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Abstract

A. Derdzinki [6] gave examples of Riemannian metrics with harmonic cur-
vature and non parallel Ricci tensor on some compact manifolds (M, g] . We
examine their existence as well as their number which naturally depends on the
geometry of the manifolds.
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1 Introduction

Let (M, g) be a Riemannian manifold of dimension n, n ≥ 3. M is said to have
harmonic curvature if the divergence of its curvature tensor R vanishes (in local
coordonates : ∇iRijkl = 0).
That means the Ricci tensor r is a Codazzi tensor (∇iRijkl = ∇krhj −∇jrhk = 0).
In other words, in the compact case of the manifold the Riemannian connection is a
Yang-Mills potential in the tangent bundle.

Answering the question on the parallelism of the Ricci tensor of the Riemannian
metrics, A. Derdzinski gave examples of compact manifolds with harmonic curvature
but non parallel Ricci tensor: δR = 0 and ∇r 6= 0. Moreover, he obtains some
classification results, [6].
The corresponding manifolds are bundles with fibres N over the circle S1 (para-
metrized by arc length t and length T =

∫
S1 dt) equipped with the warped metrics

dt2 + h4/n(t)g0 on the product S1 ×N .
Here, (N, g0) is an Einstein manifold of dimension n− 1, n ≥ 3, with scalar curva-
ture R and the function h(t) on the prime factor is a periodic solution of the ODE,
established by Derdzinski

h′′ − nR

4(n− 1)
h1−4/n = −n

4
Ch for some constant C > 0.(1)
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This function must be non constant, otherwise the corresponding metric has a
parallel Ricci tensor.

The goal of this paper is to study the existence and the number of such metrics
which naturally must depend on the geometry of S1 and N .
More precisely, consider the change

h(t) = αj(t)

where the constant α =
(

R
4(n−1)C

)n/4

.

Equation (1) becomes

(1′) j′′ − nC

4
(1 + j)1−4/n = −n

4
C(1 + j)

(1′) j′′ − nC

4
(1 + (1− 4/n)j + (−2/n)j2 + ....) +

n

4
C(1 + j) = 0

(1′) j′′ + Cj + .... = 0

When h is closed to α , j is closed to 0.
That means equation (1’) bifurcates at j ≡ 0 when C = ( 2π

T )2. So equation (1) also
bifurcates at h ≡ α when C = ( 2π

T )2.
In particular, there is a positive bound T0 such that when T ≤ T0 the above equation

may have only constant solutions, i.e. h(t) ≡ α =
(

R
4(n−1)C

)n/4

.

We prove the following
Theorem. Let us consider the Riemannian product (S1×N, dt2+g0) where (S1, dt2)
is a circle with length T and (N, g0) is an Einstein manifold of dimension n−1, n ≥ 3
with positive scalar curvature R.
There exists a constant T0 such that if T ≤ T0 this manifold does not admit warped
metric dt2 + h4/n(t)g0 whose Ricci tensor is not parallel.

2 Metrics with harmonic curvature

Let (M, g) be a Riemannian manifold with n = dimM ≥ 3. R is its curvature
tensor, r its Ricci tensor W , its Weyl conformal tensor and R its scalar curvature.
According to the second Bianchi identity dR = 0 (in local coordonates ∇qRijkl +
∇iRjqkl +∇jRqikl = 0,) we get the following relations

δR = −dr i.e. ∇iRijkl = ∇krhj −∇jrhk

(n− 2)δW = −(n− 3)d[r − Rg

2n− 2
] and 2δr = −dR.

The sign conventions are such that rij = Rl
ilj , R = gijrij .

d is the exterior differentiation and δ is its formal adjoint, viewed as differential forms
on M .
(M, g) has harmonic curvature if δR = 0.
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A Codazzi tensor C on (M, g) is a symmetric (0, 2) tensor field on M verifying the
Codazzi equation dC = 0 i.e. ∇jCik = ∇kCij .
Classical properties of metrics with harmonic curvature are summarized in the fol-
lowing lemma, [1], [8]
Lemma 1. Let (M, g) be a Riemannian manifold of dimension n ≥ 3. The following
holds
(1) if n = 3, (M, g) has harmonic curvature δR = 0 if and only if it is conformally
flat (W ≡ 0) and has constant scalar curvature R = Cte.
(2) If n ≥ 4, δW = 0 and M has constant scalar curvature, then δR = 0 .
(3) (M, g) has harmonic curvature if and only if its Ricci tensor is a Codazzi tensor
(i.e. dr = 0).
(4) If (M, g) is a Riemannian product, then it has harmonic curvature if and only
if any factor manifolds has harmonic curvature.

More generally, Derdzinski established a classification of the compact n-dimensional
Riemannian manifolds (Mn, g), n ≥ 3, with harmonic curvature. If the Ricci ten-
sor Ric(g) is not parallel and has less than three distinct eigenvalues at each point,
then (M, g) is covered isometrically by a manifold

(S1(T )×N, dt2 + h4/n(t)g0),

where the non constant positive periodic solutions h verify the equation (1). Here
(N, g0) is a (n-1)- dimensional Einstein manifold with positive (constant) scalar cur-
vature.

3 On the existence of Derdzinski metrics

3.1 Analysis of the Derdzinski equation

The function h defined by the above warped product (S1(T )×N, dt2 + h4/n(t)g0) is
a solution of

(1) h′′ − nR

4(n− 1)
h1−4/n = −n

4
Ch for some constant C > 0

so that its curvature is harmonic and its Ricci tensor is non parallel Dr 6= 0.
In fact, this may be deduced from the following result (Lemma 1 in [6]).
Lemma 2. Let I be an interval ofR, and q a C∞ function on I such that eq = h4/n.
Let (N, g0) be an (n−1) dimensional Riemannian manifold, r0 its Ricci tensor, and R
its scalar curvature with n ≥ 3. Consider the warped product I×eq N, dt2 +h4/n(t)g0)
and r its Ricci tensor.
(1) Given a local product chart t = x0, x1, x2, ....., xn−1 for I×N with g00 = 1, g0i =
0 and gij = eqg0ij . The components of the covariant derivative of r are

∇0r00 = −n− 1
2

[q′′′ + q′q′′], ∇0ri0 = ∇ir00 = 0,

∇0rij = −q′r0ij −
1
2
eq[q′′′ + (n− 1)q′q′′]g0ij , ∇ir0j = −1

2
q′r0ij −

n− 2
4

eqq′q′′g0ij .
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(2) If q is non constant, then the product I ×eq N, dt2 + h4/n(t)g0) has harmonic
curvature if and only if (N, g0) is an Einstein manifold and the positive function h
satisfies the ODE (1) on I .

Notice that the warped product manifold (R × M ′, dt2 + h4/n(t)g′) is complete
analytic. It thus appears from Lemma 2 that condition ∇r = 0 is equivalent to
q′′′ + q′q′′ = 0 and (n− 1)(n− 2)q′′eq + 2R = 0.

Moreover, [6] proved (his Theorem 1) that equation (1) possesses at least one non
constant positive periodic solution if and only if R > 0 and −n

4 p = C > 0.
But, some care needs to be taken on the subject of the constant and the existence

of a non trivial solution. This constant C must verify some additional condition so
that the conclusion holds.
More precisely, as we shall see below, if the constant C verifies

0 < C ≤ 4π2

T 2

then there is no non constant periodic (of period T ) solution of (1) .

3.2 Existence conditions of the Derdzinski metrics

More precisely, considering the ODE point of view, we are able to analyse all the
solutions of equation (1), which may have a non constant, positive periodic solution.
We shall prove the following
Theorem 1. Consider the warped product (S1(T )×N, dt2 + h4/n(t)g0). The non
constant positive periodic solution h(t) satisfies Equation (1) and (N, g0) is a (n-1)-
dimensional Einstein manifold with positive (constant) scalar curvature R . Then, if
the circle length T satisfies the following inequalities

2π
(k − 1)√

C
< T ≤ k√

C
, where k is an integer > 1,

there exist at least k rotationnally invariant warped metrics
dt2 + h4/n(t)g0 on the product manifold S1(T )×N.
Moreover, these metrics have an harmonic curvature. Their Ricci tensor are non par-
allel only if T > 2π√

C
.

Conversely, if the warped metric of the type dt2 + h4/n(t)g0 on the manifold
S1(T )×N has harmonic curvature, then the function h(t) on the circle satisfies the
ODE (1).

Condition T > 2π√
C

implies the existence of a non constant solution h(t) . Oth-
erwise, a trivial product has a parallel Ricci tensor.

3.3 Proof of Theorem 1

All periodic orbits γc(t) of the following system equivalent to Equation (1)

{
x′ = −y
y′ = nR

4(n−1)x
1− 4

n − nC
4 x,(2)
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are surrounded by the homoclinic orbit γc0 . The last one may be parametrized by
(u0(t), v0(t)).
Denote the coordinates of γc(t) by (uc(t), vc(t). When the value c satisfies the
condition 1 < c < c0 , the correspondant orbit is periodic (c0 corresponds to a
periodic solution of null energy) .

The center of system (2) is (α, 0), where α =
(

R

4(n− 1)C

)4/n

.

One may easily remark that two positive T-periodic solutions of (1) having the same
energy are translated, and thus give rise to equivalent metrics on (S1(T )×N), g0).
Note that the metric corresponding to the conformal factor u0 : g = u0

4
n−2 g0

is non complete. Then, it is not a pseudo-cylindric metric; for this reason the constant
c cannot attain the critical value c0 .
Equation (1) may be written under the following form

x′′ + φ(x) = 0(3)

where

φ(x) =
n

4
C(x− α)− nR

4(n− 1)
(x− α)1−4/n.

The period of the periodic solutions depends on the energy T ≡ T (c) with c the
energy constant. It can be expressed by

T (c) =
√

2
∫ b

a

du√
c−G(u)

where G(u) is an integral of φ(u), with a nondegenerate relative minimum at the
origin. It verifies in addition G(a) = G(b) = c and a ≤ α ≤ b.
So, φ(α) = 0 and φ′(α) = n

4 C > 0. Hence, the origin is a center of Equation (3). That
means in the neighbourhood of the trivial solution h(t) ≡ α Equation (1) admits a
periodic solution.
We need the following result
Lemma 3. Under the above hypothesis the family of solutions (T, uT (t)) of the
ODE (3) (where T is the minimal period) has bifurcation points on the values
(Tk, uT k(t)) where Tk = 2πk√

n−2
and uTk

≡ α is a constant. In this family, there is a
curve of non trivial solutions which bifurcates to the right of the trivial one.

This lemma is a classical result of global bifurcation theory (for details see for
example [C-R]). Indeed, let us consider a positive T-periodic solution: if T 6= Tk ,
then the linearized associate equation is non-singular.
We may also deduce from bifurcation theorem, applied to the simple eigenvalues prob-
lem, that there is an unique curve of non trivial solutions near the point (Tk, α). In
fact, this uniqueness is global. The trivial curve is uT ≡ α .

Moreover, (
du

dT
)T=Tk

is an eigenvalue of the linearized associate equation. According
to the global bifurcation theory, we assert that the non trivial curves turn off on the
right of the singular solution (Tk, uTk

(t)) . Consequently, when T varies, two non
trivial curves never cross.
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To prove Theorem 1, we also need the following.

Lemma 4 . The minimal period T (c) of a (periodic, positive) solution uT of the
equation (2) is a monotone increasing function of its energy, when c ∈ [0, c0]

Chow-Wang [4] also have calculated the derivative of the period function T (c) for
equation (2) and have found the expression of the derivative

T ′(c) =
1
c

∫ b

a

φ2(w)− 2G(w)φ′(w)
φ2(w)

√
c−G(w)

dw.

Recall G(w) is the integral of φ verifying G(a) = G(b) = c.
Consider now a function ψ defined by

φ(x) = ψ(
x

α
)

Lemma 4 is in fact a consequence of the following (see corollary (2-5) in [4]) applied
to the function ψ .

Lemma 5 . Consider a smooth function ψ such that ψ(1) = 0 , ψ′(1) > 0. Suppose
that

H(x) = ψ2(x)− 2G(x)ψ′(x) +
ψ′′(1)

3ψ′2(1)
ψ3(x) > 0,

for all x ∈ [a, b], where a < 1 < b and x 6= 1 . Then, T ′(c) ≥ 0 for all
c ∈ [0, c0] .
Moreover, if in addition

ψ′′(x) ≥ 0 and ∆(x) = (x− 1)
[
ψ′(x)ψ′′(1)− ψ′(1)ψ′′(x)

]
≥ 0

then H(x) > 0.
Notice that Lemma 4 implies Lemma 3 (see corollary (3-1) in [4]).
In order to apply the preceding lemma it is more convenient to make a change of

variables in equation (1) h(t) = αf(βt) , where

α =
(

R

4(n− 1)C

)4/n

and β =

√
nC

4
.

Note that the constant C must be positive to ensure that equation (1) has a periodic
non constant solution. This change gives the equation

f ′′ − f1−4/n + f = 0.(4)

We can verify that this equation satisfies Lemmas 2 and 3 given above. They will be
used to complete the analysis of the equation (1).
Indeed, we get the functions

g(f) = f − f1− 4
n ; g′(f) = 1− (1− 4

n
)f−

4
n
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and g′′(f) =
4
n

(1− 4
n

)f−1− 4
n .

Notice that the hypothesis g′′(f) ≥ 0 is only satisfied if n ≥ 4.
Then, we calculate

∆(f) = (f − 1)[g′′(1)g′(f)− g′(1)g′′(f)].

We get

∆(f) = (f − 1)
4
n

(1− 4
n

)[1− f
4
n +

4
n

(f−
4
n − f−1− 4

n )].

It follows
∆(f) =

4
n

(1− 4
n

)f(1− f−1)[1− f
4
n +

4
n

f−
4
n (1− f−1)],

which is obviously positive.
Concerning the case n ≤ 4. Remark that for n = 4 Equation (1) becomes linear
(that is the trivial case). For n = 3, only the following implications can be made

g′′(x) < 0 ⇒ −2G(x)g′′(x) ≥ 0 ⇒ H(x) > 0

We are now able to complete the proof of Theorem 1.
First, we deduce the increase of the period function depending on the energy of the
equation (1). This fact allows us to determine the lower bound of the number of these
Derdzinski metrics. We also remark, that the bifurcation points of the solution family
are

(Tk, uk) , where uk = (
(n− 1)C

nR
)−n/4 and Tk =

2πk√
C

.

It appears from the above analysis that, a non constant, periodic solution of the
equation (1) exists only if the circle length satisfies the following condition

T >
2π√
C

.(5)

Notice that, we get an infinity of solutions . All are obtained by rotation-translation
of the variable.
Moreover, in the case where T satisfies the double inequality

2π
(k − 1)√

C
< T ≤ 2π

k√
C

k is an integer > 1,(6)

then the equation (2) may admit at least k rotationnally invariant distinct solutions.
Hence, we have improved the lemma 1 of Derdzinski [6] (see also Chapter 16.33 of A.
Besse [1])

4 Pseudo-cylindric and Derdzinski metrics

Notice that the Riemannian product (S1(T )×N, dt2 + h4/n(t)g0) is conformally flat
only if the factor N has constant sectional curvature.
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Let the Riemannian cylindric product (S1 × Sn−1, dt2 + dξ2), where S1 is the cir-
cle of length T and (Sn−1, dξ2) is the standard sphere. Such a metric has a parallel
Ricci tensor. Moreover, we know that the number of Yamabe metrics is finite in the
conformal class of the cylindric metric [dt2 + dξ2], (see [2]).
We call pseudo-cylindric metric any non trivial Yamabe metric gc in [dt2 + dξ2]. (gc

is a Yamabe metric on a n-dimensional Riemannian manifold (M, g) if there is a C∞

positive solution uc of a differential equation such that the metric gc = u
4

n−2
c g has

a constant scalar curvature).
For k = 2, there is a conformal diffeomorphism between Sn − {p1, p2} and
(S1 × Sn−1, dt2 + dξ2), where S1 is the circle of length T . The non trivial Yamabe
metrics on (S1 × Sn−1, dt2 + dξ2), are called pseudo-cylindric metrics. There are
metrics of the form g = u

4
n−1 (dt2 + dξ2) where the C∞ function u is a non

constant positive solution of the Yamabe equation, [2].

We first remark there is a conformal diffeomorphism between the manifolds Rn \
{0} and R × Sn−1 given by sending the point x to (log |x|, x

|x| ). By using the
stereographic projection, we see easily that the manifold R × Sn−1 (which is the
universal covering space of S1 × Sn−1) is conformally equivalent to Sn \ {0,∞}.
Notice that the manifold Sn \ (p,−p) with the standard induced metric, can be
considered as the warped product

]0, π[×Sn−1 , with allowed metric dt2 + sin2 tdξ2.

It has been shown ( using an Alexandrov reflection argument) that any solution of

4
n− 1
n− 2

∆g0u + Rg0u−Rgu
n+2
n−2 = 0,(7)

is in fact a spherically symmetric radial function (depending on geodesic distance
from either p or −p). Any solution of Equation (6) which gives a complete metric on
the cylinder <× Sn−1 is of the form u(t, ξ) = u(t) , where t ∈ R and ξ ∈ Sn−1.
The background metric on the cylinder is the product g0 = dt2+dξ2. For convenience,
we assume the sphere radius equal to 1.
Therefore, the partial differential equation (6) is reduced to an ODE.
The cylinder has scalar curvature R(g0) = (n−1)(n−2) and R(u

4
n−2 g0) = n(n−1).

Thus u = u(t) satisfies

d2

dt2
u− (n− 2)2

4
u +

n(n− 2)
4

u
n+2
n−2 = 0.(8)

It follows that a pseudo-cylindric metric (constant scalar curvature metric) on the
product (S1(T )× Sn−1, g0) corresponds to a T-periodic positive solution of (8) and
conversely. The analysis of this equation shows us, that it has only one center (β, 0).
This corresponding to the (trivial) constant solution

β = (
n− 2

n
)

n−2
4 ,

We proved the following, [3]
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Proposition . Consider the product manifold (S1(T )×Sn−1, g0). Under the condi-
tion

T (c) > T1 =
2π√
n− 2

,

on the circle length, the Riemannian curvatures of the associate pseudo-cylindric met-
rics gc = uc

4
n−2 g0 are harmonic and their Ricci tensors are non parallel.

Moreover, any pseudo-cylindric metric may be identified to a Derdzinski metric up to
a conformal transformation.

Actually, any Derdzinski metric may be identified with a pseudo-cylindric metric
up to conformal diffeomorphism, let F . Then the metrics are related

dt2 + f2(t)dξ2 = F ∗(uj
c

4
n−2 (dt2 + dξ2)),

where uj
c are the pseudo-cylindric solutions belonging to the (same) conformal class.

Indeed, for the metric dt2 + f2(t)dξ2 we can write

dt2 + f2(t)dξ2 = f2(t)[(
dt

f
)2 + dξ2].

After a change of variables and by using the conformal flatness of the product metric,
we get

dt2 + f2(t)g0 = φ2(θ)[dθ2 + dξ2]

which is conformally flat.
To see that , it suffices to remark that any manifold carying a warped metric product
(S1 × N, dt2 + h4/n(t)g0) with harmonic curvature is not conformally flat unless
(N, g0) is a space of constant curvature. This manifold must be locally conformally
equivalent to the trivial product S1 ×N.
This product will be conformally flat only if N has constant sectional curvature.

On the other hand, we remark that any warped metric dt2 + h4/n(t)g0 defined
by Lemma 2 on the product manifold (S1 × Sn−1, dt2 + dξ2) is conformal to a
Riemannian metric product dθ2 + dξ2. Here θ is a new S1-parametrisation with

length
∫

S1

dt

h2/n(t)
. Furthermore, we have seen in a previous paper ([2]), there exists

a analytic deformation in the conformal class [gT ] , of any warped metric gT =
dt2 + f2(t)dξ2 on the manifold (S1 × Sn−1, dt2 + dξ2), n = 4 or 6 , and satisfying

the length condition T =
∫

S1

dt

f(t)
. Notice that the product metric (under the length

condition) belongs to the conformal class [gT ]. This analytic family of metrics depends
on two parameters (gα,β). They all have a constant positive scalar curvature, and
satisfy the condition: gα,0 is the warped metric gT .

Moreover, by using the same argument in [2], we are able to extend the latter
result to dimension 3. More precisely, a metric on the euclidean space R3 for which
the rotation group SO(3) acts by isometries, is in fact a warped product as gT =
dt2 + f2(t)dξ2 , where dξ2 is the standard metric on the sphere S2. We can verify
that its scalar curvature is

R =
2− 2f ′2 − 4ff ′′

f2
.
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Moreover, we know that every conformally flat manifold (M, g) admits a Codazzi
tensor which is not a constant multiple of the metric. Let b be such a symmetric
2-tensor field; suppose b has exactly 2 distinct eigenvalues λ , µ , constant trace
trg(b) = c and is non parallel. Following [6], these conditions give locally

M = I ×N with allowed metric g = dt2 + e2ψgN(9)

and
b = λdt2 + µe2ψgN , λ =

c

n
+ (1− n)ce−nψ, µ =

c

n
+ ce−nψ.(10)

Conversely, for any such data and for an arbitrary function ψ on I , (8) defines
a Riemannian manifold (M, g) with Codazzi tensor b of this type. If we assume
that the positive function h = e

n
2 ψ satisfies Equation (1)

h′′ − nR

4(n− 1)
h1−4/n = −n

4
Ch for some constant C > 0,

then the Ricci tensor is precisely a Codazzi tensor and, thus it is non parallel.
Therefore, (M, g) is isometrically covered by (R × N, dt2 + h4/n(t)gN ) where
(N, gN ) is an Einstein manifold with positive scalar curvature ( see [1] , 16.33).
Acknowledgements : I would like to thank Andrzej Derdzinski for valuable com-
ments.
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