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Abstract

For almost Minkowski manifolds we prove that the norm determined by
a unitary vector field which belongs to the timelike cone is the sum of two
fundamental forms induced by the Lorentzian metrics on two submanifolds.
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1 Introduction

A Lorentz manifold is a pair (M, g) where M is an n + 1 dimensional smooth para-
compact manifold and g is a global smooth two-times covariant symmetric tensor field
which is nondegenerate and has n− 1 signature.

A time-normalized space-time [M, g, Z] is a Lorentz manifold (M, g) for which a
global unitary (i.e., g (Z,Z) = −1) tangent vector field Z of timelike vectors is fixed;
this will be denoted by [M, g, Z].

Definition 1 An almost Minkowski manifold is a time-normalized space-time [M, g, Z]
provided that the distribution

∆ : x ∈ M → ∆x
def
= {Y ∈ TxM | g (Y, Z) = 0}

is totally integrable.

Proposition 2 The necessary and sufficient condition that a time-normalized space-
time manifold [M, g, Z] be an almost Minkowski manifold is the existence of a prefer-
ential atlas

A=
{
(Uα, χα) | α ∈ Γ, χα (x) =

(
xi

)
, i = 1, n + 1 ∂n+1 = Z|Uα

}
,

where
∂gin+1

∂xj
=

∂gjn+1

∂xi
∀i, j ∈ 1, n + 1.

∗Balkan Journal of Geometry and Its Applications, Vol.8, No.2, 2003, pp. 37-42.
c© Balkan Society of Geometers, Geometry Balkan Press 2003.



38 S. Noaghi

Proof. For X,Y belonging to ∆ we have

g (X, Z) = g (Y, Z) = 0,

which infers

g (∇Y X, Z) + g (X,∇Y Z) = 0
g (∇XY,Z) + g (Y,∇XZ) = 0,

where ∇ is the Levi-Civita connection of Lorentz manifold (M, g). In the local charts
of atlas A where Z = ∂n+1, X = Xi∂i and Y = Y j∂j we have

g ([X, Y ] , Z) = g (∇XY,Z)− g (∇Y X,Z) =
= g (X,∇Y Z)− g (Y,∇XZ) =
= XiY j

[
Γk

jn+1gin+1 − Γk
in+1gjn+1

]
=

= XiY j

(
∂gin+1

∂xj
− ∂gjn+1

∂xi

)
.

Therefore [X, Y ] belongs to ∆ if and only if
∂gin+1

∂xj
=

∂gjn+1

∂xi
2

Remark 3 The existence of almost Minkowski manifolds is obvious, since it is possi-
ble to choose Z so that g (∂i, Z) ∂i be irrotational. If (M, g) is stable causal then there
exists a real global function f with the gradient ∇f of timelike type, (see e.g. [1],

[6]), and the corresponding 1-form of Z =
1√

−g (∇f,∇f)
∇f closed, and therefore it

respects the previous conditions.

Remark 4 If the corank one distribution is not integrable, then any two points can
be connected by a curve γ : [0, 1] → M where g

(
γ′ (t) , Zγ(t)

)
= 0, according to the

Carathéodory theorem, ([3, p.10]).

Definition 5 We define the ordering relation for the elements of TxM, x ∈ M :

X ≤ Y ⇔ Y −X ∈ Kx,

where Kx = {X ∈ TxM | g (X, X) < 0, g (X, Z) < 0} is the interior of the timelike
cone of the tangent vectors.

From ([4]) we have:

• (TxM,Kx) is a Krein space, ∀x ∈ M

• The map | |Z : TxM → R, |X|Z
def= min {λ ≥ 0 | − λZ ≤ X ≤ λZ} is a topo-

logical norm of TxM, named the Z-norm of the almost Minkowski manifold
[M, g, Z] .

• An easy calculation implies
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|X|z = |g (X,Z)|+
√

g (X, Z)2 + g (X, X).(1.1)

Proposition 6 The Z-norm is invariant to a conformal change of Lorentzian metric.

Proof. Let g, ĝ be two conformal metrics (i.e. g = ĝ Ω2). The Z-norms expressions
for the two almost Minkowski manifolds are, ([5])

|X|gZ =
∣∣∣∣
g (X, Z)
g (Z, Z)

∣∣∣∣ +

√[
g (X, Z)
g (Z, Z)

]2

+
g (X, X)
g (Z, Z)

=

=
∣∣∣∣
ĝ (X, Z)
ĝ (Z, Z)

∣∣∣∣ +

√[
ĝ (X, Z)
ĝ (Z, Z)

]2

+
ĝ (X, X)
ĝ (Z, Z)

= |X |̂gZ

Remark 7 The Z-norm can be defined if the existent condition of the global timelike
vector field Z is weakened and replaced with the existence of a line element field which
is equivalent to the existence of Lorentzian metrics ([2]).

2 The Z-norm dependence on the first fundamental
form of the hypersurface normal to Z

Consider the preferential atlas A of Proposition 2 (this exists, cf. [4]). We note by S
the integral submanifold of distribution ∆ with p ∈ S. Obviously S is a hypersurface
imbedded in M with inclusion map θ : S → M . Let n ∈ T ∗q M, q ∈ S be the 1-form
n (X) = g (X,Z) , ∀X ∈ TqM. This implies n (θ∗X) = 0, ∀X ∈ TqM and if we denote
Hq = θ∗ (TqS), this is a hyperplane in TqM. If Z is be tangent to θ (S) , then there
exist X ∈ TqS \ {0} such that θ∗ (X) = Z and −1 = g (Z, Z) = g (θ∗ (X) , Z) = 0,
which is impossible. Therefore Z is not in the tangent space of θ (S) . If {E1, ..., En}
is a basis in TqS, then {Z, θ∗ (E1) , ..., θ∗ (En)} is linearly independent and hence is a
basis for TqM. The components of g with respect to this basis are

(gab) =




g (Z, Z) 0 ... 0
0 g (θ∗ (E1) , θ∗ (E1)) ... g (θ∗ (E1) , θ∗ (En))
...

...
...

...
0 g (θ∗ (En) , θ∗ (E1)) ... g (θ∗ (En) , θ∗ (En))


 =

=
( −1 0

0 [g (θ∗ (Ei) , θ∗ (Ej)])

)

Because g has one negative eingenvalue, then θ∗g is positively definite. Let’s consider
θ∗ : T ∗q M → T ∗q S, and H∗

q =
{
ω ∈ T ∗q M | ω (Z) = 0

}
.

From θ∗|H∗
q

: H∗
q → T ∗q S, being obviously a bijection, we denote its inverse by

θ̃∗ : T ∗q S → H∗
q . Therefore there exist two bijections θ∗ and θ̃∗ between TqS and Hq

and respectively between T ∗q S and H∗
q . This map can be extended in a usual way to

a map θ̃ of arbitrary tensors on S to θ (S) in M. Since n is normal to hypersurface
θ (S), for a given tensor T ∈ T r

s,qS we obtain that θ̃ (T ) has zero transvections with
n in all indices:
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(
θ̃T

)i1..m..ir

j1...js

nm =
(
θ̃T

)i1...ir

j1..m..js

gmpnp = 0.

Denote by h the metric on θ (S), defined by h = θ̃ (θ∗g). In the preferential atlas A
the components of h are

hab = gab + nanb = gab + gan+1gbn+1 , ∀a, b ∈ 1, n + 1.

Proposition 8 The (1.1) tensor associate to h having the components hb
a is a pro-

jection operator, hb
a = δb

a + gan+1δ
b
n+1 and

a) The projection of X ∈ TqM onto the subspace Hq is

hb
aXa∂b = X + g (X,Z)Z.

b) The projection of ω ∈ T ∗q M onto the subspace H∗
q is

hb
aωbdxa = ω + ω (Z)n.

Proof.

hb
a = hacg

cb = (gac + gan+1gcn+1) gcb = δb
a + gan+1δ

b
n+1

ha
bhb

c =
(
δa
b + gbn+1δ

a
n+1

) (
δb
c + gcn+1δ

b
n+1

)
= ha

c

X + g (X, Z) Z = Xa∂a + Xagan+1∂n+1 = Xa
(
δb
a + gan+1δ

b
n+1

)
∂b = hb

aXa∂b

ω + ω (Z)n = ωadxa + ωn+1gan+1dxa = ωa

(
δa
b + gbn+1δ

a
n+1

)
dxb = ha

bωadxb

Remark 9 Analogously we can project the tensor T ∈ T (r
s)q S to

H (T ) ∈ Hq ⊗ ...⊗Hq︸ ︷︷ ︸
r times

⊗H∗
q ⊗ ...⊗H∗

q︸ ︷︷ ︸
s factors

def
= Hr

s (q) via

H (T ) = T + (−1)r+s+1
T (Z∗, .., Z∗, Z, .., Z)Z ⊗ ...⊗ Z︸ ︷︷ ︸

r factors

⊗Z∗ ⊗ ...⊗ Z∗︸ ︷︷ ︸
s factors

One can than verify the relation

H (H (T )) = H (T ) , ∀T ∈ T (r
s)q S.

Proposition 10 (S, θ∗g) is a totally geodesic submanifold

Proof. In the above notation, the coordinates of the second fundamental form of S
are ([1, p. 46])

χab = hc
ahd

bnc ; d = hc
ahd

bgcn+1; d = 0.

Remark 11 We will denote the covariant differentiation with respect to the Levi-
Civita connection of (S, θ∗g) by double stroke.

Then for any tensor T ∈ T (r
s)q S we have:

H (T )i1...ir

j1...js||m = T
k1...kr

l1...ls ; ph
i1
k1

...hir

kr
hl1

j1
...hls

js
hp

m ,

where T is an extension of H (T ) to a neighborhood of θ (S). This formula is correct
because the double stroke of the induced metric is zero and the torsion vanishes,

hab||c = (gef + gen+1gfn+1) ; ih
e
a
hf

b hi
c = 0

f||ab = hc
ahd

bf;cd = hc
ahd

bf;dc = f||ba.
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For p ∈ M , we denote by s the 1-dimensional submanifold which passes through
p and Tqs = 〈Zq〉 , ∀q ∈ s. The local imbedding map i : s ↪→ M is the inclusion
which determines the applications i∗,q : Tqs → TqM and i∗q : T ∗q M → T ∗q s. Denote
Nq = i∗,q (Tqs) , N∗

q =
{
ω ∈ T ∗q M | ω (X) = g (X, Z) , λ ∈ R

}
; it is obvious that

i∗,q : Tqs → Nq and i∗q |N∗
q

: N∗
q → T ∗q s are bijections.

For l =
[
i∗q |N∗

q

]−1

◦ (
i∗qg

)
, we have l (X, Y ) = −XY , where

X = XZq, Y = Y Zq, X, Y ∈ Tqs,

l must be a two symmetric 2-form negatively definite on i (s) and for ∀q ∈ θ (S)∩ i (s)

TqM = Hq ⊕Nq, T ∗q M = H∗
q ⊕N∗

q .

Proposition 12 The Z-norm on the almost Minkowski manifold [M, g, Z] is the
sum of the Riemannian norms associated to the projections onto the submanifolds
(θ(h) , h) and (i (s) , −l).

Proof. In (θ (S) , h) the Riemannian norm is

|X|h =
√

h (X, X) =
√

g (X, X) + g (X, Z)2, ∀X ∈ Hq.

In (i (s) ,−l) the Riemannian norm is

|X|l =
√
−l (X, X) =

∣∣X
∣∣ = |g (X, Z)| , ∀X ∈ Nq.

If X ∈ TqM = Hq ⊕ Nq, by Proposition 8 a) we have X = X1 + X2, where
X1 = X + g (X, Z)Z and X2 = −g (X, Z) Z;

h (X1, X1) = g (X1, X1) + g (X1, Z)2 = g (X, X) + g (X,Z)2

l (X2X2) = −g (X, Z)2

Then

|X1|h + |X2|l =
√
−l (X2, X2) +

√
h (X1, X1) =

= |g (X, Z)|+
√

g (X, X) + g (X.Z)2 1.1= |X|Z .

2
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