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Abstract

The purpose of this paper is to investigate the Chern-type problem on Kéhler
geometry. That is, we study some properties concerning the distribution of the
value of the squared norm of the second fundamental form on a complex sub-
manifold of a complex projective space.
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1 Introduction

The theory of Kéhler submanifolds is one of fruitful fields in Riemannian geometry
and we have many studies [1], [2], [7], [8] and [10] etc. One of them is the complex
geometric version of Chern’s problem concerning the distribution of the value of the
squared norm hy of the second fundamental form on M. In his paper [11], Tanno
tackled this problem and verified the following theorem.

Theorem A. Let M = M™ be an n-dimensional compact Kdahler submanifold
of an (n + p)-dimensional Kihler manifold M’ = M™P(c) of constant holomorphic
sectional curvature c¢(> 0). Then M is totally geodesic, hy = c(n+2)/6 or hao(x) >
c(n+2)/6 at a point x in M.

In this paper, we assert the following theorem.

Theorem. Let M = M™ be an n(> 3)-dimensional complete complex submanifold
of an (n + p)-dimensional Kihler manifold M’ = M™P(c) of constant holomorphic
sectional curvature c(> 0). If the squared norm hy of the second fundamental form on
M satisfies
c 2

ho < 712(71271)(71 —4),

then M is totally geodesic.
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2 Kahler manifolds

This section is concerned with reviewing basic formulas on Ké&hler manifolds. Let
M be a complex n(> 2)-dimensional Kéhler manifold equipped with K&hler metric
tensor ¢g and almost complex structure J. We can choose a local field

{EOL} = {EJ7E]*} = {Ela"'7E’rL7E1*7"'7En*}

of orthonormal frames on a neighborhood of M, where F;« = JE; and j* = n + j.

Here and in the sequel, the Latin small indices i, j,- - - run from 1 to n and the small
Greek indices o, 3, --- run from 1 to 2n = n*. We set
1

. = 1 .
E(Ej — ZEJ’*), Uj = E(Ej + ZEJ'*),

where i denotes the imaginary unit. Then {U;} constitutes a local field of unitary
frames on the neighborhood of M. With respect to the Kahler metric, we have

9(U;, Ug) = -

U; =

Now let {w;} be the canonical form with respect to the local field {U;} of unitary
frames on the neighborhood of M. Then {w;} = {wi, -, wy} consists of complex
valued 1-forms of type (1,0) on M such that w;(Uy) = ;5 and w1, - -, wp, @1, -, &
are linearly independent. The Kéhler metric g of M can be expressed as

g:2ij ® Wj.
J

Associated with the frame field {U;}, there exist complex-valued 1-forms wj, which
are usually called complex connection forms on M such that they satisfy the structure
equations of M

dwz'+zwl‘k ANwg =0, wij + Wj; =0,
k

dwi]’ + Zwik Nwij = Qij,
k

Qij = Zszkli wg N\ Wy,
k

where €2;; (resp. K7;;;) the curvature form (resp. the components of the Riemannian
curvature tensor R) of M. ;From the structure equations, the components of the
curvature tensor satisfy

Kijkl‘ = Kjuz'm
Kijkl’ = Kikﬂ = Kl’jk% = Kikﬁ‘
For a local field {Eo} = {E;, Ej«} = {E1, -+, Ep, E1+,- -+, Ep« } of orthonormal

frame on a neighborhood of M, we denote by R.gys the components of the Rie-
mannian curvature tensor R. Then we have
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Kijir = —{(Rijra + Rivjrer) +i(Riwjrr — Rijrer) }-

Relative to the frame field chosen above, the Ricci tensor S of M can be expressed as
follows :
S = Z(Sﬁwl ® u_)j =+ S;j@ ® Wj),
4,J

where S;; =3 Kipij = S5 = ng‘ The scalar curvature r of M is also given by
r=2 Z 5=
J

An n-dimensional Kéhler manifold M is said to be FEinstein, if the Ricci tensor §

satisfies the condition ,

The components Ky, and Kjjpps (resp. S;5;, and S55) of the covariant derivative
of the Riemannian curvature tensor R (resp. the Ricci tensor S) are given by

Z(K{jklmwm + Kz]klm ) dKfjk[

m

- Z(ijkfwmi + Kippiwm; + Kijmiwmk + K{jkmwml)7
m

> (Siguwr + Siga@r) = dSi; — Y (Skjwri + Sip@r;)-
k k

The second Bianchi identity is given as follows :

ngkfm =K;

ijmilk-

And hence we have

z]k - Sk]l E Jikmm-

A Kahler manifold of constant holomorphic sectional curvature is called a complex

space form. The components Kj;; of the Riemannian curvature tensor R of an n-

.
dimensional complex space form of constant holomorphic sectional curvature c is
given by

c
K = 5(5z’j5kz + k1)

3 Complex submanifolds

This section is reviewed complex submanifolds of a Kéhler manifold. First of all, the
basic formulas for the theory of complex submanifolds are prepared.

Let M’ = M™"P be an (n+ p)-dimensional Kéhler manifold with Kahler structure
(¢',J"). Let M be an n-dimensional complex submanifold of M’ and ¢ the induced
Kéhler metric tensor on M from g’. We can choose a local field
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{UA} = {Uiv UI} = {Ula Tty Un+P}

of unitary frames on a neighborhood of M’ in such a way that, restricted to M,
Ui,---,U, are tangent to M and the others are normal to M. Here and in the sequel,
the following convention on the range of indices is used throughout this paper, unless
otherwise stated :

AaBa"':la"'anan+1a"'an+pa
iaja"'zla"'7n7
$7y’:n+17,n+p

With respect to the frame field, let {wa} = {w;,w;} be its dual frame fields. Then
the Kahler metric tensor g’ of M’ is given by

QIZQZWA@)@A
A

The canonical forms w4, the connection forms w4p of the ambient space M’ satisfy
the structure equations

dwa + ZECWAC Nwe =0, wap+wpa =0,

c
(3.1) dwap + ZWAC Nwep = Uyp,
c
Ap = Z Klipepwo A @b,
C,D

where 'y p (resp. K'; ;) denotes the curvature form (resp. the components of the
Riemannian curvature tensor R’) of M’. Restricting these forms to the submanifold
M, we have

(3.2) wy =0,

and the induced Kahler metric tensor g of M is given by
g = 2 Z wj ® @j.
J

Then {U,} is a local unitary frame field with respect to the induced metric and {w;} is
a local dual frame filed due to {U; }, which consists of complex-valued 1-forms of type
(1,0) on M. Moreover, wi,- -+ ,Wn,@1, - ,w, are linearly independent, and {w;} is
the canonical forms on M. It follows from (3.2) and Cartan’s lemma that the exterior
derivatives of (3.2) give rise to

(3.3) wai = 3 hwi,  hE = hY.
J

The quadratic form
a= thjwi®wj®Uz

4,0,
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with values in the normal bundle on M in M’ is called the second fundamental form
on the submanifold M. ;From the structure equations for M’, it follows that the
structure equations for M are similarly given by

dwi—l—Zwik ANwg =0, wij + Wjs =0,
k

(3.4) dw;j + Zwik Nwg = Qij,
k
Qi = Z Kfjkiwk A wy.
ko l

For the Riemannian curvature tensors R and R’ of M and M’, respectively, it
follows from (3.1), (3.3) and (3.4) that

(3'5) Kijkf ”kl Z h

The components S;; of the Ricci tensor S and the scalar curvature r on M are given
by

(3.6) ZKkku hi; ?
(3.7) r= 2( Z Kjys — b)),

where ;3% = h;;? = b hZ . and hy = > hji?.

i) im'“mj

Now the components A, and hfjl—c of the covariant derivative of the second fun-
damental form on M are given by

> (hfjpwn + WY por)

k
= dh; = D (Wi + hfjwrs) + D hljway.

k y

Then, substituting dhj; in this definition into the exterior derivative

dwyi =Y _(dhi; A wj + h;dw;)

J
of (3.3) and using (3.1) ~ (3.4) and (3.6), we have

x !
thk‘ Km]k

fjk = hfkj,
In particular, let the ambient space M’ = M"™"P(c) be an (n + p)-dimensional
complex space form of constant holomorphic sectional curvature c¢. Then, by (3.5) ~

(3.7), we get
&
(3.8) Kijir = 5(0i50m + dikdj1) Z h$ehi,



98 Yong-Soo Pyo and Kyoung-Hwa Shin

c
(3.9) S = 5(” +1)di; — hiz”,
(3.10) r=cn(n+1) — 2hs,

Finally, let M’ = M™P be an (n + p)-dimensional Kihler manifold and let M
be an n-dimensional complex submanifold of M’. Then the Laplacian Ahy of the
squared norm hs of the second fundamental form « on M is given by Aiyama, Kwon
and Nakagawa [1] as follows :

(3.11) Ahy = 2| Valls + c(n + 2)hy — 4hy — 2Tr A?,
where hy = >i; hij?hji® and A is a Hermitian matrix of order p with entry A7 =
S,

4 Proof of Theorem

First, we are concerned with the totally real bisectional curvature of a Kéhler mani-
fold. Let (M, g) be an n-dimensional Kéhler manifold with almost complex structure
J. In their paper [3], Bishop and Goldberg introduced the notion for totally real
bisectional curvature B(X,Y") on a Ké&hler manifold.

A plane section P in the tangent space T,M at any point p in M is said to be
totally real or anti-holomorphic if P is orthogonal to JP. For an orthonormal basis
{X,Y} of the totally real plane section P, any vectors X, JX,Y and JY are mutually
orthogonal. It implies that for orthogonal vectors X and Y in P, it is totally real
if and only if two holomorphic plane sections spanned by X, JX and Y, JY are or-
thogonal. Houh [5] showed that an n(> 3)-dimensional K&hler manifold has constant
totally real bisectional curvature c if and only if it has constant holomorphic sectional
curvature 2c. On the other hand, Goldberg and Kobayashi [4] introduced the notion
of holomorphic bisectional curvature H(X,Y") which is determined by two holomor-
phic planes Span{ X, JX } and Span{Y, JY'}, and asserted that the complex projective
space C'P™(c) is the only compact Kéhler manifold with positive holomorphic bisec-
tional curvature and constant scalar curvature. If we compare the notion of B(X,Y)
with the holomorphic bisectional curvature H(X,Y") and the holomorphic sectional
curvature H(X), then the holomorphic bisectional curvature H(X,Y") turns out to
be totally real bisectional curvature B(X,Y’) (resp. holomorphic sectional curvature
H(X)), when two holomorphic planes Span{ X, JX} and Span{Y, JY '} are orthogonal
to each other (resp. coincides with each other). From this, it follows that the positive-
ness of B(X,Y) is weaker than the positiveness of H(X,Y), because H(X,Y) > 0
implies that both of B(X,Y) and H(X) are positive but we do know whether or not
B(X,Y) > 0 implies H(X,Y) > 0.

Definition 4.1. For a totally real plane section P spanned by orthonormal vectors
X and Y, the totally real bisectional curvature B(X,Y') is defined by

(4.12) B(X,Y) = g(R(X,JX)JY,Y).

Then, using the first Bianchi identity to (4.12) and the fundamental properties of the
Riemannian curvature tensor of Kéhler manifolds, we get
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B(X,Y) =g(R(X,Y)Y,X)+ g(R(X,JY)JY,X)
(4.13) = K(X,Y)+K(X,JY),

where K(X,Y) is the sectional curvature of the plane spanned by X and Y.

In the rest of this section, we suppose that X and Y are orthonormal vectors in a
non-degenerate totally real plane section. If we put

1

X' =—(X+4Y), Y =—(X-Y),

S
Sl

2
then it is easily seen that
g X', X" =g(Y' )Y =1, g(X', Y =0.
Thus we get
B(X")Y') =g(R(X',JX"JY',Y")
{HX)+ H(Y)+2B(X,Y) —4K(X,JY)},

Q

R

where H(X) = K(X,JX) means the holomorphic sectional curvature of the holo-
morphic plane spanned by X and JX. Hence we have

(4.14) 4B(X')Y')—2B(X,Y)=H(X)+ H(Y) —4K(X,JY).
If we put ) .
XN:E(X+JY)’ Y":E(JX+Y),

then we get
X" X") = (Y, Y") =1, g(X".¥Y")=0.

Using the similar method as in (4.14), we have
(4.15) AB(X".Y") = 2B(X,Y) = H(X) + H(Y) — 4K(X,Y).
Summing up (4.14) and (4.15) and taking account of (4.13), we obtain

(4.16) 2B(X',Y') +2B(X",Y") = H(X) + H(Y).

Now we calculate here the totally real bisectional curvatures of a Kéhler manifold.
Let M = M™ be an n(> 3)-dimensional complex submanifold of an (n+p)-dimensional
Kéhler manifold M’ = M"™*?(c) of constant holomorphic sectional curvature c. As-
sume that the totally real bisectional curvatures on M is bounded from below (resp.
above) by a constant a (resp. b), and let a(M) and b(M) be the infimum and the supre-
mum of the set B(M) of the totally real bisectional curvatures on M, respectively.
By definition, we see

a < a(M) (resp. b > b(M)).

(From (4.16), we have



100 Yong-Soo Pyo and Kyoung-Hwa Shin

(4.17) H(X)+ H(Y) > 4a (resp. < 4b).

For an orthonormal frame field {Ey,---,E,} on a neighborhood of M, the holo-
morphic sectional curvature H(E);) of the holomorphic plane spanned by E; can be
expressed as

H(E;) = g(R(Ej, JE;)JEj, Ej) = Rjjejj = K55

On the other hand, it is easily seen that the plane sections Span{E;, JE;}, and
Span{Ey, JE}, j # k, are orthogonal and the totally real bisectional curvature
B(Ej, Ey,) is given by

B(Ej7Ek) = g(R(E]a ']Ej)JEk7Ek) = ijk’fm J 7& k.

(From the inequality (4.17) for X = E; and Y = E}, we have

(4.18) K5;i5 + Kggir > 4a (resp. < 4b), j#k.

Thus we have

(4.19) Z(K3J'j3 + Kipei) = 2an(n — 1) (resp. < 2bn(n — 1)),
i<k

which implies that
(4.20) ZK;J»]; > 2an (resp. < 2bn),
J

where the equality holds if and only if

K3,;5 = 2a (vesp. = 2b)
for any index j.

Since the scalar curvature r is given by

r= 2ZK]Jkk = 2(2 Jiii +ZKﬂkk>

J#k

we have by (4.19)

r>22 K355 + 2an(n — 1) (resp <22 ””—G-ann—l)),

from which it follows that

(4.21) Z 557 < 5 —an(n—1) (resp. > g —bn(n — 1)),

where the equality holds if and only if
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for any distinct indices j and k. In this case, M is locally congruent to M™(a) (resp. M™ (b))
due to Houh [5]. Also (4.18) gives us

Z (K357 + Kgger) = 4a(n — 1) (vesp. < 4b(n — 1))
k(#35)

for each j, so that

(n—2)K3,;5 + ZK,;,CM; > 4a(n — 1) (resp. <4b(n —1)).
k

(From this inequality together with (4.21), it follows that

r

(4.22) (n—2)K5;: >aln—1)(n+4) — 3

Jiii

(resp. <bn—-1)(n+4) — g)

for any index j, so that the holomorphic sectional curvature Kj;;; is bounded from

below (resp. above) for n > 3. Moreover, the equality holds for some index j if and
only if M is locally congruent to M™(2a) (resp. M™(2b)).

Since the Ricci curvature S;; is given by

55 = K55+ D Kjinks
i(k)

we have by the assumption

S;7 > K35 +a(n —1) (resp. < K33

+ b(n — 1)),
and hence by (4.22), we have

1
2(n—2)
1

(resp. < m{élb(n -D(n+1) - r})

(4.23) Si; > {4a(n —1)(n+1) —r}

On the other hand, using (4.23), we get
1
r >28;+ ﬁ(n —D{da(n—1)(n+1)—r}
1
(resp. <2855+ m(n —D{4b(n —1)(n+1) — r}),
and hence we have

(4.24) Sii < 3o

(resp. > 2(%_2){(2n —3)r —4b(n — 1)*(n + 1)})

{(2n — 3)r — 4a(n —1)*(n+ 1)}



102 Yong-Soo Pyo and Kyoung-Hwa Shin

In connection with Theorem A, we can verify the following theorem

Theorem 4.1. Let M = M™ be an n(> 3)-dimensional complete complex sub-
manifold of an (n + p)-dimensional Kéhler manifold M’ = M"™*?(c) of constant holo-
morphic sectional curvature ¢(> 0). If the squared norm hy of the second fundamental

form on M satisfies .

hy < —————(n? — 4),
2 < gz Y
then M is totally geodesic.

Proof. Since two matrices H = (hj,f) and A = (Aj) are both positive Hermitian
ones, the eigenvalues A; of H and the eigenvalues A, of A are non-negative real valued
functions on M. Thus it is easily seen that

> N =Tr H = hy, ZA =Tr A= ho,

J

(4.25) 2> hy = Z,\ > h2 ,
ho? > Tr A% = )\z2>7h2,
2 = ; _p 2

where the second equality in the second relationship holds if and only if all eigenvalues
of the matrix H are equal, and the second equality in the last relationship holds if and
only if all eigenvalues of the matrix A are equal. It means that each equality holds if
and only if the rank of matrices H and A are at most one. By (3.11), we have

Ahy > ¢(n 4 2)hy — 4hy — 2Tr A2,

where the equality holds if and only if the second fundamental form « on M is parallel.
Together the above inequality with the properties about eigenvalues (4.25), it follows
that

Ahg 2 C(TL + 2)h2 - 6h22,

where the equality holds if and only if the second fundamental form on M is parallel
and the rank of the matrices H and A are at most one. A non-negative function f is
defined by hs. Then the above inequality is reduced to

(4.26) Af > —6f%+c(n+2)f,

where the equality holds if and only if the second fundamental form on M is parallel
and the rank of the matrices H and A are at most one. By (4.21), we have

ZKEM < 5 —nln—1)a(M).

Hence we have by (4.20) and (3.10)
1
2na(M) < §{cn n+1) —2ho} —n(n — 1)a(M).

This yields that
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1
(4.27) F=Y A=hy< gle=20(M}n(n+1), A; >0,
J

where the first equality holds if and only if Kj;;5 = 2a(M) and Kj;; = a(M) for
any indices j # k. This means that a(M) is bounded from above by definition, which
implies that each eigenvalue \; is bounded. Since the Ricci curvature S;; of M is
given by (3.9) as

&
Sii=35

it is also bounded. So, we can apply the generalized maximum principle due to Omori
[9] and Yau [12] to the bounded function f, and we see that for any sequence {e,,}
of positive numbers which converges to 0 as m tends to infinity, there exists a point
sequence {p,,} such that

(n—|— 1) —>\j7

IVFm)ll < &ms Af(Pm) < em,  sup f = em < f(pm)-

Thus, we have
(4.28) im Af(pp) < lim ep =0, lim _f(pm) = sup f.
By (4.26) and (4.28), we see

sup J {sup f — & (n+2)} 2 0,

which means that .

supf =0 or supf > 6(n+2).
If sup f = 0, then f vanishes identically on M because f is non-negative. Then M is
totally geodesic.

Suppose that M is not totally geodesic. So, f satisfies
sup f > %(n—i— 2).
On the other hand, we have by (4.27)
sup f < %{c —2a(M)}n(n+1).

Thus, we see that
c
a(M) < ————(3n® + 2n — 2).
(M) < 6n(n + 1)( + )

We denote the right hand side of the above inequality by as, which is the constant
depending only on the dimension n of M and the constant holomorphic sectional
curvature ¢ of the ambient space. Then, it is seen that the infimum a(M) of the
totally real bisectional curvatures of M satisfies a(M) < as for the constant

ag = (3n? +2n — 2).

6n(n+1)

By (3.10), (4.22) and (4.24), we see
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Kt > — {en(n® 1) 2(n — 1)ha — (20 — 3 + 2)b(M))

for any distinct indices j and k. By the definition of a(M), we get

a(M) >

z = 2{cn(n2 —1) = 2(n — 1)hg — (20> — 3n + 2)b(M)}.

On the other hand, by (3.8), it is seen that
c v 7o _ C
Kjjr =5 = D hihf < 5

for any distinct indices j and k, and hence it turns out to be b(M) < ¢/2, where the
equality holds if and only if hJ), = 0 for any distinct indices j and k. Hence we have

1
he > 1 {c = 2a(M)}(n —2).

n—1)
Since a(M) < az, we get

c 2
P — - )
he 2 o™ 4

It completes the proof.

Remark 4.1. In Theorem 4.1, we shall remark M is not necessarily compact.
Furthermore, on one hand, the theorem means that the zero point in the value dis-
tribution of ho is discrete. but on the other, Theorem A has no information about
it.
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