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Abstract. The aim of this article is to consider crystallographic groups
acting as gauge groups and associate this actions with some variational
problems. The natural action on the euclidian spaces of such groups has
been extended to some Sobolev spaces of functions and on such spaces are
considered actions associated to Lagrangians with potential which is in-
variant with respect to a crystallographic group C. A result of C-invariance
of the action and of the first variational corresponding problem is obtained.
The C- invariance of the minimizing sequences of the action is obtaind as a
direct consequence. Extending a result from [4] related to periodic poten-
tials, this article presents a case when from C-invariance of the potential
follows the existence of absolute minima (and hence of critical points) for
the respective actions.
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The results presented in this article are inspired by an idea of Professor Constantin
Udrişte to generalise conditions of periodicity related in many ways to different vari-
ational problems an to their associated Hamilton equations (see [2], [9], [7], [8]) and
by an idea of Professor Kostake Teleman to generalise conditions of periodicity by
invariance with respect to the action of a crystallographic group and the compact sets
in Rn of the form Πn

i=1[0, Ti] by fundamental domains of such crystallographic groups
(see [6]). Some important theorms and definitions from [1] have been also used.

The mathematical description of crystals is very important for many scientifical
fields such as geology, geography, chemistry, physics to medicine and computer science
and also to the most revollutionary technological fields. The symmetry of crystals is
described by the crystallographic groups in case n = 3. These groups allow the classi-
fication of the crystals from both mathematical and physical point of view. Crystals
are considered as subsets of the Euclidian space E3. We recall

The fundamental theorem of Euclidian geometry.The isometries of the
Euclidian space En, n ∈ N∗, are functions f : En → En, f(x) = Ax + b, for any
x ∈ En, where A ∈ O(n) and b ∈ En.

Definition 1. A (generalised) crystallographic group is a discrete group of isome-
tries of En: C = {f = [x → Ax + b]; A ∈ G, b ∈ Γ}, where G ⊂ O(n) is a finite group
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and Γ contains an abelian free group generated by n linearly independent translations
of En.

Definition 2. A group of transformations of a topological space is called a discrete
group of transformations when all its orbits are discrete.

We consider on En the topology associated with the Euclidian metric.
Example. G = {IdRn} and Γ is generated by T1e1, ... , Tnen, where {e1, ..., en}

is the canonical basis of En and Ti > 0, i = 1, ..., n. In this case Rn/C ' Tn, the
n-dimensional torus and the fundamental domain is Πn

i=1[0, Ti]. This corresponds to
the periodicity cases.

Let T ∈ (0,∞) and W 2
1,T be the Hilbert reflexive space of the functions in

L2
1([0, T ], Rn) endowed with the inner product

((u, v)) =
∫ T

o

[< u(t), v(t) > + < u̇(t), v̇(t) >]dt

and the corresponding norm ‖‖.
Definition 3. If C is a crystallographic group acting on Rn, there is a naturally

induced action of C in W 2
1,T , defined by fu = f ◦ u, for any f ∈ C and u ∈ W 2

1,T .

Theorem 1. Let C be a crystallographic group acting on Rn and F : [0, T ] ×
Rn −→ R such that:
1) F is measurable with respect to t for every x ∈ Rn,
2) F is C1 with respect to x ∈ Rn for every t ∈ [0, T ],
3) F is C-invariant with respect to x ∈ Rn for every t ∈ [0, T ].
Let L(t, x, y) = F (t, x) + 1

2‖y‖2 be the Lagrangian whose potential is F .
Let ϕ : W 2

1,T −→ R be the associated functional:

ϕ(u) =
∫ T

o

L(t, u(t), u̇(t))dt.(0.1)

Then:
1) The action ϕ is C-invariant and
2) The Euler-Lagrange associated equation

ϕ′(u) = 0(0.2)

is C-invariant: [ u ∈ W 2
1,T , ϕ′(u) = 0 and f ∈ C ] ⇒ ϕ′(fu) = 0.

Proof. 1) Let f ∈ C be defined by f(x) = Ax+ b, for any x ∈ En, where A ∈ O(n)

and b ∈ En and let u ∈ W 2
1,T . Then

˙︷︸︸︷
fu =

˙︷ ︸︸ ︷
Au + b = Au̇ and ‖Au̇(t)‖2 = ‖u̇(t)‖2 for

every t ∈ [0, T ]. It follows that

ϕ(fu) =
∫ T

o

L(t, fu(t),
˙︷︸︸︷

fu (t))dt =
∫ T

o

[F (t, fu(t)) +
1
2
‖Au̇(t)‖2]dt

=
∫ T

o

[F (t, u(t)) +
1
2
‖u̇(t)‖2]dt = ϕ(u).
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2) Let f ∈ C and let u ∈ W 2
1,T such that ϕ′(u) = 0. Then, for any v ∈ W 2

1,T :
ϕ′(fu)(v) = lim

s→0
{1

s [ϕ(fu + sv) − ϕ(fu)]} = lim
s→0

{1
s [ϕ(f(u + sf−1v)) − ϕ(fu)]} =

lim
s→0

{1
s [ϕ(u + sf−1v)− ϕ(u)]} = ϕ′(u)(f−1v) = 0. ut

Corollary 1. In conditions of Theorem 1, if {uk} is a minimizing sequence for ϕ
and if f ∈ C, then {fuk} is a minimizing sequence for ϕ.

Proof. If lim
k→∞

ϕ(uk) = infϕ and f ∈ C, then lim
k→∞

ϕ(fuk) = lim
k→∞

ϕ(uk) = infϕ.

ut
Corollary 2. In conditions of Theorem 1, if u is a critical point of ϕ and if f ∈ C,

then fu is a critical point of ϕ.

Proof. It follows from Theorem 1, 2). ut
Corollary 3 In conditions of Theorem 1 if u is an absolute minima of ϕ and

f ∈ C, then fu is an absolute minima of ϕ.
Proof. From ϕ(u) = ϕ(fu) and ϕ(u) = inf ϕ it follows that ϕ(fu) = infϕ. ut
Theorem 2. Let F and ϕ be like in Theorem 1 and assume that there exist

a ∈ C0(R+, R+) and b ∈ L1([0, T ], R+) such that
4) |F (t, x)| ≤ a(‖x‖)b(t) and
5) |∇F (t, x)| ≤ a(‖x‖)b(t) , for every t ∈ [0, T ] and x ∈ Rn.

Then ϕ has absolute minima.

Proof. We use Theorem 1, Corollary 1 and the ideas from Theorem 1.6 in [1]
to show that ϕ has a bounded minimizing sequence. In our case, the existence of a
function h ∈ L1([0, T ]) such that F (t, x) ≥ h(t), for every x ∈ R and for almost every
t ∈ [0, T ] follows from the fact that the fundamental domain of the crystallographic
group is compact, the restriction of F (t, ) to this domain is surjective and from the
regularity of F . ut

Corollary. In conditions of Theorem 2 the Euler-Lagrange equation (0.2) has
solutions.

Proof. Any absolute minima of ϕ is also a critical point of ϕ and hence a solution
of the Euler-Lagrange equation (0.2). ut
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