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Abstract

This paper contains a characterization of complex matrices of rank 1 and
characterization of a matrix -invariant subspace.
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Let Mn be the set of n × n matrices over R, C and for x ∈ Mn(C), xT denotes
the complex transpose of x.

Definition 1. If A ∈ Mn(C), x ∈ Cn, Ax = λx, x 6= 0, λ 6= 0 ,λ is called eigenvalue
and x eigenvector of A associated with λ.

Definition 2. The set of all eigenvalues of the matrix A is called the spectrum of A
and is denoted by σ(A).

If x is an eigenvector associated with the eigenvalue λ of A , any nonzero scalar
multiple of X is an eigenvector as well.

If p is a given polinomial and λ is an eigenvalue of the matrix A with x the
corresponding eigenvector, then p(λ) is an eigenvalue of the matrix p(A) and x is the
eigenvector of p(A) associated with p(λ).

Definition 3. The characteristic polynomial of A ∈ Mn is defined as

pA(t) = det(tI −A)(1.1)

If A ∈ Mn, the characteristic polynomial pA has degree n and the set of roots of
this polynomial coincides with σ(A). This result is nothing but the consequence of
the expansion of det(tI-A) by minors ; each row of tI-A contributes one and only one
power of t as the determinant is expanded .

Definition 4. A matrix B ∈ Mn is said to be similar to a matrix A ∈ Mn if there
exists a nonsingular matrix S ∈ Mn such that B = S−1AS.

Similarity is an equivalence relation on Mn and partitions the set of n dimensional
matrices into disjoint equivalence classes.
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Proposition 1. (characterization of a rank 1 matrix) Let A ∈ Mn, n ≥ 2, be a
matrix of rank 1.Then

i) There exist x,y vectors in Cn; x,y 6= 0 such that A = xyT ;
ii) A has at most one non-zero eigenvalue with algebraic multiplicity 1;
ii) This eigenvalue is yT x;
iii) x is the right and y is the left eigenvector corresponding to this eigenvalue.

Proof. i) A is a matrix of rank 1 which means that any row of A can be expressed
in terms of any other row of A. Let A = [a1, ....., an] where ai, i = 1, ..., n represent
the rows of matrix A. Then rank A is 1 if and only if

ai,1 = αi−1a1,1,ai,2 = αi−1a1,2,....,ai,n = αi−1a1,n, for i = 2, ..., n.
Consider the vectors x,y defined as : x = [1, α1, ..., αn−1]T ∈ Cn and y =

[a1,1, ...., a1,n]T .From the definition x, y satisfy the relation A = xyT and they are
two non-zero vectors. Otherwise A would be the zero-matrix, contradiction with A
having rank 1.

ii) Consider the characteristic polynomial

pA(t) = tn − (
n∑

i=1

λi)tn−1 + ... + det(A)(1.2)

Since det(A) = 0 then t = 0 is a root of pA. Thus 0 is an eigenvalue of A. Suppose
that A has at least two non-zero distinct eigenvalues. They are defined by the relations:

Ax1 = λ1x1, x1 6= 0, x1 ∈ Cn(1.3)

Ax2 = λ2x2, x2 6= 0, x2 ∈ Cn(1.4)

and x1, x2 are linear independent vectors. A = xyT so the following relations takes
place

xyT x1 = λ1x1(1.5)

x =
λ1

yT x1
x1(1.6)

xyT x2 = λ2x2(1.7)

x =
λ2

yT x2
x2(1.8)

The quantities yT x1, yT x2 are scalars so the relations (1.6),(1.8) are in contra-
diction with the linear independence of the vectors x1, x2. This eigenvalue , if exists
has algebraic multiplicity 1. It is known that if an eigenvalue has multiplicity k ≥ 1
then the rank of the matrix A − λI is n − k. But the O eigenvalue has multiplicity
at least n− 1 therefore the possible non-zero eigenvalue would have multiplicity less
than n-(n-1)=1. Which means that this non-zero eigenvalue, if exists, has multiplicity
1.

ii) Suppose there exists a non zero eigenvalue. Let v be an associated eigenvector.
Then

Av = λv(1.9)

Then using the result from i)
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xyT v = λv, x, v 6= 0, λ 6= 0(1.10)

yT xyT v = λyT v, yT v 6= 0(1.11)

(yT x− λ)yT v = 0, yT v 6= 0(1.12)

Therefore yT x = λ.
iv) The right eigenvector for the non zero eigenvalue found above is x

Ax = (xyT )x(1.13)

and the left eigenvector is y :
yT A = (yT x)yT(1.14)

which completes the proof.
It is also true that any matrix that can be expressed as the product between two

non-zero vectors, A = xyT has rank 1, due to the fact that ai,j = xiȳj , i, j = 1, 2, ..., n.

Definition 5. A subspace W ⊆ Cn is said to be A − invariant, for A ∈ Mn, if
Aw ∈ W for every w ∈ W .

If A ∈ Mn, each nonzero element of a one dimensional A− invariant subspace of
Cn is an eigenvector of A.

Proposition 2. Let A ∈ Mn. If W is an A− invariant subspace of Cn of dimension
at least 1, then there is an eigenvector of A in W.

Proof. Let {w1, ...wK} be basis for the subspace W. Let w ∈ W . Then

w = β1w1 + .... + βKwK(1.15)

Aw = β1Aw1 + ... + βKAwK(1.16)

Each of the vectors Awi ∈ W , i = 1, 2, ..., K, therefore each of them can be expressed
as a linear combination of the basis vectors of W. Let

Awi = αi,1w1 + ... + αi,KwK(1.17)

So the expression of Aw is

Aw =
K∑

i=1

(βiα1,i + ... + βKαK,i)wi(1.18)

If w is an eigenvector then Aw = λw. To show that there exists an eigenvector of A
in w it is equivalent to show that the matrix α = [αi,j ]i,j has an eigenvalue. This is
true because the det(tI − α) has at least a complex root .

Definition 6. The subspace W is called Finvariant, for a family F ∈ Mn, if W is
invariant of each A ∈ F .

For a commuting family a similar result takes place.
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Proposition 3. If F is a commuting family, then there is a vector x ∈ Cn that is an
eigenvector of every matrix A∈ F .

Proof. Let W be such an invariant subspace that has minimum dimension. Every
nonzero vector in W is an eigenvector of every A ∈ F . If this is not the case, then for
some matrix A ∈ F , not every nonzero vector in W is an eigenvector of A. Since W
is F invariant then it is A-invariant. Then by proposition 2 there is an eigenvector of
A in W. Define

W0 = {y ∈ W : Ay = λy}(1.19)

W0 is a subspace of W . Because of the assumption about A, W0 6= W , so the
dimension of W0 is strictly smaller than that of W. W0 is F invariant, which contra-
dicts the choice of W. Therefore every nonzero vector in W is an eigenvector of every
A ∈ F , which completes the proof .
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