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Abstract

The fortress problem asks for the number of guards sufficient to see every
point of the exterior of a polygon. A set of guards S is called cooperative if the
visibility graph V G(S) is connected. In this paper, we investigate the coopera-
tive guard problem in a fortress: tight bounds for vertex and point guards are
obtained.

In particular, let P be a fortress of k pockets p1, . . . , pk and of c vertices on
the convex hull. Then we show that: (1) if c = k and all k pockets are of even

number of vertices, then
kP

i=1

bnpi
−2

2
c cooperative vertex guards are sometimes

necessary and always sufficient to cover the exterior of P ; (2) otherwise, c− 1 +
kP

i=1

(bnpi
−1

2
c− 1) cooperative vertex guards are sometimes necessary and always

sufficient to cover the exterior of P . (3) If guards are not restricted to vertices,

then 1 +
kP

i=1

bnpi
−1

2
c cooperative vertex guards are sometimes necessary and

always sufficient to cover the exterior of P . Also tight bounds for cooperative
vertex guards in orthogonal polygons are provided.

Mathematics Subject Classification: 68U05.
Key words: computational geometry, art gallery theorem, fortress problem, co-

operative guard.

1 Introduction

The original art gallery problem raised by Klee asks how many guards are sufficient
to watch every point of the interior of an n-vertex simple polygon. The guard is a
stationary point that can see any point which can be connected to it with a line seg-
ment within the polygon. In 1975, Chvatl [1] proved that bn

3 c guards are occasionally
necessary and always sufficient to cover a polygon with n vertices. Since then many
different variations of this problem have arisen; see [8], [9] for more details.

One of a family of guard problem, independently posed by Joseph Mal-kelvitch
and Derick Wood, is the fortress problem, i.e., one wants to determine the minimal
number of guards sufficient to see every point of the exterior of an n-vertex simple
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polygon (the guard is a stationary point that can see any point which can be connected
to it with a line segment without the polygon.)

In 1983, O’Rourke and Wood [8] solved the fortress problem for vertex guards –
they showed that dn

2 e vertex guards are sometimes necessary and always sufficient. A
tight bound of dn

3 e point guards was given by O’Rourke and Aggarwal [8].
Herein we analyze the concept of cooperative guards that was proposed by Liaw et

al. [5]. For a guard set S we define the visibility graph V G(S) as follows: the vertex
set is S and two vertices v1, v2 are adjacent if they see each other. The guard set S is
said to be cooperative if the graph V G(S) is connected. The idea behind this concept
is that if something goes wrong with one guard, all the others can be informed.

In 1994, Hernández-Peñalver [4] proved that bn
2 c−1 cooperative guards are some-

times necessary and always sufficient to cover any point of the interior of an n-vertex
polygon. One may ask whether this is still true for the fortress problem, however, a
convex n-gon requires n− 1 cooperative vertex guards. Thus we have:

Fact 1.1. n− 1 cooperative vertex guards are sometimes necessary to cover the exte-
rior of a simple polygon with n vertices.

Yiu [10] considered the number of k-consecutive vertex guards that are required
to solve the fortress problem. A k-consecutive vertex guard is a set of vertex guards
located at k consecutive vertices of the polygon. He showed that d n

k+1e k-consecutive
vertex guards always suffice to cover the exterior of any n-vertex simple polygon.
Thus we have:

Corollary 1.2. n − 1 cooperative vertex guards always suffice to cover the exterior
of a simple polygon with n vertices.

However, convex polygons are a severely restricted class of polygons, so it is natural
to investigate the fortress problem for cooperative guards as a function of a variable
other than n, the number of vertices of the polygon.

The organization of this paper is as follows. Section 2 is intended to motivate our
investigation of a more accurate measure of the number of connected guards sufficient
to cover the exterior of the polygon. Section 3 is devoted to notation, terminology,
and some basic lemmas. The sufficiency proof for connected vertex guards will be
presented in Section 4. Section 5 deals with the case of an orthogonal fortress. In
Section 6, we explore point guards. Finally, some related problems are discussed.

2 Necessity

Let c denote the number of vertices of an n-vertex polygon which are on the convex
hull of the set of vertices of the polygon, and for any pocket p of the polygon – that
is, an exterior polygon interior to the hull and bounded by a hull edge – let np denote
the number of vertices of the pocket p. Let us consider a polygon P with one pocket
p that is shown in Fig. 1(a). One can easily check that P requires c−1+(bnp−1

2 c−1)
cooperative vertex guards. A simple extension of this polygon, see Fig. 1(b), leads

to a class of polygons of k pockets that require c− 1 +
k∑

i=1

(bnpi
−1

2 c − 1) cooperative

vertex guards, where npi is the number of vertices of the pocket pi, i = 1, . . . , k.
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Fig. 1. (a) A fortress that requires c− 1 + (bnp−1

2
c − 1) cooperative vertex guards; here we

have c = 11, np = 17, and the polygon requires 17 cooperative vertex guards.

(b) A fortress that requires c− 1 +
kP

i=1

(bnpi
−1

2
c − 1) cooperative vertex guards; here the

polygon has three pockets, each of 11 vertices, c = 8, and it requires 19 cooperative vertex
guards.

Lemma 2.1. Let c ≥ 3 and 0 ≤ k ≤ c be integers. Then there exists a fortress of k
pockets and c vertices on the convex hull that requires

c− 1 +
k∑

i=1

(bnp − 1
2

c − 1)

cooperative vertex guards, where npi is the number of vertices of the pocket pi, i =
1, . . . , k. 2

But, if c = k and all npi , i = 1, . . . , k, are even, more than c− 1 +
k∑

i=1

(bnp−1
2 c− 1)

cooperative vertex guards can be required. Consider a fortress that is shown in Fig. 2:
here we have c = k = 4, all npi = 6, i = 1 . . . 4, and the fortress requires

8 = 2 + 2 + 2 + 2 > c− 1 +
k∑

i=1

(bnp − 1
2

c − 1)

cooperative vertex guards. Thus we have:

Lemma 2.2. Let k be an integer, k ≥ 3. Then there exists a fortress of k pockets and
no edges on the convex hull that requires

k∑

i=1

bnp − 2
2

c

cooperative vertex guards, where npi is the number of vertices of the pocket pi, i =
1, . . . , k. 2
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Fig. 2. A fortress with no edges on the convex hull that requires
kP

i=1

bnpi
−2

2
c cooperative

vertex guards; here the polygon has four pockets, each of 6 vertices, and it requires 8
cooperative vertex guards.

3 Definitions

A fortress is a (simple) polygon P . Let F (P ) denote the set of all points on the plane
exterior to P or on the boundary of P . A guard g is any vertex of P . A point x ∈ F (P )
is said to be seen by a guard g if the line segment with endpoints x and g is a subset
of F (P ). A collection of guards S = {g1, ..., gk} is said to cover the fortress P if every
point x ∈ F (P ) can be seen by some guard g ∈ S.

We define the visiblity graph V G(S) as follows: the vertex set is S and two vertices
v1 and v2 are incident if they see each other. The guard set S is said to be cooperative
if the graph V G(S) is connected.

Each connected region inside a convex hull of the polygon P but exterior to P is
called a pocket ; note that the pocket is a simple polygon. A triangulation graph of
a pocket is a graph whose embedding is a triangulation of the pocket: the vertices
correspond to vertices of the pocket and the edges correspond to the edges of the
pocket, internal diagonals and the hull edge, called a pocket lid.

A vertex guard in GT is a single vertex of GT . A set of guards S = {g1, ..., gk}
is said to dominate GT if every triangular face of GT has at least one of its vertices
assigned as a guard (∈ S). Finally, the collection of guards S = {g1, ..., gk} is said to
be cooperative if the subgraph of GT induced by set S is connected. Guards in a graph
are called combinatorial cooperative guards. The reason for introducing triangulation
graphs is the following lemma:

Lemma 3.1. Let be a pocket p of np vertices, and let d = {x1, x2} be a pocket lid.
Then:

a) if np is odd, then bnp−1
2 c cooperative vertex guards with one guard placed at any

endpoint of d suffice to cover the pocket p;

b) otherwise, bnp−1
2 c cooperative vertex guards with one guard placed either at x1

or at x2 suffice to cover the pocket p.

Proof. The validity of the lemma for odd np follows immediately from Hernández-
Peñalver’s theorem establishing that bnp

2 c − 1 cooperative vertex guards suffice to
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cover all of the pocket [4]. With one additional guard at any endpoints of the pocket
lid we will get a coverage of the pocket by bnp−1

2 c cooperative vertex guards.
Now, let assume np to be even. Consider any triangulation graph GT of the pocket

p. Let G?
T be a graph that results from adjoining a graph K3 at the pocket lid. It is

clear that G?
T is a triangulation graph of (np + 1)-vertex polygon, and by [4] it can

be dominated by bnp−1
2 c cooperative vertex guards. Any triangular face of G?

T has
at least one of its vertices assigned as a guard, thus without loss of generality there
is a guard either at x1 or at x2. The same guards placement in the pocket will cover
every point inside the pocket. 2

Note that if np is equal to 3 or 4, we get the degenerated case – the set of coop-
erative guards consists of one guard only.

4 Vertex guards in a fortress

We will prove in this section that bounds established by Lemmas 2.1-2.2 are tight.

Theorem 4.1. Let P be a fortress of k pockets p1, . . . , pk and of c vertices on the
convex hull. Then:

a) if c = k and all k pockets are of even number of vertices, then
k∑

i=1

bnpi
−2

2 c
cooperative vertex guards always suffice to cover F (P );

b) otherwise, c − 1 +
k∑

i=1

(bnpi
−1

2 c − 1) cooperative vertex guards always suffice to

cover F (P ).

Proof. The proof is by induction on k, the number of pockets. Lemma 1.1 establishes
the validity of the theorem for k = 0, so assume that k ≥ 1 and that the theorem
holds for all k̂ < k. We need to consider three cases. Note that the induction proof is
used only in the third case.

Case 1: c = k and all k pockets are have even number of vertices. By Lemma 3.1
placing k guards at all vertices of the convex hull permits the reminders of all k

pockets to be covered by
k∑

i=1

(bnpi
−1

2 c − 1) =
k∑

i=1

(bnpi
−2

2 c − 1) cooperative vertex

guards, as all npi are even, i = 1, . . . , k. Therefore, all of F (P ) can be covered by
k∑

i=1

bnpi
−2

2 c cooperative vertex guards in total.

Case 2: c 6= k and all k pockets are of even number of vertices.

Subcase 2.a: there are two consecutive edges of the polygon on the convex hull. Let
these edges be labeled e1 = {x1, x2} and e2 = {x2, x3}. Then placing c− 1 guards at
all vertices of the convex hull except x2, and applying an argument similar to that

in Case 1, we get a coverage of F (P ) by c− 1 +
k∑

i=1

(bnpi
−1

2 c − 1) cooperative vertex

guards.
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Subcase 2.b. Let the vertices on the convex hull be labeled x1, x2, . . . , xc, in a coun-
terclockwise manner. Without loss of generality we can assume e1 = {xc, x1} to be
an edge of the polygon on the convex hull and {x1, x2} to be a pocket lid; let this
pocket be labeled p1. We shall construct the required vertex cover.

By Lemma 3.1 pocket p1 can be covered by bnp1−1

2 c cooperative vertex guards,
with one guard either at x1 or at x2. If there is a guard at x2, then placing c − 2
additional guards at vertices x3, . . . , xc of the convex hull, and applying an argument

similar to that in Case 1, we get a coverage of F (P ) by c − 1 +
k∑

i=1

(bnpi
−1

2 c − 1)

cooperative vertex guards. Otherwise, if there are no guards x2 and there is a guard
at x1, then let us consider vertex x2:

(1) x2 is one of the endpoints of the pocket lid {x2, x3} of the next pocket p2, in
a counterclockwise manner. Again, by Lemma 3.1 pocket p2 can be covered by
bnp2−1

2 c cooperative vertex guards, with one guard either at x2 or at x3. If there
is a guard at x3, then placing c − 3 additional guards at vertices x4, . . . , xc of
the convex hull, together with bnp1−1

2 c guards allocated to pocket p1, bnp2−1

2 c
guards allocated to pocket p2, and by Lemma 3.1

k∑
i=3

(bnpi
−1

2 c − 1) allocated

to the remainders of pockets pi, i = 3, . . . , k, we get a coverage of F (P ) by

c− 1 +
k∑

i=1

(bnpi
−1

2 c − 1) cooperative vertex guards. Otherwise, apply (1) at the

pocket lid {x3, x4} or (2) at the edge {x3, x4}.
(2) {x2, x3} is the edge of the polygon on the convex hull, then place the next guard

at vertex x3, and apply the reasoning used in (1) in the case of a guard at vertex
x3.

It is clear that the above construction will stop either at (1) or when we have
considered the last pocket pk with the pocket lid {xc−1, xc} and a guard at xc−1 in
pocket pk was needed. But in this case, we have c−1 guards at vertices x1, x2, . . . , xc−1

on the convex hull and
k∑

i=1

(bnpi
−1

2 c − 1) guards in the remainders of pockets. Again,

all of F (P ) is covered by c− 1 +
k∑

i=1

(bnpi
−1

2 c − 1) cooperative vertex guards.

Case 3: there is a pocket of an odd number of vertices. Let the considered pocket
be labeled pk, and let d = {x1, x2} be its pocket lid. Then replacing pocket pk with
the new edge d we get a fortress P̂ of k̂ = k − 1 pockets and the same number h
of vertices on the convex hull. By the induction hypothesis F (P̂ ) can be covered by

c−1+
k−1∑
i=1

(bnpi
−1

2 c−1) cooperative vertex guards. As there is a guard either at vertex

x1 or at x2, then by Lemma 3.1

c− 1 +
k−1∑

i=1

(bnpi − 1
2

c − 1) + bnpk
− 1

2
c − 1 = c− 1 +

k∑

i=1

bnpi − 1
2

c

cooperative vertex guards suffice to cover all of F (P ). 2
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Fig. 3. The nose of a slanted edge.

5 Vertex guards in an orthogonal fortress

An orthogonal polygon is one with only horizontal or vertical edges. Before considering
the cooperative guards problem in orthogonal fortresses let us pay attention to the
problem of covering the interior of 1-orthogonal polygons.

5.1 1-orthogonal polygons

A 1-orthogonal polygon is a polygon of no holes with a distinguished edge e called the
slanted edge, such that the polygon satisfies four conditions:

(1) There are an even number of edges.
(2) Except for possibly e, the edges are alternately horizontal and vertical in a
traversal of the boundary.
(3) All interior angles are less than or equal to 270◦.
(4) The nose of the slanted edge contains no vertices.

The nose of a slanted edge is the triangle towards the inside of the polygon whose
hypothenuse is e; the nose includes the interior of e but exludes the remainder of
the boundary, see Fig. 3. The concept of 1-orthogonal polygons was introduced by
Lubiv [6].

Theorem 5.1. [6] Any 1-orthogonal polygon is convexly quadrilateralizable.

The existence of a convex quadrilateralization for any 1-orthogonal polygon leads
us to the following theorem:

Theorem 5.2. bn
2 c − 2 cooperative vertex guards always suffice to cover the interior

of any 1-orthogonal polygon with n vertices.

Proof. Consider a convex quadrilateralization of an n-vertex 1-orthogonal polygon as
guaranteed by Theorem 5.1, and let q be the number of quadrilaterals. It easy to
check that placing a guard at any endpoint of each internal diagonal that shares two
convex quadrilateral we get a guard set S of P , with |S| = q− 1 = bn

2 c − 2. It is easy
to see that the visibility graph V G(S) is connected. 2

5.2 T -pockets, F -pockets and S-pockets

Let P be an orthogonal fortress and let us consider the convex hull of P and any pocket
p. Clearly, the convex hull of P is bounded by four extermal edges (northernmost,
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Fig. 4. (a) Case 1: the nose of a slanted edge {x, y1} is empty; (b) Case 2: there is a vertex
in the nose of the edge {x, y}.

westernmost, southernmost, eastermost). As the pocket lid of any pocket of even
number of vertices is one of the extremal edges, there are at most four pockets of
even number of vertices, all the other pockets are of odd number of vertices. Let p
be a pocket with odd number of vertices. If p is of 3 vertices, then we say that it is
T -pocket, if p is of 5 vertices – it is F -pocket, otherwise – S-pocket.

Fact 5.3. Any F -pocket can be covered by 2 cooperative guards located at the end-
points of its pocket lid.

Lemma 5.4. Any S-pocket p with np vertices can be covered by bnp−1
2 c−1 cooperative

guards with one guard placed at one of the endpoints of its pocket lid.

Proof. Let p be a pocket with np ≥ 7 vertices. We leave to the reader to verify that
the lemma holds for np = 7 and let assume that the lemma holds for all pockets with
n̂p vertices, with 7 ≤ n̂p < np. Let d = {x, y} be the pocket lid of p and let {x, x1}
and {y, y1} be the edges of the pocket incident to d. We need to consider two cases:

Case 1: x sees y1 and the nose of the edge {y1, x} is empty, see Fig. 4(a). Replacing
the segment (y1, y, x) with the new edge {y1, x} we get a 1-orthogonal polygon P
with np − 1 vertices, with the slanted edge {y1, x}. By Theorem 5.2 polygon P can
be covered by bnp−1

2 c − 2 cooperative vertex guards. The same guard placement in
pocket p with one additional guard at x will cover all of p (the triangle (y1, y, x) is
covered be the guard at x), and clearly the guard set is cooperative.

Case 2: there is a vertex in the nose of the pocket lid d, see Fig. 4(b). Let v be the
closest vertex to d. As v sees both x and y, diagonals {x, v} and {y, v} partition pocket
p into the triangle (x, v, y) and two regions p1 and p2, both to be pockets with np1

and np2 vertices, respectively.

Subcase 2.a: p1 and p2 are both F -pockets: np1 = 5 and np2 = 5. By Fact 5.3 placing 3
guards at vertices x, v and y we get a coverege of the pocekt p by b 9−1

2 c−1 cooperative
vertex guards, as np1 + np2 = np + 1.

Subcase 2.b: p1 is S-pocket: np1 ≥ 7 and np2 ≥ 3. By the induction hypothesis pocket
p1 can be covered by bnp1−1

2 c − 1 cooperative vertex guards with one guard placed
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Fig. 5. (a) An orthogonal fortress that require 3 + t + f +
sP

i=1

(bnpi
−1

2
c − 1) cooperative

vertex guards; here t = 2, f = 3, and s = 3, each S-pocket is of 11 vertices, and the
polygon requires 20 cooperative vertex guards.

(b) An orthogonal fortress that require 4 + t + f +
sP

i=1

(bnpi
−1

2
c − 1) cooperative vertex

guards, with f ≥ 4 and t + s ≤ f − 4; here t = 1, f = 8, and s = 2, each S-pocket is of 11
vertices, and the polygon requires 21 cooperative vertex guards.

either at x or at v. By Lemma 3.1 pocket p2 can be covered by bnp2−1

2 c cooperative
vertex guards with one guard placed at y. With the same guard placement in p we
get a coverage of all of p by

bnp1 − 1
2

c − 1 + bnp2 − 1
2

c ≤ bnp − 1
2

c − 1

cooperative vertex guards, as np1 + np2 + 1 = np, and with one guard placed at y. 2

5.3 Theorems

First, let us assume that there are no pockets with even number of vertices. Fig. 5(a)

shows a class of orthogonal fortresses that require 3+t+f+
s∑

i=1

(bnpi
−1

2 c−1) cooperative

vertex guards, where t is the number of T -pockets, f is the number of F -pockets, s
is the number of S-pockets, and the S-pockets pi are of npi vertices, i = 1, . . . , s.
Nevertheless, if f ≥ 4 and t + s ≤ f − 4, then more guards can be required: Fig. 5(b)

shows a class of orthogonal fortresses that require 4+t+f+
s∑

i=1

(bnpi
−1

2 c−1) cooperative

vertex guards (note that any T -pocket or S-pocket is between two F -pockets). We
will show these bounds to be tight.

Theorem 5.5. Let P be an orthogonal fortress. Let t, f and s be the number of T -
pockets, F -pockets and S-pockets in P , respectively, and let each of S-pockets be of
npi vertices, i = 1, . . . , s. Then:

(a) if either f ≤ 3 or s + t > f − 4, then 3 + t + f +
s∑

i=1

(bnpi
−1

2 c − 1) cooperative

vertex guards always suffice to cover F (P ),

(b) otherwise, 4 + t + f +
s∑

i=1

(bnpi
−1

2 c − 1) cooperative vertex guards always suffice

to cover F (P ).
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Proof. Let P be an orthogonal polygon and let en, ee, es and ew be its four extremal
edges.

(a) As either f ≤ 3 or s+ t > f − 4, then there are two “consecutive” extremal edges,
without loss of generality we can assume that they are ew and en, such that between
them there are t1, f1 and s1 pockets of type T , F and S, respectively, and either
f1 = 0 or s1 + t1 > f1 − 4. Now, applying similar arguments to that in Case 2 of the
proof of Theorem 4.1 we can show that there is a vertex v on the convex hull between
edges ew and en at which we do not need to place a guard, when we want to guard all
of F (P ) between edges ew and en. Therefore, with c− 1 guards placed at all vertices

on the convex hull, except vertex v, together with
s∑

i=1

bnpi
−1

2 c − 2 cooperative guards

for the remainders of all S-pockets (by Lemma 5.4), we get a coverage of all of F (P )

by 3 + t + f +
s∑

i=1

(bnpi
−1

2 c − 1) cooperative guards, since c− 1 = 3 + t + f + s.

(b) If f ≥ 4 and s + t ≤ f − 4, then with c guards at all vertices of the convex hull,

together with
s∑

i=1

bnpi
−1

2 c − 2 cooperative guards for the remainders of all S-pockets

(by Lemma 5.4), we get a coverage of all of F (P ) by 4 + t + f +
s∑

i=1

(bnpi
−1

2 c − 1)

cooperative guards, since c = 4 + t + f + s. 2

If there are (at most four) m pockets of even number of vertices, then by simi-
lar arguments to that in the case of no ”even”-pockets, by Lemma 3.1, and by the
induction on m we get the following:

Theorem 5.6. Let P be an orthogonal fortress. Let t, f , s and m be the number of
T -pockets, F -pockets, S-pockets, and pockets of even number of vertices, respectively,
and let each of S-pockets be of ni vertices, i = 1, . . . , s, and let each of ”even”-pockets
be of n̂i vertices, i = 1, . . . , m. Then:

(a) if either f ≤ 3 or s + t > f − 4, then

3 + t + f +
s∑

i=1

(bni − 1
2

c − 1) +
m∑

i=1

(b n̂i

2
c − 2)

cooperative vertex guards are sometimes necessary but always sufficient to cover
F (P ),

(b) otherwise,

4 + t + f +
s∑

i=1

(bni − 1
2

c − 1) +
m∑

i=1

(b n̂i

2
c − 2)

cooperative vertex guards are sometimes necessary but always sufficient to cover
F (P ). 2

6 Point guards

We have restricted guards to be placed at the vertices of a fortress. However, we can
allow guards to be placed at any point of F (P ).
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Fig. 6. A fortress with one triangle-pocket can be covered be 2 cooperative guards.

First, let us prove a reduced form of the theorem.

Lemma 6.1. An n-vertex fortress with at most one triangle-pocket can be covered be
2 cooperative guards.

Proof. Let P be a convex fortress. Rotate P so that vertex a is uniquely highest and
b uniquely lowest. Adding two guards below the lowest vertex of P , and both far
enough away to see a, we will cover all of F (P ) by two cooperative guards.

Now, suppose P to be non-convex and that P has only one pocket (x, y, z) of 3
vertices, with {x, z} as the pocket lid. Rotate P so that the edge {z, y} is horizontal,
and let d be the first edge, in the clockwise manner, that is not seen from any point
at the line l collinear to the segment zy, see Fig. 6. We have to consider two cases.

Case 1: the edge d is not parallel to line l. Then adding two guards, one at line l,
and the second at the line collinear to edge d, both far enough away to see each other
and all the edges of P , we will get a cover of F (P ) by two cooperative guards, see
Fig. 6(a).

Case 2: the edge d is parallel to line l. Let α be an angle between the last edge visible
form a point at l and the line collinear to the edge d. Let ly be a line with the angle
at y equal to min{α

2 , ](x,y,z)
2 }, see Fig. 6(b). Again, adding two guards, one at line

ly, and the second at the line collinear to edge d, both far enough away to see each
other, and to see all the edges of P , we will get a cover of F (P ) by two cooperative
guards. 2

Theorem 6.2. Let P be an non-convex fortress of k pockets p1, . . . , pk, each of re-

spectively npi vertices, i = 1, . . . , k. Then 1 +
k∑

i=1

bnpi
−1

2 c cooperative point guards

always suffice to cover F (P ).
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Fig. 7. The quadrilateral Q = (x1, x2, xs−1, xs) is empty.

Proof. Let p1, . . . , pk be pockets of a fortress P , each of respectively npi vertices,
i = 1, . . . , k. Let us consider the pocket p1. If it is of 3 vertices, then by Lemma 6.1
pocket p1 and the convex hull of P can be covered by 2 cooperative guards. Together

with
k∑

i=2

bnpi
−1

2 c cooperative guards for the others pockets, with one guard per each

pocket lid (by Lemma 3.1), we get a coverage of all of F (P ) by 2 +
s∑

i=2

bnpi
−1

2 c =

1 +
k∑

i=1

bnpi
−1

2 c cooperative guards.

Next, suppose that np1 > 3 and np1 is odd. Let us consider a triangulation graph
GT of the pocket p1, and the triangle t of GT with the pocket lid of p1 as one of
its edges. By [4] bnp1−2

2 c cooperative guards suffice to dominate GT , and there is
a guard at a vertex of t. Again, by Lemma 6.1 pocket p1 and the convex hull of
P can be covered by 2 + bnp1−2

2 c = 1 + bnp1−1

2 c cooperative guards, as np1 is odd
(these guards are cooperative, as there is a guard in the triangle t). Together with
k∑

i=2

bnpi
−1

2 c cooperative guards for the others pockets, with one guard per each pocket

lid (by Lemma 3.1), we get a coverage of all of F (P ) by 1 +
k∑

i=1

bnpi
−1

2 c cooperative

guards.
Finally, let us suppose that np1 is even, and let x1, . . . , xs be the consecutive

vertices of the pocket p1, s = np1 , in clockwise manner, with {xs, x1} as the pocked
lid (s = np1). Let us consider the quadrilateral Q = (x1, x2, xs−1, xs). We have to
consider three cases.

Case 1: Q is empty and convex, see Fig. 7(a). Then subpocket (x2, . . . , xs−1) is of
np1−2 vertices, and by Lemma 3.1 it can be covered by bnp1−2−1

2 c cooperative guards,
with one guard either at x2 or at xs−1 – let us assume, without loss of generality, at
xs−1. Now, by Lemma 6.1 the triangle (x1, xs−1, xs) and the convex hull of P can be
covered by 2 cooperative guards. As guard at xs−1 covers the triangle (x1, x2, xs−1),
all of the considered pocket p1 is covered. As before, this leads to a coverage of all of

F (P ) by 2 + bnp1−2−1

2 c+
k∑

i=2

bnpi
−1

2 c = 1 +
k∑

i=1

bnpi
−1

2 c cooperative guards.
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Fig. 8. The quadrilateral Q = (x1, x2, xs−1, xs) is not empty.

Case 2: Q is empty and non-convex. Let us assume the vertex xs−1 to be reflex. If
there is a guard at xs−1 in a coverage of the subpocket (x2, . . . , xs−1), we proceed in
the same way as in the above case – the guard at xs−1 will cover all of the quadrilateral
Q. Otherwise, all we need is noticing, that a guard at the line collinear to the line
segment x1x2 (or close enough to it, the proof of Lemma 6.1, Case 2) will always
cover the triangle (x1, xs−1, xs), thus all of Q will be covered, see Fig. 7(b).

Case 3: there is a vertex in Q. Let y be the vertex ∈ Q closest to the pocket lid
{xs, x1}. The pocket p1 can be partitioned into two subpockets p1

1 and p2
1, each of

n1 and n2 vertices, respectively, and the triangle t = (x1, y, xs), see Fig. 8. As np1

is even, then either n1 or n2 is odd – let us assume n1 to be odd. By Lemma 3.1
the pocket p2

1 can be covered by bn2−1
2 c cooperative guards, with one guard either

at x1 or at y. If there is a guard at y, then by Lemma 3.1 the remainder of the
pocket p1

1 can be covered by bn1−1
2 c − 1 cooperative guards, as n1 is odd. The same

construction as in the proof of Lemma 6.1 (we consider the triangle t as a pocket)
leads to a coverage of the triangle t (thus, the vertex y, as well), and the convex
hull of P by 2 cooperative guards. As before, this leads to a coverage of all of F (P )

by 2 + bn1−1
2 c − 1 + bn2−1

2 c +
k∑

i=2

bnpi
−1

2 c ≤ 1 +
k∑

i=1

bnpi
−1

2 c cooperative guards, as

n1 + n2 = np1 + 1.
If there is a guard at x1, then we have to consider two subcases.

Subcase 3.a: the lines l1 and ls collinear respectively to segments x1x2 and xs−1xs

cross in a point x∗ ∈ F (P ), see Fig 9. Note that x∗ must see y. Let us consider a
polygon p∗1 that result from replacing the segment (xs−1, xs, x1, x2) in the subpocket
p1 by (xs−1, x

∗, x2) – polygon p∗1 is now of np1 − 1 vertices. Next, let us consider
a triangulation of p∗1 with {y, x∗} as one of its internal diagonals. Then by [4] the
polygon p∗1 can be covered by bnp1−1−2

2 c cooperative guards, with one guard either at
y or at x∗. If there is a guard at y, again we can proceed in a way similar to that in
the proof of Lemma 6.1 (we consider the triangle (x1, y, xs) as a pocket). Otherwise,
if there is a guard at x∗, its clear that two additional cooperative guards will cover
all the convex hull of P (and x∗). Again, by Lemma 3.1 we will get a coverage of all

of F (P ) by 1 +
k∑

i=1

bnpi
−1

2 c cooperative guards.

Subcase 3.b: the edges {x1, x2} and {xs−1, xs} are either parallel or “obtuse”. Move x1

along the line collinear to x1x2 far enough to see all possible edges, such transforming
the subpocket p2

1, still with n2 vertices, see Fig 9. By Lemma 3.1 the new p2
1 can be
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Fig. 9. (a) Subcase 3.a. (b) Subcase 3.b.

covered by bn2−1
2 c cooperative guards, with one guard either at y or at new x1. If there

is a guard at y, then the we can proceed in a way similar to that we have considered
before. So assume there is a guard at x1, and let us consider a polygon p1

1 ∪ (x1, y, xs)
of n1 + 1 vertices. By [4] it can be covered by bn1+1−2

2 c cooperative guards, with
one guard either at xs or at y, and this guard is seen by the guard at new x1, of
course. Thus, all of p1

1∪ (x1, y, xs)∪p2
1 can be covered by at most bnp1−1

2 c cooperative
guards. As the guard at x1 is located far enough, with one additional guard we will
cover the pocket p1 and all of the convex hull of P by 1+bnp1−1

2 c cooperative guards,
only if the first edge not visible from new x1 is not parallel to x1x2 – compare the

proof of Lemma 6.1, Case 1. And again, all of F (P ) can be covered by 1+
k∑

i=1

bnpi
−1

2 c
cooperative guards.

Otherwise, if we consider the proof of Lemma 6.1, Case 2, then all we need is
the possibility of moving the guard at x1 a small distance ε > 0 from x1 along the
edge {y, x1} without destroying the co operativeness of guards in the new p2

1 (and so
without destroying the cooperativeness of guards in p1

1 ∪ (x1, y, xs) ∪ p2
1). It can be

done by the following argument.
Let GT be a triangulation graph of an non-degenerated triangulation of an n-

vertex polygon (there are no triangles with three points on a line), and let S be
a guard coverage of an n-vertex polygon, with |S| ≤ bn−2

2 c, constructed from a
cooperative domination of GT [4]. Let x be a convex vertex with a guard at it – x
with all triangles Ti incident to it form a fan f . Let {xl, x} and {x, xr} be edges of P
incident to x, and let g1, . . . , gk be guards incident to x in the fan. As S is constructed
form a cooperative domination of GT , it clear that we have to show that the guard
at x can be moved without destroying connectivity with these guards only.

For each gi, i = 1, . . . , k, in a sequence:

– rotate P in such a way that the line si collinear with the line segment xgi is
parallel to y-axis, and x lies below gi;

– consider vertex r ∈ f , closest to the right to line si, and consider vertex l ∈ f ,
closest to the left to line si, respectively (if gi = xl or gi = xr, then assume
r = xl, and l = xr, respectively);
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Fig. 10. The idea of the construction of the strip α(gi).

– let α(gi) be a strip, interior to P , delimited by lines going through vertices l
and r, respectively, and parallel to line si, see Fig. 10.

It is obvious, that
⋂

i α(gi) 6= {x}, and all gi are visible from any point ∈ ⋂
i α(gi).

Furthermore,
⋂

i α(gi) ∩ {xl, x} 6= {x}, and
⋂

i α(gi) ∩ {x, xr} 6= {x}. Thus the guard
g at x can be moved a small ε > 0 either along edge {xl, x} or edge {x, xr}, and the
guard set S will still remain cooperative.

Thus all of F (P ) can be covered by 1 +
k∑

i=1

bnpi
−1

2 c cooperative guards. 2

7 Open problems

We have considered the situation when a guard g1 sees another guard g2 if they can
be connected with the line segment without the polygon. Nevertheless, we can restrict
guards (and only guards) to see each other only when they can be connected with the
line segment within the polygon (guards are located at the vertices, of course). This
problem seems to be rather different from that one we have considered, and more
realistic.

Conjecture 7.1. If guards can see each other only within the polygon, dn
2 e coopera-

tive guards always suffice to cover F (P ).

Weakly cooperative guards. Let us recall that a set of guards S is called weakly
cooperative if the visibility graph V G(S) has no isolated vertices. A convex n-gon
requires d 2n

3 e watched vertex guards. From [10] we have:

Corollary 7.2. d 2n
3 e weakly cooperative vertex guards always suffice to cover the ex-

terior of a simple polygon with n vertices.
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Fig. 11. If guards can see each other only within the polygon, then a non-convex fortress
can require as many as dn

2
e cooperative guards; here n = 7 and the fortress requires 4

cooperative guards.

But, as in the case of cooperative guards, it would be desirable to find a more
accurate measure of the number of watched guards other than a function of n, the
number of vertices.

The Prison Yard Problem. Finally, it would be interesting to investigate the con-
cept of cooperative guards for The Prison Yard Problem, i.e., one wants to determine
the number of cooperative guards always sufficient to cover both the interior and the
exterior of a polygon. The original problem was solved in 1992 by Füredi and Kleit-
man [3], who proved that dn

2 e vertex guards (respectively bn
2 c) are always sufficient

and occasionally necessary to simultaneously guard the interior and the exterior of a
convex (respectively non-convex) polygon with n vertices.
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