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Abstract

We characterize the family of second order potential differential systems,
with n degrees of freedom, via their symmetries.

Firstly, we calculate explicitly the equivalence Lie algebra and the weak
equivalence Lie algebra. It is shown that the equivalence Lie algebra has the

dimension n + 4 +
n(n− 1)

2
whereas the weak equivalence Lie algebra is infinite-

dimensional. The later contains strictly the former.
Secondly, we investigate the Lie-point symmetry structure. We start with a

quadratic potential, and we provide an analysis relying on the spectral theo-
rem. In the case of non-quadratic potentials, we establish the conditions for the
existence of additional symmetries, deriving the classifying conditions. These
conditions are greatly simplified under the action of the equivalence group.

Finally we show how the Lie point symmetries can be obtained using (weak)
equivalence transformations and we give an example where the existence of
symmetries can be used to prove integrability.
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1 Introduction

The second order potential differential system

ẍi = − ∂V

∂xi
, i = 1, ..., n,(1.1)

associated to a potential V = V (x1, . . . , xn), models conservative phenomena amongst
which we can cite motion in molecular systems and multibody mechanical systems.

These are Euler-Lagrange equations associated to the Lagrangian L =
1
2
δij ẋ

iẋj−V (x)

(Einstein’s summation convention is assumed).
Particularly, the least squares Lagrangian
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L =
1
2
δij(ẋi −Xi(x))(ẋj −Xj(x))

(see Geometric Dynamics [27]), associated to the irrotational vector field X = Xi ∂

∂xi
,

produces the Euler-Lagrange equations

ẍi =
∂f

∂xi
, i = 1, ..., n,(1.2)

where f(x) =
1
2
δijX

i(x)Xj(x) is a density of energy.

Of course, it is well known that the Hamiltonian H =
1
2
δij ẋ

iẋj + V (x) is a first
integral. Sometimes, the Hamiltonian H can be used like Lyapunov function attached
to the Hamiltonian vector field, to decide the stability or unstability of the (first
order) Hamiltonian differential system [27].

The differential system (1) is called integrable if it admits n first integrals (integrals
of motion depending on velocity). The systematic investigation of the integrability of
differential systems (1) took off in the nineteenth century with the pioneering works
of Poisson, Hamilton, Ostrogradskii and Liouville and was consolidated in the early
twentieth century with the classical work of Whittaker [26] and later with the work
of Arnold [1].

Whittaker [26] looked for differential systems of type (1), with two degrees of
freedom, admitting a second integral of motion quadratic in the velocity. He found only
one potential of the two possible classes which possess second-order invariants. The
second potential was obtained by Sen [24]. Hietarinta [11, 12, 13, 14] combines ad-hoc
methods and computer algebra in his search for 2-dimensional integrable differentiable
systems of type (1), with polynomial potentials. Grammaticos et al [10] showed how
to extend some integrable 2-dimensional systems to integrable n-dimensional systems.
Also, Dorizzi et al [7] investigated integrable three-dimensional Hamiltonian systems
with quartic potentials. Calogero [3, 4, 5] investigated integrable non-relativistic n-
body problem.

Seifert [29], Gordon [33], Weinstein [31], Mawhin-Willem [30] proved the existence
of trajectories of the system (1) with arbitrary given energy which join two fixed
points and have arbitrary topological type.

The common feature of available integrable potential differential systems is that
they possess symmetries (translation, scaling, rotation,. . . ). Therefore it makes sense
to look for integrable systems amongst systems admitting symmetries. This approach
initiated by Sophus Lie, has been used recently for general potential differential sys-
tems with two degrees of freedom by Sen [23]. The work of Sen was rediscovered by
Damianou et al [6]. Some authors have rather focus on specific potential systems: Sa-
hadevan and Lakshmanan [22] performed a symmetry analysis of Hénon-Heiles and
two coupled quartic harmonic oscillator systems. Duarte et al [8] work out the sym-
metry Lie algebra of the n-dimensional harmonic oscillator. Bryant [32] refers to the
general approaches of Lie symmetries.

In this work we obtain general results about the symmetry analysis of the fam-
ily of n-dimensional potential differential systems. For that Section 2 contains some
remarks about the case where the potential V is a quadratic form. This case arise
naturally during the symmetry analysis of the general case. In Section 3 we calculate
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the equivalence and the weak equivalence group which is common for all potential
systems of type (1.1). In Section 4 we obtain a classifying condition for (1.1) and we
use the equivalence group to simplify it. In Section 5, we show how we can use the
(weak) equivalence group to obtain the symmetries of (1.1). Section 6 examines an
example with two first integrals of motion. In the final section, we summarize our
results.

In the sequel we assume that the reader is familiar with basic notions of Lie’s
symmetry theory [2, 19, 20, 25] so that routine calculations are omitted.

2 Potential differential systems with quadratic po-
tentials

Here we assume that the potential V is a quadratic form, i.e.,

V =
1
2
aijx

ixj + bix
i + c,(2.3)

where aij = aji, bi and c are constants. By making the change of dependent variable
x′ = x − xp, where xp is a particular solution of (1.1), we can assume without loss
of generality that bi = 0. Also we can let c = 0 since it does not appear explicitly in
(1.1). We are then left with

V =
1
2
aijx

ixj .

To sum up at this point, the differential system of type (1), with quadratic potential,
can be written

ẍ = Ax,(2.4)

where A is a symmetric matrix. Now, we know from the spectral theorem that sym-
metric matrices are diagonalizable. Thus there exists an invertible matrix P such
that

A = P−1DP,

where D is a diagonal matrix. Next, by making the change of variables

x′ = Px,

equation (2.4) becomes
ẍ′ = Dx′.

Thus in the study of symmetries of potential systems with quadratic potential, we
may assume without loss of generality that the potential is given by

V =
1
2

n∑

i=1

λi(xi)2.(2.5)

Using Lie algorithm, it can be shown that the symmetries of the potential system
with the potential (2.5) depend on the multplicity of the eigenvalues of the matrix
diag [λ1, λ2, . . . , λn] ( see [9], section 3).

Remarks.
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1) The second order ODEs system (1) can be linearized around a point or along
a trajectory.

2) In time that a linearization about a point returns a time invariant linear dy-
namics, the linearization about a trajectory returns a linear time-varying differential
system.

3) In order to linearize the second order ODEs system (1) in the neighborhood
of the critical point x = x0, or by translation, x = 0, it is enough to replace V by

the quadratic part
n∑

i,j=1

∂2V

∂xi∂xj
(0)xixj . The motions described by the Lagrangian

L =
1
2
δij ẋ

iẋj −
n∑

i,j=1

∂2V

∂xi∂xj
(0)xixj are called small oscillations in a neighborhood of

the equilibrium point x = 0.

3 Equivalence and weak equivalence group of family
of potential systems

Equivalence transformations of a given differential system are invertible transforma-
tions of independent and dependent variables that preserve the structure of the sys-
tem. Amongst equivalence transformations, those depending continuously on a pa-
rameter and forming a group can be calculated algorithmically [20]. An equivalence
transformation (1.1) will in general map a system into another of the same form, but
with a different potential V , even if the potential continues to depend on the same
arguments. A weak equivalence transformation can also affect the arguments of the
transformed potential, i.e., V (x) can be transformed to V̄ (t̄, x̄).

3.1 Equivalence transformations

Following the infinitesimal method described in [20], we look for the equivalence gen-
erator Γ in the form

Γ = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi
+ ω(t, x, V )

∂

∂V
.(3.6)

We need the second extension Γ[2] of Γ given by

Γ̃ = Γ + ξ̇i ∂

∂ẋi
+ ξ̈i ∂

∂ẍi
+ ωt

∂

∂V,t
+ ωi

∂

∂V,i
,(3.7)

where

ξ̇i = Dξi − ẋiDτ, ξ̈i = Dξ̇i − ẍiDτ, D =
∂

∂t
+ ẋi ∂

∂xi
+ · · · ,

ωi = D̃iω − V,tD̃iτ − V,jD̃iξ
j , D̃i =

∂

∂xi
+ V,i

∂

∂V
+ · · · ,

ωt = D̃tω − V,tD̃tτ − V,iD̃tξ
i, D̃t =

∂

∂t
+ V,t

∂

∂V
+ · · · .

The invariant conditions
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Γ̃(V,t)|V,t=0 = 0, Γ̃(ẍi + V,i)|V,t=0, (1.1) = 0,(3.8)

yield, after expansion and separation, the following equations

ω,t = 0, ξi
,t = 0, τ,ij = 0(3.9)

ξi
,jk − δi

kτ,tj − δi
jτ,tk = 0(3.10)

δi
jτ,tt − δi

jτ,kV,k − 2V,iτ,j = 0(3.11)

V,jξ
i
,j − 2V,iτ,t = ω,i + V,iω,V − V,jξ

j
,i.(3.12)

The PDEs system consisting of the last two equations in (9) and the equation (10)
give

τ = (Ait + Bi)xi + C(t), ξi = (δi
kAj + δi

jAk)xjxk + Di
jx

j .

Substituting τ into the PDEs system (11), we obtain

(δi
j(Akt + Bk) + 2δk

i (Ajt + Bj))V,k = δi
jC

′′.

Let us look this system as a linear nonhomogeneous PDEs system of n2 equations
with the unknown function V .

Case 1. Let Ait + Bi 6= 0. Then

rank
(
δi
j(Akt + Bk) + 2δk

i (Ajt + Bj)
)

= n,

and consequently the previous PDEs system has no solution.
Case 2. Let Ai = 0, Bi = 0. Then C ′′ = 0 and V rests arbitrary. In this case the

relations (9)-(12) reduce to the PDEs

τ,i = 0, τ,tt = 0

ω,t = 0, ω,i = 0

ξi
,t = 0, ξi

,jk = 0

ξi
,l + ξl

,i − 2τ,tδ
l
i − ω,V δl

i = 0.

The integration of (3.9)-(3.12) yields after some calculations

τ = αt + β, ξi = Ai
jx

j + Bi, Ai
j = −Aj

i, i 6= j, Ai
i = λ,(3.13)

ω = γ − 2(α− λ)V ,(3.14)

where α, β, γ, λ, Ai
j and Bi are arbitrary constants. Consequently, we determined the

equivalence transformations for each V -ODEs system (1).
Case 3. Suppose that A = (Ait+Bi) is a non-zero vector. If at least one component

of this vector is zero , then

rank
(
δi
j(Akt + Bk) + 2δk

i (Ajt + Bj)
)

is smaller than n. If

rank
(
δi
j(Akt + Bk) + 2δk

i (Ajt + Bj), δi
jC

′′) < n,
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then the PDEs system has solutions in V . In this case we can have completely new
symmetries. PLEASE TRY TO GIVE DETAILS!

Theorem. The equivalence Lie algebra of all potential systems of type (1.1) is

generated by n + 4 +
n(n− 1)

2
vector fields:

Γ1 =
∂

∂t
, Γ1+i =

∂

∂xi
, Γn+2 =

∂

∂V
,(3.15)

Γn+3 = t
∂

∂t
− 2V

∂

∂V
, Γn+4 = xi ∂

∂xi
+ 2V

∂

∂V
,(3.16)

Γij = xi ∂

∂xj
− xj ∂

∂xi
, i < j,(3.17)

where i and j vary from 1 to n.
The operators or vector fields (3.15)-(3.17) respectively describe translations, scal-

ings and rotations.

3.2 Weak equivalence transformations

In order to compute weak equivalence transformations, which are common to all
potential systems, we follow almost the same path as for equivalence transformations.
The only change is that we do not impose the invariance of the equation Vt = 0 this
time. After applying the invariance conditions and solving the resulting determining
equation we obtain

τ = τ(t), ξi =
1
2
τ̇xi + Ci

jx
j + Bi(t), Ci

j = −Cj
i, i 6= j; Ci

i = C,(3.18)

ω =
1
4
τ (3)δijx

ixj − δijB̈ixj − (τ̇ − 2C)V + D(t),(3.19)

where C and Ci
j are arbitrary constants, τ(t), D(t) and Bi(t) are sufficiently smooth

arbitrary functions.
Theorem. The weak equivalence group is generated by the vector fields

ΓD = D(t)
∂

∂V
, ΓB = Bi(t)

∂

∂xi
− δijB̈

ixj ∂

∂V
,(3.20)

Γτ = 4τ(t)
∂

∂t
+ 2τ̇(t)xi ∂

∂xi

+
(
τ (3)(t)δijx

ixj − 4τ̇(t)V
) ∂

∂V
(3.21)

Γn+4 = xi ∂

∂xi
+ 2V

∂

∂V
, Γjk = xj ∂

∂xk
− xk ∂

∂xj
, j < k.(3.22)

It is straightforward to verify that the equivalence Lie algebra of (1.1) is a proper
subalgebra of its weak equivalence Lie algebra.

4 Symmetry analysis of a potential system

According to Lie’s infinitesimal invariance criteria [2, 19, 20, 25], the operator
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X = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi

is a Lie point symmetry of (1.1) if and only if the following determining equations are
satisfied

ξi
,tt + V,ijξ

j + 2τ,tV,i − V,jξ
i
,j = 0,(4.23)

2ξi
,tj − δi

jτ,tt − δi
jV,kτ,k + 2V,iτ,j = 0,(4.24)

ξi
,jk − δi

kτ,tj − δi
jτ,tk = 0,(4.25)

τ,jk = 0.(4.26)

There are
1
2
(n + 1)(n2 + 3n) equations for n + 1 unknowns τ and ξi. The general

solution of the PDE (26) is τ = Ai(t)xi + B(t). Then the PDEs system (25) is
reduced to ξi

,jk = δi
kȦj + δi

jȦk, with the general solution

ξi = (δi
kȦj + δi

jȦk)xjxk + Ci
j(t) + Di(t).

Substituting τ and ξi into the PDEs system (24), we obtain

(δi
jAk − 2δk

i Aj)V,k = 2(δi
kÄj + δi

jÄk)xk + 2Ċi
j − δi

j(Äkxk + B̈).

This is a linear nonhomogeneous PDEs system of n2 equations with the unknown
function V .

Case 1. Let Ai 6= 0. Then rank
(
δi
jAk − 2δk

i Aj

)
= n, and consequently the PDEs

system has no solution.
Case 2. Let Ai = 0. Then V rests arbitrary and 2Ċi

j = δi
jB̈, i.e., Ci

j = 1
2δi

jḂ + ei
j ,

where ei
j are constants.

Substituting

τ = B(t),(4.27)

ξi =
(

1
2
δi

jḂ + ei
j

)
xj + Di(t),(4.28)

into (4.23) we obtain the PDEs system

D̈i +
1
2
B(3)xi + V,ij

[(
1
2
δj

kḂ + ej
k

)
xk + Dj

]
+

3
2
ḂV,i − V,je

i
j = 0,(4.29)

with the unknown V . Simple calculations show that the compatibility conditions for
the system (4.29) are

(ej
k + ek

j)V,ik − (ei
k + ek

i)V,jk = 0.(4.30)

The system (4.30) forms the so-called classifying conditions. In oder to simplify the
analysis of (4.30), we introduce the notation

Ep
q =

1
2
(ep

q + eq
p).

Thus (4.30) becomes
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Ei
kV,jk − Ej

kV,ik = 0.(4.31)

Since two equivalent equations have the same symmetry structure, we can use the
equivalence Lie algebra to simplify the classifying equation (4.31). In particular by
using the equivalence subgroup of rotation (generated by the Γijs) on (4.31), we are
lead to Ep

q = 0 when p 6= q. That is, we do not affect the symmetry structure by
assuming Ep

q = 0 when p 6= q. Thus (4.31) reduces to

(Ei
i − Ej

j)V,ij = 0 (no summations) .(4.32)

The symmetry classification will rely on the solution of (4.32) which depends on the
muliplicity of the eingenvalues of E.

Case 3. Suppose that A = (Ai) is a non-zero vector. If at least one component of
this vector is zero, then rank

(
δi
jAk − 2δk

i Aj

)
is smaller than n. If

rank
(
δi
jAk − 2δk

i Aj , 2(δi
kÄj + δi

jÄk)xk + 2Ċi
j − δi

j(Äkxk + B̈)
)

< n,

then the PDEs system in the unknown V has solutions and between them we have
also a unique quadratic solution. In this case we can have completely new symmetries.
PLEASE LOOK FOR DETAILS!

5 Symmetries of potential system using the equiv-
alence group

The use of equivalence transformations to obtain partial informations on the sym-
metry structure of differential equations is well documented in the literature (see for
instance [15, 16, 18, 20, 21] and references therein). The use of equivalence trans-
formations to obtain symmetries is particularly important when directly symmetry
classsification is too complicated.

The only common symmetry of all potential systems of type (1.1), indexed by V ,
is time-translation. However for some specifications of V , there might be more sym-
metries. In order to get optimally some of these specifications, nonsimilar subalgebras
of an appropriate projection of the equivalence group can be calculated. This is a very
difficult exercise that can be performed manually only for lower-dimensional algebras.

The equivalence operators of (1.1) when projected on the space of independent
and dependent variables t and xi will be a symmetry of (1.1) provided they leave
invariant the equation V − V (x) = 0. Below we use this important property to get
some extensions of the symmetry Lie algebra of (1.1). We insist on the fact that other
linear combinations of the equivalence operators are also possible.

5.1 Extensions using ΓB

The operator ΓB leaves the equation V −V (x) = 0 invariant provided Bi = F (t), i =
1, 2, . . . , n, and F (t) satisfies the ordinary differential equation

F̈ − λF = 0,

where λ is a constant. Therefore, the following subcases must be considered.
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i) λ = 0: in this case F = C1t + C2, where C1 and C2 are arbitrary constants and
V (x) = ψ(x1 − x2, x2 − x3, . . . , xn−1 − xn), where ψ is an arbitrary smooth function.
The symmetries are then

X1 =
∂

∂t
, X2 =

n∑

i=1

∂

∂xi
, X3 = tX2.

ii) λ 6= 0: V (x) =
λ

2

(
n∑

i=1

xi

)2

+ ψ(x1 − x2, x2 − x3, . . . , xn−1 − xn) and the symme-

tries are

X1 =
∂

∂t
, X2 = F1(t)

n∑

i=1

∂

∂xi
, X3 = F2(t)

n∑

i=1

∂

∂xi
,

where

F1(t) =
{

cosh(
√

λt) if λ > 0
cos(

√−λt) if λ < 0,

F2(t) =
{

sinh(
√

λt) if λ > 0
sin(

√−λt) if λ < 0.

5.2 Extensions using Γτ

The projection of Γτ on t and x leaves V −V (x) = 0 unchanged provided τ (3) = 4kτ ,
where k is a constant. We distinguish the following subcases.

a) k = 0: V (x) =
1
r2

ψ(x2/x1, x3/x2, . . . , x
n/xn−1), where r2 = δijx

ixj and the sym-
metries are

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ xi ∂

∂xi
, X3 = t2

∂

∂t
+ txi ∂

∂xi
·

b) k 6= 0: V (x) =
k

2
r2 +

1
r2

ψ(x2/x1, x3/x2, . . . , x
n/xn−1) and the symmetries are

X1 =
∂

∂t
, X2 = cosh(2t

√
k)

∂

∂t
+
√

k sinh(2t
√

k)xi ∂

∂xi
,

X3 = sinh(2t
√

k)
∂

∂t
+
√

k cosh(2t
√

k)xi ∂

∂xi
, if k > 0

and

X1 =
∂

∂t
, X2 = cos(2t

√
−k)

∂

∂t
−
√
−k sin(2t

√
−k)xi ∂

∂xi
,

X3 = sin(2t
√
−k)

∂

∂t
+
√
−k cos(2t

√
−k)xi ∂

∂xi
, if k < 0.

Remark. Note that we can further extend the symmetry Lie algebras obtained
in a) and b) using the equivalence operators Γij . The potential assume the forms
V = h/r2 and V = kr2/2 + h/r2 (h and k are constants) respectively.
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6 Example of potential system with two first inte-
grals of motion

Consider the 2-dimensional potential system with

V (x, y) = αx + Φ(y − kx),(6.33)

where α and k are real constants and Φ is an arbitrary smooth function. This case
arises in the symmetry classification of 2-dimensional potential systems presented in
[17, 23]. Its symmetries are

X1 =
∂

∂t
, X2 =

∂

∂x
+ k

∂

∂y
·(6.34)

These two point symmetries turn out to be Noether symmetries for the natural La-

grangian L =
1
2
(ẋ2 + ẏ2)− αx− Φ(y − kx). Using Noether’s theorem [2, 19, 20, 25],

we find that the corresponding integrals of motion are respectively

H1 =
1
2
(ẋ2 + ẏ2) + αx + Φ(y − kx),(6.35)

H2 = αt + ẋ + kẏ.(6.36)

We recognise (6.35) as being the Hamiltonian of the system. Using X2, we reduce the
potential system with potential (6.33) to

ẋ + kẏ + αt = c,(6.37)
ÿ + Φ′(y − kx) = 0,(6.38)

where c is an arbitrary constant. By noticing that X2 is a symmetry of (6.37)-(6.38),
we introduce the change of coordinate X = y − kx, Y = x, which transforms X2 to
the translation in Y , i.e., ∂/∂Y . In the new variables, the system (6.37)-(6.38) read

αt + (1 + k2)Ẏ + kẊ = c(6.39)
kŸ + Ẍ = −Φ′(X).(6.40)

Solve equation (6.39) for Ẏ and substitute the result into (6.40) to obtain

Ẍ = −(1 + k2)Φ′(X) + kα,(6.41)

This last equation has the symmetry X1. Integrating (6.41) once we find

Ẋ2 = −2(1 + k2)Φ(X) + 2kαX + c1,(6.42)

where c1 is a constant of integration. Equation (6.42) has separable variables. Thus
the potential system with potential (6.33) is solvable by quadratures.

7 Conclusion

We have determined the equivalence Lie algebra and the weak equivalence Lie algebra
of an n-dimensional potential differential system. We used the equivalence Lie algebra
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to simplify the classifying conditions. Also, we showed how to use equivalence opera-
tors to construct symmetries of an n-dimensional second order potential differential
system. Finally we have given an example in which the existence of point symmetries
confirm the integrability of the underlying systems.
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