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Abstract

For almost Minkowski manifolds we prove that the norm determined by
a unitary vector field which belongs to the timelike cone is the sum of two
fundamental forms induced by the Lorentzian metrics on two submanifolds.
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1 Introduction

A Lorentz manifold is a pair (M, g) where M is an n + 1 dimensional smooth para-
compact manifold and g is a global smooth two-times covariant symmetric tensor field
which is nondegenerate and has n — 1 signature.

A time-normalized space-time [M, g, Z] is a Lorentz manifold (M, g) for which a
global unitary (i.e., g (Z,Z) = —1) tangent vector field Z of timelike vectors is fixed;
this will be denoted by [M, g, Z].

Definition 1 An almost Minkowski manifold is a time-normalized space-time [M, g, Z|
provided that the distribution

ArzeM—A Y yer,M|g(,2) =0}

is totally integrable.

Proposition 2 The necessary and sufficient condition that a time-normalized space-
time manifold [M, g, Z] be an almost Minkowski manifold is the existence of a prefer-
ential atlas

A= {(UouXa) | o€ F7 Xa (.Z') = (xi)7 it=1,n+1 anJrl =7 Ua}7
where

9gin+1 _ 0y; —
jn+1 Vi i
— = - ) 1,n+1.
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Proof. For X,Y belonging to A we have
9(X,2)=g(Y,Z) =0,
which infers

g(VyX,2)+9(X,VyZ) = 0
g(VxY,Z)+g(Y,VxZ) = 0,
where V is the Levi-Civita connection of Lorentz manifold (M, g). In the local charts
of atlas 4 where Z = 9,11, X = X'9; and Y = Y79; we have
g([XaY]aZ) = g(vXYaZ)_g(vaaZ):
= 9(X,VyZ2) —g(Y,VxZ) =
= X [F§n+19in+1 - F§n+19jn+1] =
— xiyJ (5’9m+1 _ 3gjn+1> .

oxJ Ox?
Therefore [X, Y] belongs to A if and only if a‘qul = 99; ntl
oxJ ox?

O

Remark 3 The existence of almost Minkowski manifolds is obvious, since it is possi-

ble to choose Z so that ¢ (9;, Z) 0; be irrotational. If (M, g) is stable causal then there

exists a real global function f with the gradient Vf of timelike type, (see e.g. [1],

[6]), and the corresponding 1-form of Z = ————Vf closed, and therefore it
-9(Vf. V)

respects the previous conditions.

Remark 4 If the corank one distribution is not integrable, then any two points can
be connected by a curve v : [0,1] — M where g (v (t), Z,)) = 0, according to the
Carathéodory theorem, ([3, p.10]).

Definition 5 We define the ordering relation for the elements of T, M, x € M :
X<Y&Y-XckK,,

where K, = {X e T, M | g(X,X) <0, g(X,Z) <0} is the interior of the timelike
cone of the tangent vectors.

From ([4]) we have:

o (T,M,K,) is a Krein space, Vx € M

e The map ||, : T,M — R, |X|, oef min{\ > 0| —A\Z <X < A\Z} is a topo-
logical norm of T, M, named the Z-norm of the almost Minkowski manifold
M.g,7].

e An easy calculation implies
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(1.1) X1, =19 (X, 2)| + /g (X, 2)° + g (X, X).

z

Proposition 6 The Z-norm is invariant to a conformal change of Lorentzian metric.

Proof. Let g, § be two conformal metrics (i.e. ¢ = g?). The Z-norms expressions
for the two almost Minkowski manifolds are, ([5])

. x| lex o) gxx)

Xz = ‘ “ Z>’+\/{g<z,2>] 9z
X, 2) JX, 21 (X, X) 5
g(z@’*\/{w,m] Tz2 X

Remark 7 The Z-norm can be defined if the existent condition of the global timelike
vector field Z is weakened and replaced with the existence of a line element field which
is equivalent to the existence of Lorentzian metrics ([2]).

2 The Z-norm dependence on the first fundamental
form of the hypersurface normal to Z

Consider the preferential atlas A of Proposition 2 (this exists, cf. [4]). We note by S
the integral submanifold of distribution A with p € S. Obviously S is a hypersurface
imbedded in M with inclusion map 6 : S — M. Let n € T; M, q € S be the 1-form
n(X)=g¢(X,Z), VX € T,M. This implies n (,X) = 0,VX € T, M and if we denote
H, =0, (T,5), this is a hyperplane in T,M. If Z is be tangent to 6 (S), then there
exist X € T,5 \ {0} such that 6, (X) = Z and -1 =¢(Z,2) = g(0.(X),Z) =0,
which is impossible. Therefore Z is not in the tangent space of 6 (S). If {Ey, ..., E,}
is a basis in T, S, then {Z, 0, (E1), ...,0. (E,)} is linearly independent and hence is a
basis for T, M. The components of g with respect to this basis are

9(2,2) 0 0
0 g(0x (E1),0. (E1)) . g(0.(E1),0.(En))
(9ab) = : : : : -
0 g (0« (En), 0 (E1)) .. g(0«(En),0.(En))

-1 0
a ( 0 [g(0«(E:), 0« (Ej)]) )

Because g has one negative eingenvalue, then 6*g is positively definite. Let’s consider
9*:T;MHT;S,andH**{wGT*M|w )=0}.

From 0*|Hq* : Hy — T3S, being obviously a bijection, we denote its inverse by
5* : Tq*S — H;‘. Therefore there exist two bijections 6, and 5* between 7,5 and H,
and respectively between 7S and H;. This map can be extended in a usual way to
a map 6 of arbitrary tensors on S to 6 (S) in M. Since n is normal to hypersurface
6 (S), for a given tensor T € Ty S we obtain that ¢ (T') has zero transvections with
n in all indices:
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(éT)““m“” T (5T)“'"ZT g"Pn, = 0.

J1---Js J1.-m..js

Denote by h the metric on 8 (S), defined by h = 6 (6*g). In the preferential atlas A
the components of h are

hay = Gab + Mab = Gab + Gan+19bn+1 ,Va, b€ 1,n+ 1.

Proposition 8 The (1.1) tensor associate to h having the components h® is a pro-
jection operator, h® = 6% 4+ gant10%,, and
a) The projection of X € T,M onto the subspace Hy is

X=X +9(X,2)Z.
b) The projection of w € Ty M onto the subspace Hy is

hlwpdz® = w +w (Z) n.

Proof.
hg = hacQCb = (gac + gan+lgcn+1) QCb = 53 + gan+152+1
hghg = (5;)1 + 9bn+15$+1) (52 + gcn+162+1) = hg
X+9(X,2)Z = X0+ X"Gan+10n41= X" (6 + gant10541) Op= h5 X0y
wHw(Z)n = Wedr® + wpt1Gan+1dr® = wq ((5{} + gbn+167‘§+1) da® = hfw,dz®

Remark 9 Analogously we can project the tensor 7' € T' () q S to
H(T)eH,®..0 Hy@ H @...@ H: < H7 (g) via

rtimes s factors
H(T) =T+ (-0 1 (2%, .., 2.2, ., 2) 2% .QZRZ ... 0 Z*

r factors s factors

One can than verify the relation
H(H(T))=H(T), VT € T(Z)qS.
Proposition 10 (S,6%g) is a totally geodesic submanifold

Proof. In the above notation, the coordinates of the second fundamental form of S
are ([1, p. 46])
Xab = hghgnc;d = hzhggcn+l;d = 0.

Remark 11 We will denote the covariant differentiation with respect to the Levi-
Civita connection of (S, 6*g) by double stroke.
Then for any tensor 7' € T'(7), S we have:

P ; —ki...k ; i
Q1. T 1ok gy ir 3l ls pp
H (1 ) — s ;Phkl"'hkrhjl‘”hjshm )

where T is an extension of H (T') to a neighborhood of 6 (S). This formula is correct
because the double stroke of the induced metric is zero and the torsion vanishes,

havlle = (gef + Gen+19fn+1) il hghi =0
f”ab = hghgf;cd = hzhgf;dc = f||ba~
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For p € M, we denote by s the 1-dimensional submanifold which passes through
p and Tys = (Z,), Vq € s. The local imbedding map ¢ : s < M is the inclusion
which determines the applications i. 4 : Tys — TyM and iy : Ty M — T;s. Denote
Ny = duq(Tys), Nj = {we TyM|w(X)=9(X,2), A€ R}; it is obvious that
ixq t Tgs — Ng and dg|ny : Ny — T's are bijections.

For [ = [ileq*]il o (i;g), we have [ (X,Y) = — XY, where
X =XZ, Y =YZ, X,Y €T}s,
[ must be a two symmetric 2-form negatively definite on i (s) and for Vg € 6 (S)Ni (s)
TyM=H,® Ny, TyM=H;®N,.

Proposition 12 The Z-norm on the almost Minkowski manifold [M,g,Z] is the
sum of the Riemannian norms associated to the projections onto the submanifolds

(O(h), h) and (i(s), —0).

Proof. In (0 (S),h) the Riemannian norm is

X, = h(X,X)=\/g(X,X)+g(X,Z)2, VX € H,.
In (i (s),—1) the Riemannian norm is
X], = V-U(X, X) = |X] =]g(X,2)], VX € N,.

Ift X €e T,M = H, & N,, by Proposition 8 a) we have X = X; + X,, where
X1=X+49(X,Z2)Z and Xy = —g(X,2) Z;

h(X1,X1) = g(Xi,X1)+9(X1,2)? =g(X,X)+g(X,2)°
[(X2X2) = —g(X,2)°
Then
1X1], + [ Xal, = V-1(X2,Xo) +Vh(X1, X)) =
= (X 2)[ + /g (X.X) + g (x.2)" 2 [x],,.
O
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