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Abstract

The aim of this paper is to study the influence of the Euclidean-Lagrangian
structure of the state space on the generalized Tobin flow in economics, confirm-
ing the existence of optimal economic fluctuations (small oscillations).

Section 1 reviews the generalized Tobin economic flow as formulated by Ben-
habib and Miyao. Section 2 recalls some tools of single-time geometric dynamics
which describe a geodesic motion under a gyroscopic field of forces. Section 3
studies the linearized geometric dynamics produced by the Tobin-Benhabib-
Miyao flow and by the Euclidean-Lagrangian structure of the economic state
space.

In this way we estimate the time economic evolution for spotlighting the
expectations of the agents.
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1 Tobin-Benhabib-Miyao economic flow

The Tobin model [4] regarding the role of money on economic growth has been ex-
tended by Benhabib and Miyao [1] to incorporate the role of expectation parameters,
and to show that the variation of this parameter produces a Hopf Bifurcation in a
three sector economy (see also [5],[6]).

We introduce the state space by the following variables:

• k = the capital labour ratio;

• m = the money stock per head;

• q = the expected rate of inflation.

Then, the model is an ODEs system

(1.1) k̇ = sf(k)− (1− s)(θ − q)m− nk, ṁ = m(θ − p̄− n), q̇ = µ(p̄− q),
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where

(1.2) p̄ = ε
(
m− L(k, q)

)
+ q,

is the actual rate of inflation. The real functions f(k) and L(k, q) are differentiable,
and s, θ, n, µ, ε are parameters (s = saving ratio; θ = rate of money expansion, n
= population growth rate, µ = speed of adjustment of expectations, ε = speed of
adjustment of price level). Keeping the parameters s, θ, n, ε like constants, we obtain
an ODEs system with one parameter µ.

An equilibrium point (k∗(µ),m∗(µ), q∗(µ)), at which k̇ = 0 = ṁ = q̇, is the
solution of the algebraic system

(1.3) θ = q + n,L(k, q) = m, s f(k) − (1− s)mn− k n = 0.

(suppose we have isolated solutions). Denoting x = (x1, x2, x3) = (k−k∗,m−m∗, q−
q∗), the linearization about the equilibrium point (0, 0, 0) is

(1.4) ẋ = A(µ)x,

where A(µ) is the Jacobian matrix of the function

(1.5)
(

sf(k)− (1− s)(θ − q)m− nk , m(θ − p̄− n) , µ(p̄− q)
)

,

computed at (k = k∗, m = m∗, q = q∗), i.e.,

(1.6)




s f ′ − n −(1− s)n (1− s)m
εmL1 −2εm m(εL2 − 1)
−µεL1 µε −µεL2




(k∗,m∗,q∗)

The characteristic equation is

(1.7) det
(
A(µ)− λ(µ)I

)
= −λ3 + c1λ

2 − c2λ + c3 = 0 ,

where c1 = trA(µ), c2 = sum of principal minors of order two, c3 = detA(µ). If
(−1)ici > 0 (i = 1, 2, 3) and c1c2 < c3, then we have solutions of type λ1 (µ) < 0,
λ2,3 (µ) = α (µ)± i β (µ), α (µ) < 0, and consequently the equilibrium point is asymp-
totically stable. In the hypothesis c1c2 = c3, we can find µ0 such that λ1 (µ0) < 0,
and α (µ0) = 0, dα

dµ (µ0) 6= 0. By the Hopf Bifurcation Theorem, there exist periodic
solutions (

k(t, µ),m(t, µ), q(t, µ)
)
, t ∈ R

around the equilibrium point (k∗,m∗, q∗).
Medio [2],[3] generalized the previous model and studied the birth of limit cycles

given by Hopf Bifurcation, in the framework of λ - matrices and gyroscopic models.

2 Geometric dynamics produced by
a flow and a Riemannian metric

Our theory [7 ]-[10] can be applied equally to any kind of flow on a manifold endowed
with a geometric structure capable to produce ”square of the length” (density of en-
ergy) and ”derivatives”. This geometric structure transforms a flow into a geodesic mo-
tion in a gyroscopic field of forces. As an example, we can use a Euclidean-Lagrangian
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structure associated to the metric δij or a Riemannian-Lagrangian structure associ-
ated to the metric gij .

Let us start with an arbitrary flow

(2.8) ẋi = Xi(x) , i = 1, 2, 3

on the Euclidean space (R3, δij). Modifying the prolongation by derivation in a suit-
able way, we obtain a gyroscopic prolongation

(2.9)
d2xi

dt2
= δjk

(∂Xi

∂xj
− ∂Xj

∂xi

)dxk

dt
+

∂f

∂xi
,

where

(2.10) f = 0.5 δij Xi Xj

is the density of economic energy. This new prolongation determines a geometric
dynamics, i.e., a geodesic motion in a gyroscopic field of forces. Another way to realize
a geometric dynamics is to consider the least squares Lagrangian

(2.11) L(x, ẋ) = 0.5 δij
(
ẋi −Xi(x)

)(
ẋj −Xj(x)

)

and to write the Euler-Lagrange equations which are just (9). Automatically, the
geometric dynamics conserves the Hamiltonian

(2.12) H(x, ẋ) = 0.5 δij
(
ẋi −Xi(x)

)(
ẋj + Xj(x)

)
.

The linearization of the first order ODEs system (8) around an equilibrium point
(0, 0, 0) is of the form

(2.13) ẋ = Ax.

Then the linearization of the second order ODEs system (9), around the same equi-
librium point, is

(2.14)
d2x

dt2
= (A−AT )

dx

dt
+ AT Ax .

For this second order system, the equilibrium point is

x(t) = 0,
dx

dt
(t) = 0.

Of course, the second order ODEs system (9) can be linearized also around a nonzero
critical point of the density of energy f , but this study will be made in a further
paper.
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3 Linearized geometric dynamics
around Tobin-Benhabib-Miyao flow

The Tobin-Benhabib-Miyao flow and the Euclidean-Lagrangian structure of the state
space determine a geometric dynamics. We shall analyse its linearization around the
equilibrium point which is described by a second order ODEs system of type (14). The
solution of this system is of the form x = ueλt, t ∈ R, where u is a nonzero solution
of the linear system

(3.15)
(
−AT A− λ(A−AT ) + λ2I

)
u = 0.

In other words, λ is a latent value of the λ-matrix in paranthesis, i.e., solution of the
equation

(3.16) det
(
−AT A− λ(A−AT ) + λ2I

)
= 0 ,

and u is a latent vector (nonzero solution of the equation 15). On the other hand, the
following proposition is true.

Theorem. If λ is a proper value of a real matrix A, then λ and −λ are latent
values of the previuos λ-matrix. Consequently the latent values satisfy

∑
λ = 0.

Proof. We use the decomposition

(3.17) 0 = det
(
−AT A− λ(A−AT ) + λ2I

)
= det(λI −A)det(λI + AT ).

In order to obtain informations about the nature of the latent values λ, associated to
the latent vector u, we build an equation of degree two satisfied by λ.

Let λ be a real latent value and u be the corresponding real latent vector. Pre-
multiplying by uT we find

(3.18) λ2 =
uT AT Au

uT u
.

Let λ be a complex latent value and u be the associated complex latent vector.
Premultiplying by ūT (conjugate transpose of u) gives

(3.19) mλ2 + i g λ + n = 0 ,

where
m = ūT u > 0 , i g = −ūT (A−AT )u , n = −ūT AT Au < 0 .

The discriminant of the equation (19) is

∆ (µ) = −g2 − 4 m n .

Theorem. 1) The ODEs system (14) has saddle point properties around the equi-
librium point iff ∆(µ) > 0 .

2) If ∆(µ) < 0 , no saddle point properties exist.
Let µ0 be such that ∆(µ0) = 0 and ∆(µ) > 0 or < 0 if µ < µ0 respectively µ > µ0

with d ∆
d µ (µ0) < 0. These are just the conditions in the ”Hopf Bifurcation Theorem
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for second order systems”. Consequently, when µ passes µ0, the system will undergo a
bifurcation and lose its saddle point properties. Assuming simple latent values around
µ0, we find:

Corollary. 1) if g(µ) = 0 for µ ∈ Nε(µ0), then certain latent value lying on the
real axis crosses imaginary axis from left to right, causing ”total instability”;

2) if g(µ) 6= 0, then the loss of stability is of the ”flutter type”, i.e., a pair of
complex conjugate latent values crosses the imaginary axis from the left, causing Hopf
Bifurcation and giving birth to closed orbits around the equilibrium point.

Remark. This limit cycle is optimal because it fulfils all optimality requirements,
including the transversality condition

(3.20) limt→∞k(t) q(t) e−µ t = 0.

Thus an economy satisfying all standard neo-classical competitive conditions such as
perfect foresight, zero profit, market clearing, can exhibit permanent small oscillations
in prices and capital stocks. Therefore we recovered the concept of optimal economic
fluctuations.
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