AX](x))(20)

−[exp(tAX)]∗(Aexp(−tAX)(x))} = [LAXA(t)]x,

where L denotes the Lie derivative.
The required invariance of A will be a consequence of the local existence of a

(1, 1)-tensor field C(t) such that A(t) = A ◦ C(t). If C(t) exists, (20) implies

A ◦ ∂C

∂t
= LAX(A ◦ C) = (LAXA) ◦ C + A ◦ LAXC

(4)
= A ◦ LXA ◦ C + A ◦ LAXC.

Therefore, if C(t) satisfies

∂C

∂t
− (LXA) ◦ C − LAXC = 0, C(0) = Id,(21)

∀x ∈ M , A(t) and A ◦ C(t) satisfy the same differential equation (20) and the same
initial condition, and must be equal. Since (21) has a local solution, we are done.
Q.e.d.

Thus, through every point x ∈ M one has a characteristic leaf, the maximal
integral submanifold of the generalized distribution A, which we denote by L = Lx,
immersed in M by ι = ιL : L ↪→ M .

Proposition 2.2 Let (M, g, J,A) be a c.c. or s.c.c. Kähler-Nijenhuis manifold. Then,
each characteristic leaf L inherits an induced structure of a non degenerate Kähler-
Nijenhuis manifold with the normal bundle K|L, where K = kerA = kerΘ. Further-
more, if the structure A is regular, the decomposition TM = A ⊕ K is a complex
analytic, orthogonal, locally product structure on M .

Proof. In the case of a c.c. or s.c.c. tensor field A, the distribution A is J-invariant,
and the characteristic leaves L are Kähler submanifolds of M . Then, ∀X, Y ∈ ΓTM ,
we have

g(AX,Y )
(1)
= −Ω(JAX, Y ) = ∓Ω(AJX, Y )

(8)
= ∓Θ(Y, JX),(22)

and we see that Y ∈ K = kerΘ iff Y ⊥ A. Therefore, the normal bundle of L is K|L.
Since A = ]Π ◦ [Θ and ]Π is an isomorphism, we also have kerA = kerΘ.

The field of planes K, which, by the above result, is J-invariant, is not a differen-
tiable distribution since its dimension is not lower semi-continuous. Differentiability
occurs iff the c.c. or s.c.c. Nijenhuis tensor A (and the corresponding form Θ) is regular
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i.e., of a constant rank. Then, as it is well known, dΘ = 0 implies that K is involutive,
and the decomposition TM = A⊕ K defines a complex analytic, orthogonal, locally
product structure on M .

Of course, the distribution A also is invariant by A hence, A|L is a (1, 1)-tensor
field on L. Moreover A|L is a Nijenhuis tensor, since the Lie brackets of condition (4)
are ι-compatible. In the c.c. and s.c.c. cases A|L has zero kernel because kerA ⊥ TL.
Hence, A|L is non degenerate, and so is the associated form ΘL. Furthermore, formula
(8) shows that ΘL = ι∗Θ, and property 1) of the K.c.N. structures shows that A|L is
a K.c.N. tensor field. Q.e.d.

If the Nijenhuis tensor A is non degenerate, the manifold M itself is the only
characteristic leaf. Furthermore, if (M, g, J,A) is a non degenerate Kähler-Nijenhuis
manifold the corresponding K.c.N. form Θ is a symplectic form and the Poisson brack-
ets of the latter define a Poisson bivector field Ψ.

Proposition 2.3 Let A be a Ω-skew-symmetric, non degenerate (1, 1)-tensor field on
M . Then: 1. A is K.c.N. iff it is associated with a closed 2-form Θ and the Poisson
structures defined by Ω, Θ are compatible i.e., [Π,Ψ] = 0.
2. A is K.c.N. iff both A and A−1 are associated with closed 2-forms.

Proof. For 1, by a result proven in [6] (see also [8]), the compatibility condition
[Π, Ψ] = 0 implies the fact that A is K.c.N. Conversely, from A = ]Π ◦ [Θ we get

]Ψ = A−1 ◦ ]Π.(23)

Hence the Poisson structure Ψ belongs to the enlarged Poisson hierarchy of the
Poisson-Nijenhuis structure (Π, A), and the required compatibility follows from the
properties of the Poisson hierarchy (e.g., [8]).

For 2, again, the theorem of the Poisson hierarchy tells us that if A is K.c.N. then
A−1 is K.c.N. too. Hence, if we write A−1 = ]Π ◦ [Θ′ , Θ′ must be closed. Conversely,
assume that Θ and Θ′ are closed. From (23), we get

[Θ′ = [Ω ◦ ]Ψ ◦ [Ω,(24)

therefore, by property 4) of the K.c.N. structures (see Section 1), (Ψ, A−1) is a Poisson-
Nijenhuis structure, and Π belongs to the Poisson hierarchy of the former. Therefore,
[Ψ, Π] = 0 and, by part 1 of the proposition, we are done. (In fact, since Θ is a
symplectic form, and in view of (23), (Ψ, A−1) is a Poisson-Nijenhuis structure iff the
Poisson bivector fields Ψ, Π are compatible.) Q.e.d.

Remark 2.1 In the c.c. case, conclusion 2 of Proposition 2.3 follows immediately
from the first part of Proposition 1.1. Indeed, we can use ∇(A ◦A−1) = 0 to derive

CA(X,Y ) = A(BA−1(AX, AY )),(25)

and conclude as required from (17). We also notice the formula

−A−1(NijA(X, Y )) = 2[BA−1(AX,AY ) + BA(X, Y )].(26)

Corollary 2.1 Let A ∈ End(TM) define a c.c., orthogonal, almost product structure
on M . Then, the tensor field A is associated with a (1, 1)-form Θ, and A is K.c.N.
iff Θ is closed
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Proof. The orthogonality of the structure means g(AX,AY ) = g(X,Y ), and it im-
plies that Θ(X, Y ) = −Ω(AX, Y ) is skew symmetric. Thus, Θ is the required 2-form.
Furthermore, A−1 = A, and the result follows from part 2 of Proposition 2.3. Q.e.d.

In particular, if Θ of Corollary 2.1 is closed NijA = 0 and the almost product
structure A is integrable.

We finish by showing that for the non degenerate, s.c.c. tensor fields the K.c.N.
condition is very restrictive.

Proposition 2.4 A non degenerate, Ω-skew-symmetric, s.c.c. tensor field A ∈ Γ
End(TM) is K.c.N. iff A is parallel.

Proof. The quickest way to conclude is by a local computation. Consider local, com-
plex analytic coordinates (zα) (α = 1, ..., n) on M . The s.c.c. property of A means
that the only possibly non-zero components of A are (Aβ̄

α, Aβ
ᾱ), and Θ has no com-

ponent of the complex type (1, 1). Since dΘ = 0, the complex (2, 0)-component of Θ
is holomorphic. Accordingly, condition (10) becomes

Aα
λ̄∇αΘµν = 0,(27)

and if A is non degenerate we get ∇αΘµν = 0. Q.e.d.

Remark 2.2 Except for Proposition 2.2, the results of this note also hold for pseudo-
Kähler manifolds i.e., where the metric g is non degenerate but it may not be positive
definite.
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