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Graţiela Cicortaş

Abstract

We use the extension of Morse theory for continuous functions on metric
spaces in order to prove a stability property of lower critical values for such a
function. More exactly, if X is a metric space, f, g : X −→ R are continuous
and f has an isolated lower critical value, in suitable hypothesis g has a lower
critical value. This property is still true if X is a G-metric space, where G is a
compact Lie group, and f, g are continuous and invariant.
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1 Introduction

Morse theory for continuous functions on metric spaces was introduced in [16] and
developed in [5]-[13] and independently in [17]- [18].

We are interested in the stability under perturbation of isolated critical values in
this setting. More exactly, we want to know if two ”close” continuous functions on a
metric space have ”close” critical values.

For C2- functions on complete Riemann manifolds, this problem was analyzed
in [19] and in [2] in equivariant context. We also mention [1]. The case of Finsler
manifolds appears in [21] respectively in [3]. The same problem is studied in [15] and
[14] for continuous functions, in a complete different approach.

2 Preliminaries

In this paper X is a metric space endowed with the metric d. If x ∈ X and r > 0,
then Br(x) denotes the open ball in X of center x and radius r.

Let f : X −→ R be a continuous function.

Definition 2.1 The weak slope of f at x, denoted by |df |(x), is the supremum of all
σ ∈ [0,∞) such that there exist δ > 0 and a continuous map H : Bδ(x)× [0, δ] −→ X
which satisfies the properties
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d(H(y, t), y) ≤ t

f(H(y, t)) ≤ f(y)− σt

for all y ∈ Bδ(x) and t ∈ [0, δ].

This extended real number gives a generalization for the norm of Fréchet derivative. If
X is an open set in a normed space and f ∈ C1(X,R), then |df |(x) = ‖f ′(x)‖, ∀x ∈ X.
If X is a C1-Finsler manifold and f ∈ C1(X,R), then |df |(x) = ‖f ′(x)‖, ∀x ∈ X (see
[16], [5]), so in this case the notion of lower critical point agrees with the classical one.

The function x 7→ |df |(x) is lower semicontinuous.
In general, if f0, f1 : X −→ R are continuous, it is not possible to compare

|d(f0 + f1)|(x) with |df0|(x) or |df1|(x). By using [16], it is easy to see that for f0 :
X −→ R continuous and f1 ∈ C1(X,R) the following inequalities hold:

−‖(df1)(x)‖ ≤ |d(f0 + f1)|(x)− |df0|(x) ≤ ‖(df1)(x)‖, ∀x ∈ X.

Definition 2.2 We call a point x ∈ X a lower critical point of f if |df |(x) = 0. A
real number c is called a lower critical value of f if ∃ x ∈ X such that |df |(x) = 0
and f(x) = c.

It is clear from the definition that if x ∈ X is a local minimum point of f, then x is
a lower critical point of f.

In the following, we use the notation K(f) = {x ∈ X| |df |(x) = 0} for the lower
critical set of f and B(f) = f(K(f)). If c is a real number, then Kc(f) = K(f)∩f−1(c)
is the lower critical set of level c of f and f c = {x ∈ X| f(x) < c} denotes the set of
sublevel c of f.

Definition 2.3 We say that f satisfies the Palais-Smale condition on A ⊂ X, denoted
by (PS), if for any sequence (xn) in A such that (f(xn)) is bounded and |df |(xn) −→ 0,
there exists a subsequence (xnk

) converging to some x ∈ A.

The lower semicontinuity of |df | implies the fact that a limit point of a subsequence
(xnk

) as in previous definition is a lower critical point of f.

3 The Second Deformation Lemma

Deformation theorems for continuous functions on complete metric spaces was proved
in [6] - [8]. In [9], the Second Deformation Lemma was refined and the exact statement
is the following:

Theorem 3.1 Let X be a metric space, f : X → R a continuous function, a ∈ R
and b ∈ R ∪ {+∞} with a < b. Assume that for any u ∈ [a, b) the set f−1([a, u]) is
complete and f satisfies the (PS)-condition on f−1([a, u]), f has no critical point x
with a < f(x) < b and either Ka(f) = ∅ or the connected components of Ka(f) are
single points.

Then there exists a deformation η : f b × [0, 1] −→ f b such that:
(i) f(η(x, t)) ≤ f(x);
(ii) if x ∈ Ka(f), then η(x, t) = x;
(iii) η(f b, 1) ⊂ fa ∪Ka(f).

In particular, fa ∪Ka(f) is a deformation retract of f b.
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4 A stability property of lower critical values

In this section Hq(B, A) denotes the qth relative singular homology group of the pair
(B, A) with real coefficients, where A ⊂ B and q is a nonnegative integer (see [20]).
H∗(B, A) denotes the graded group (Hq(B,A))q.

We begin with a lemma which will be useful in the proof of the main theorem.

Lemma 4.1 ([19]) Let A, X, B, A′, Y, B′ be topological spaces such that A ⊂ X ⊂ B ⊂
A′ ⊂ Y ⊂ B′. Assume that Hn(B, A) = 0 and Hn(B′, A′) = 0, for any n nonnegative
integer. Then there exist an injective homomorphism h : Hn(A′, A) −→ Hn(Y, X).

We recall that for a deformation retract A′ of A we have, for any nonnegative
integer n, Hn(A,A′) = 0. Moreover, if A′′ ⊂ A′ ⊂ A and A′ is a deformation retract
of A, then, for any nonnegative integer n, we have Hn(A, A′′) = Hn(A′, A′′). (See, for
instance, [20].)

We state now the stability property of lower critical values.

Theorem 4.1 Let X be a complete metric space and f, g : X −→ R two continuous
functions such that c ∈ R is the only lower critical value of f in [c− ε, c + ε], where
ε > 0. Assume that for any u in [c − ε, c + ε), f satisfies the (PS)-condition on
f−1([c−ε, u]) and g satisfies the (PS)-condition on g−1([c−ε, u]). Assume, also, that
there exist m such that Hm(f c+ε, f c−ε) 6= 0 and δ > 0 which depends on ε such that

|f(x)− g(x)| ≤ δ, ∀x ∈ X.

Then there exists a lower critical value of g in the interval [c− (ε− δ), c + (ε− δ)].

Proof: We follow the idea of [19]. The above inequality implies the inclusions

f c−ε ⊂ gc−(ε−δ) ⊂ f c−(ε−2δ) ⊂ f c+(ε−2δ) ⊂ gc+(ε−δ) ⊂ f c+ε

with ε− 2δ > 0.
Because [c−ε, c+ε]∩B(f) = {c}, in accord with the Second Deformation Lemma

for continuous functions, we conclude that f c−ε is a deformation retract of f c−(ε−2δ)

and fc+(ε−2δ) is a deformation retract of f c+ε. Then we obtain Hn(f c−(ε−2δ), f c−ε) =
0 and Hn(f c+ε, f c+(ε−2δ)) = 0, for all n positive integer. Apply Lemma 4.1 and it
follows that

h : Hn(f c+(ε−2δ), f c−ε) −→ Hn(gc+(ε−δ), gc−(ε−δ))

is injective. Because f c+(ε−2δ) is a deformation retract of f c+ε, we obtain

Hn(f c+(ε−2δ), f c−ε) = Hn(f c+ε, f c−ε)

for any n positive integer.
We use the assumption Hm(f c+ε, f c−ε) 6= 0 and it follows that

Hm(gc+(ε−δ), gc−(ε−δ)) 6= 0

and [c− (ε− δ), c + (ε− δ)] ∩B(g) 6= ∅. 2
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Remark 4.1 It is obviously that in the hypothesis of Theorem 4.1, there exists at
least a lower critical point of g.

Remark 4.2 We can easily prove the above theorem if f has p isolated lower critical
values. We conclude that, in the corresponding hypothesis, g has at least p lower
critical points.

Remark 4.3 The assumption |f(x)− g(x)| ≤ δ = ε
M ,∀x ∈ X, where M > 2, implies

f c−ε ⊂ gc−(ε−δ) ⊂ gc− ε
2 ⊂ f c−( ε

2−δ) ⊂ f c+( ε
2−δ) ⊂ gc+ ε

2 ⊂ gc+(ε−δ) ⊂ f c+ε. Then the
shortest interval corresponding to g in the conclusion of Theorem 4.1 is [c− ε

2 , c + ε
2 ].

Remark 4.4 Homotopical stability of isolated critical points was studied in [10].
Recall that for f : X → R continuous, u ∈ X, c = f(u) and U ⊂ X a neighborhood
of u, the qth critical group of f at u is

Cq(f ; u) = Hq((fc ∪ {u}) ∩ U, f c ∩ U)

and let C∗(f ; u) = {Cq(f ; u)}q (see [7]). Due to the excision property of singular
homology, the definition of C∗(f ;u) does not depend on the particular choice of the
neighborhood U.

This definition is justified by the following property:

Proposition 4.1 ([7]) Let f : X → R be continuous and u ∈ X. If |df |(u) 6= 0, then
C∗(f ;u) = {0}∗.

This is equivalent with the fact that if Cq(f ; u) is nontrivial for some q, then u is
a lower critical point of f.

If f : X → R, we set
‖f‖∞ := sup

X
|f |

Lip(f) := sup
u 6=v

|f(u)− f(v)|
d(u, v)

‖f‖1,∞ := max{‖f‖∞, Lip(f)}

Theorem 4.2 ([10]) Let X be a complete metric space, f : X → R continuous,
Y ⊂ X open and x0 ∈ Y. Assume that x0 is the only lower critical point of f in Y
and f satisfies the (PS) condition on Y .

Then there exists ε > 0 such that for every g : X → R continuous which has an
unique lower critical point x0 ∈ Y and satisfies the (PS) condition on Y and such
that ‖g|Y − f|Y ‖1,∞ ≤ ε, we have C∗(g;x0) = C∗(f ;x0).

5 The equivariant case

Let X be a metric space with the metric d. Assume that a compact Lie group G
acts on X by isometric transformations. We will say that X is a metric G-space. Let
f : X −→ R be a continuous invariant function.
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Definition 5.1 The equivariant weak slope of f at x, denoted by |dGf |(x), is the
supremum of all σ ∈ [0,∞) such that ∃ U an invariant neighborhood of x, ∃ δ > 0
and a continuous map H : U × [0, δ] −→ X which satisfies the properties

d(H(y, t), y) ≤ t

f(H(y, t)) ≤ f(y)− σt

H(·, t)is equivariant

for all y ∈ U and t ∈ [0, δ].

Remark that |dGf |(x) ≤ |df |(x). The function x 7→ |dGf | is lower semicontinuous
and invariant (see [5]).

Definition 5.2 A point x ∈ X is called a lower G-critical point of f if |dGf |(x) = 0. A
real number c is called a lower G-critical value of f if ∃ x ∈ X such that |dGf |(x) = 0
and f(x) = c. An orbit O is called lower critical if |dGf |(x) = 0, for some x ∈ O.

The lower G-critical set at level c of f will be denoted by Kc,G(f).

Definition 5.3 We say that f satisfies the G-Palais-Smale condition on an invariant
subset A of X, denoted by (PS)G, if for any sequence (xn) in A such that (f(xn)) is
bounded and |dGf |(xn) −→ 0, there exists a subsequence (xnk

) converging to some
x ∈ A.

The Second Deformation Lemma extends to equivariant setting:

Theorem 5.1 Let X be a metric G-space, f : X −→ R a continuous invariant
function, a ∈ R and b ∈ R ∪ {+∞} with a < b. Assume that for any u ∈ [a, b)
the set f−1([a, u]) is complete, f satisfies the (PS)G-condition on f−1([a, u]), f has
no G-critical point x with a < f(x) < b and either Ka,G(f) = ∅ or the connected
components of Ka,G(f) are parts of a certain critical orbit.

Then there exists a deformation ηG : f b × [0, 1] −→ f b such that:
(i) f(ηG(x, t)) ≤ f(x);
(ii) if x ∈ Ka,G(f), then ηG(x, t) = x;
(iii) ηG(f b, 1) ⊂ fa ∪Ka,G(f);
(iv) ηG(·, t) is equivariant, for all t ∈ [0, 1].

In particular, fa ∪Ka,G(f) is an equivariant deformation retract of f b.

In order to prove the previous theorem, it is sufficient to make an average by
means of Haar measure (see [4], Theorem 0.3.1), defining

ηG(x, t) =
∫

G

η(gx, t)dg

where η(x, t) is given by Theorem 3.1.

We consider a G-equivariant homology theory hG
∗ , for example we take the Borel

homology (see [4]).
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Let EG be a contractible space on which G acts freely. It is known that EG exists
for any topological group and is uniquely determined up to G-homotopy. A standard
model is EG = G ∗G ∗ . . . (Milnor’s construction).

For a G-space we define the homotopy quotient

XG = EG×G X := (EG×X)/G,

where G acts diagonally on EG×X.
If (X,X ′) is a G-pair, we define

HG
∗ (X, X ′) := H∗(EG×G X, EG×G X ′).

At first it seems more natural to take the homology of the orbit space; it is possible
but difficult to deal with because the projection X −→ X/G is not a bundle in gen-
eral. If the action of G on X is free, then XG is homotopy equivalent to X/G, hence
HG
∗ (X) = H∗(X/G).

We can give now the equivariant version of Theorem 4.1:

Theorem 5.2 Let X be a complete metric G-space and let f, g : X → R be con-
tinuous invariant functions such that c ∈ R is the only lower G-critical value of
f in [c − ε, c + ε], where ε > 0. Assume that for any u in [c − ε, c + ε), f satis-
fies the (PS)G-condition on f−1([c − ε, u]) and g satisfies the (PS)G-condition on
g−1([c − ε, u]). Assume that there exist m such that HG

m(f c+ε, f c−ε) 6= 0 and δ > 0
which depends on ε such that

|f(x)− g(x)| ≤ δ,∀x ∈ X.

Then there exists a lower G-critical value of g in the interval [c− (ε− δ, c + (ε− δ)]
and consequently g has at least a lower critical G-orbit.

It is sufficient to adapt step by step the proof of Theorem 4.1 to the equivariant
setting.
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