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Abstract. We study the PDEs systems determined by the equalities
between two connections, one produced by a pseudo-Riemannian met-
ric g and other produced by pseudo-Riemannian Hessian metrics h = ∇2

gf
respectively k = ∇2

hf , where f is the unknown function. In this context we
introduce the notion of Hessian-harmonic function. Some solutions of our
geometrical PDEs systems are important for Mathematical Optimization
and for string theory (WDVV equations) on pseudo-Riemannian mani-
folds.
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1 Introduction

Studying optimization on the Riemannian manifold we got acquainted with the
notion of the Riemannian Hessian metric.

Trying to solve some open problems formulated by C. Udrişte in [9], we replaced
the initial Euclidean space Rn with an arbitrary pseudo-Riemannian manifold. For
the beginning, we studied [11] the properties of the pseudo-Riemannian manifold
(M,h = ∇2

gf), where (M, g) is an initial pseudo-Riemannian manifold and f :M → R
is a function whose Hessian∇2

gf with respect to g is non-degenerate and with constant
signature. Now, we develope further this theory using an ideea from the paper [7],
where is studied the geometry of a general diagonal metric defined on the positive
orthant Rn

+ and on the hypercube Cn
0 = (0, 1)n.

The purpose of this paper is to analyse the geometrical PDEs determined by the
equalities between two connections, one produced by a diagonal metric and other
produced by pseudo-Riemannian Hessian metrics h = ∇2

gf and, respectively, k =
∇2

hf . We are motivated by many important examples and applications of pseudo-
Riemannian Hessian structures. For example, see [1], [2] and [10].

The paper is organized as follows:
Section 2 recalls some basic facts of pseudo-Riemannian Hessian geometry and

general diagonal geometry. In Section 3 we start with the study of PDEs system de-
termined by the conditions Γ

k

ij = Γk
ij for all i, j, k = 1, n, where Γk

ij are the Christoffel
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symbols of the general diagonal metric g and Γ
k

ij are the Christoffel symbols of the
pseudo-Riemannian Hessian metric h = ∇2

gf . We determine some particular solu-
tions when f is a separable function. Then we continue with the study of PDEs

system Γ
k

ij = Γk
ij for all i, j, k = 1, n, where Γ

k

ij are the Christoffel symbols of the
pseudo-Riemannian Hessian metric k = ∇2

hf of an unknown separable function f .
In Section 4 we determine a class of Hessian-selfharmonic functions. In section 5 we
characterize the associativity of the algebra U(M,∇, ∇̄) by a system of PDEs that
reduces to zero curvature when the initial metric is Euclidean.

2 Preliminaries on pseudo-Riemannian Hessian
Geometry

Let (M, g) be a pseudo-Riemannian manifold and f : M → R a smooth function.
If the Hessian ∇2

gf is non-degenerate and with constant signature, then h = ∇2
gf is

a pseudo-Riemannian Hessian metric.

Theorem 2.1 [11] Let Γp
ij be the Christoffel symbols and Rm

ijk be the components of
the curvature tensor field produced by the pseudo-Riemannian metric gij. If f,pk are
the contravariant components of the pseudo-Riemannian metric hpk = f,pk, then the
components of Levi-Civita connection ∇h are given by the following formula

Γ
p

ij = Γp
ij +

1
2
f,pk

[
f,ijk +

(
Rm

ikj + Rm
jki

)
f,m

]
.

In the paper [7] E. A. Papa Quiroz and P. Roberto Oliveira derived some geometric
properties of the general diagonal Riemannian metric

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)




defined on the positive orthant Rn
+, where gi:R+ → R \ {0} are differentiable func-

tions. Due to the fact that the metric on the hypercube Cn
0 = (0, 1)n is induced by

the metric on Rn
+, the properties hold on the hypercube.

Thus the Christoffel symbols of metric g are given by the formula

Γm
ij = − 1

gi(xi)
∂gi(xi)

∂xi
δimδij

or equivalent Γi
ii = − 1

gi(xi)
∂gi(xi)

∂xi
and 0 in rest. They also proved that the Rie-

mannian manifold Rn
+ endowed with the metric g has null curvature, i. e., R`

ijk = 0
for all i, j, k, ` = 1, n.
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3 PDEs representing the equality of suitable
connections

3.1 First step

Let us consider the pseudo-Riemannian manifold (M, g). Let us introduce a smooth
function f : M → R having a non-degenerate and of constant signature Hessian h =
∇2

gf .
Then the pseudo-Riemannian Hessian metric h = ∇2

gf has the Christoffel symbols
given by the formula

Γ
p

ij = Γp
ij +

1
2
f,pk

[
f,ijk +

(
Rm

ikj + Rm
jki

)
f,m

]
.

The condition Γ = Γ is reduced to the PDEs system

f,ijk +
(
Rm

ikj + Rm
jki

)
f,m = 0

with the unknown function f .
In the particular case when M = Rn

+ and the Riemannian metric is of diagonal
type, i.e.,

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)




it follows that Rm
ijk = 0 for all i, j, k,m = 1, n. Thus the conditions Γ

p

ij = Γp
ij for all

i, j, p = 1, n are equivalent to f,ijk = 0 for all i, j, k = 1, n or to the PDEs system

∂f,ij
∂xk

− Γ`
kif,`j −Γ`

kjf,`i = 0, ∀i, j, k = 1, n.(3.1)

First case. i = j = k
We have

∂f,ii
∂xi

− 2Γi
iif,ii = 0.(3.2)

But Γi
ii = − 1

gi(xi)
∂gi(xi)

∂xi
and f,ii =

∂2f

∂(xi)2
− Γm

ii f,m. Since Γm
ii 6= 0 only for i = m,

we may write that

f,ii =
∂2f

∂(xi)2
+

1
gi(xi)

∂gi(xi)
∂xi

∂f

∂xi
.

Then the relation (3.2) becomes

∂3f

∂(xi)3
+

1
gi(xi)

∂gi(xi)
∂xi

∂2f

∂(xi)2
+

[
− 1

g2
i (xi)

(
∂gi(xi)

∂xi

)2

+
1

gi(xi)
∂2gi(xi)
∂(xi)2

]
∂f

∂xi

+2
1

gi(xi)
∂gi(xi)

∂xi

[
∂2f

∂(xi)2
+

1
gi(xi)

∂gi(xi)
∂xi

∂f

∂xi

]
= 0
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or equivalent
∂

∂xi

[
gi(xi)

∂

∂xi

(
∂f

∂xi
gi(xi)

)]
= 0, ∀i = 1, n.

Second case. i = j 6= k

The system of PDEs (3.1) takes the form
∂f,ii
∂xk

= 0 or equivalent

∂

∂xi

[
∂2f

∂xk∂xi
gi(xi)

]
= 0, ∀i 6= k.

The third case. i 6= j

1) i 6= k and j 6= k. The system of PDEs (3.1) has the form
∂f,ij
∂xk

= 0 or equivalent

∂3f

∂xi∂xj∂xk
= 0 for all i 6= j 6= k.

2) i 6= j and i = k. The system of PEDs (3.1) takes the form
∂f,ij
∂xi

− Γi
iif,ij = 0

or equivalent

∂

∂xi

[
gi(xi)f,ij

]

gi(xi)
= 0. Since i 6= j, it follows that f,ij =

∂2f

∂xi∂xj
.

Hence we obtain
∂

∂xi

[
gi(xi)

∂2f

∂xi∂xj

]
=0.

3) j = k and i 6= k. We find
∂

∂xj

[
gj(xj)

∂2f

∂xi∂xj

]
= 0. Thus the system of PDEs

(3.1) is 



∂

∂xi

[
gi(xi)

∂

∂xi

(
∂f

∂xi
gi(xi)

)]
= 0, ∀i = 1, n

∂

∂xi

[
∂2f

∂xk∂xi
gi(xi)

]
= 0, ∀i 6= k

∂3f

∂xi∂xj∂xk
= 0, ∀i 6= j 6= k

∂

∂xi

[
gi(xi)

∂2f

∂xi∂xj

]
= 0, ∀i 6= j

∂

∂xj

[
gj(xj)

∂2f

∂xi∂xj

]
= 0, ∀i 6= j.

(3.3)

Remark 3.1 We also have to impose the condition that h = ∇2
gf is non-degenerate,

which is equivalent to det (hij) 6= 0, where hij = f,ij =
∂2f

∂xi∂xj
, for all i 6= j and

hii = f,ii =
∂2f

∂(xi)2
+

1
gi(xi)

∂gi(xi)
∂xi

∂f

∂xi
.

Particular case

We suppose that the unknown function f is a separable function f :Rn
+→ R,

f
(
x1, . . . , xn

)
= f1(x1) + f2(x2) + · · · + fn(xn), where fi:R+→R are differentiable

functions. It follows that
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∂f

∂xi
=

∂fi

∂xi
,

∂2f

∂(xi)2
=

∂2fi

∂(xi)2
and

∂2f

∂xi∂xj
= 0, ∀i 6= j.

All equations of system of PDEs (3.3), excepting the first, are satisfied identically.
The first equation takes the form

∂

∂xi

[
gi(xi)

∂

∂xi

(
∂fi

∂xi
gi(xi)

)]
= 0.

The condition det(hij) 6= 0 is equivalent to h11h22 · · ·hnn 6= 0 or hii 6= 0 for all i = 1, n.
Hence we have to impose the conditions

∂2fi

∂(xi)2
+

1
gi(xi)

∂gi(xi)
∂xi

∂fi

∂xi
6= 0, ∀i = 1, n

or equivalent
∂

∂xi

[
gi(xi)

∂fi

∂xi

]
6= 0 for all i = 1, n.

Therefore the system of PDEs (3.3) takes the form




∂

∂xi

[
gi(xi)

∂

∂xi

(
∂fi

∂xi
gi(xi)

)]
= 0

∂

∂xi

[
∂fi

∂xi
gi(xi)

]
6= 0, i = 1, n.

Since in each equation it appears only the variable xi, we replace xi by x, gi by G
and fi by F .

Hence we may write

{ [
G(GF ′)′

]′
= 0

(GF ′)′ 6= 0
or equivalent

{
G(GF ′)′ = c

GF ′ 6= k,
where c

and k are real constants.
In the following we shall derive some solutions of this system.
1) We seek F such that F ′G = ln G. Then the equation G(F ′G)′ = c produces a

constraint for G, i. e., G
G′

G
= c. Consequently G must have the form G(x) = cx + b,

where b and c are real positive constants.

From the relation F ′G = ln G it follows that F ′ =
ln G

G
, hence

F (x) =
ln2(cx + b)

2c
.

Therefore on M = Rn
+, the initial metric is

g(x1, . . . , xn) =




1
(cx1 + b)2

0 · · · 0

· · ·
0 0 · · · 1

(cxn + b)2




and the function f is
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f(x1, . . . , xn) =
1
2c

ln2(cx1 + b) + · · ·+ 1
2c

ln2(cxn + b),

where b, c > 0 and (x1, . . . , xn) ∈ Rn
+. Moreover F ′G = ln G 6= k.

2) We seek F such that F ′G =
1
G

. Then the constraint for G becomes G′ = cG,

hence G(x) = e−cx+b. We consider the solution G(x) = e−cx.

From the relation F ′G =
1
G

, it follows that F ′ =
1

G2
= e2cx, hence

F (x) =
e2cx

2c
, c 6= 0.

Therefore on M = Rn
+, the initial metric is

g(x1, . . . , xn) =




e2cx1
0 · · · 0

· · ·
0 0 · · · e2cxn




and f(x1, . . . , xn) =
1
2c

e2cx1
+ · · ·+ 1

2c
e2cxn

. Moreover F ′G =
1
G
6= k.

Remark 3.2 a) The Riemannian metric g from the previous example was related
to an n-dimensional ecological Volterra-Hamiltonian system of ordinary differential
equations by Antonelli [2].

b) In the paper [8] T. Rapcsák and T. Csendes use the metric g in order to discuss
nonlinear coordinate transformations.

3) If the unknown function F satisfy the relation F ′G = Gα, α > 0, then the

constraint for G is αGαG′ = c. In other words, G(x) =
[
α + 1

α
(cx + αb)

] 1
α+1

and

F (x) =
∫

Gα−1(x)dx =
1
2c

(
α + 1

α

)α

(cx + αb)
2α

α+1 , b, c > 0.

Therefore on M = Rn
+, the initial metric is

g(x1, . . . , xn) =




1
[
α + 1

α
(cx1 + αb)

] 2
α+1

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

[
α + 1

α
(cxn + αb)

] 2
α+1




and

f(x1, . . . , xn)=
1
2c

(
α + 1

α

)α

(cx1 +αb)
2α

α+1 + · · ·+ 1
2c

(
α + 1

α

)α

(cxn +αb)
2α

α+1 , b, c > 0.
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4) We seek F such that F ′G = F ′. Then the equation G(F ′G)′ = c produces a
constraint for G, i. e. G(x) = 1 and the equation G(F ′G)′ = c becomes F ′′ = c, hence

F (x) =
cx2

2
+ bx + d.

Thus on M = Rn
+, the initial metric g(x1, . . . , xn) =




1 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1


 is

Euclidean and f(x1, . . . , xn) =
(

c(x1)2

2
+ bx1 + d

)
+ · · ·+

(
c(xn)2

2
+ bxn + d

)
.

5) We seek F such that F ′G =
1
F ′

. Then G =
1

(F ′)2
. Introducing G into the

equation G(F ′G)′ = c we have F ′′(F ′)−4 = −c, hence F ′−3 = 3cx− 3b. Then F (x) =
1
2c

(3cx− 3b)
2
3 and G(x) =

1
(F ′(x))2

= (3cx− 3b)
2
3 . Since x > 0, we choose b < 0 and

c > 0. Then 3cx− 3b 6= 0.
Therefore on M = Rn

+, the metric g is

g(x1, . . . , xn) =




1
(3cx1 − 3b)

4
3

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

(3cxn − 3b)
4
3




and f(x1, . . . , xn) =
1
2c

(3cx1 − 3b)
2
3 + · · ·+ 1

2c
(3cxn − 3b)

2
3 , b < 0 and c > 0.

3.2 Second step

Let us consider the Riemannian manifold (Rn
+, g), where

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)


 ,

(x1, . . . , xn) ∈ Rn
+ is of diagonal type and gi:R+ → R\{0} are differentiable functions

for all i = 1, n. We introduce a smooth separable function f :Rn
+ → R,

f(x1 . . . , xn) = f1(x1) + · · ·+ fn(xn),

having the Hessian with respect to g non-degenerate and of constant signature.
We also suppose that the Hessian of f with respect to h = ∇2

gf is non-degenerate
and of constant signature.

In the following we study the system of PDEs determined by the conditions Γ
p

ij =

Γp
ij for all i, j, p = 1, n, where Γ

p

ij are the Christoffel symbols produced by the pseudo-
Riemannian Hessian metric k = ∇2

hf , where h = ∇2
gf .

Firstly, let us calculate the Christoffel symbols Γ
p

ij when f is a smooth separable
function. We have already derived that the pseudo-Riemannian Hessian metric h =
∇2

gf has the form
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h(x1, . . . , xn)=




∂2f1

∂(x1)2
+

1

g1(x1)

∂g1(x
1)

∂x1

∂f1

∂x1
0 · · · 0

· · · · · · · · · · · ·
0 0 · · · ∂2fn

∂(xn)2
+

1

gn(xn)

∂gn(xn)

∂xn

∂fn

∂xn




and since h is of diagonal type metric, it follows that the components of the curvature
tensor field R̄ are 0, i. e., R̄`

ijk = 0 for all i, j, k, ` = 1, n.

We also deduced the Christoffel symbols Γ
p

ij = Γp
ij +

1
2
f,pk f,ijk produced by the

metric h. The inverse metric h−1 is

h−1 =
(
f,kp

)
=

(
1

f,kp

)

=




1
∂2f1

∂(x1)2
+

1
g1(x1)

∂g1(x1)
∂x1

∂f1

∂x1

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

∂2fn

∂(xn)2
+

1
gn(xn)

∂gn(xn)
∂xn

∂fn

∂xn




.

Hence, if k 6= p, then f,kp = 0. Thus Γ
p

ij = Γp
ij +

1
2
f,pp f,ijp for all i, j, p = 1, n.

We use the formula f,ijp =
∂f,ij
∂xp

− Γ`
pif,`j −Γ`

pjf,`i. Since f,`j 6= 0 only for ` = j,

f,`i 6= 0 only for ` = i and
∂f,ij
∂xp

6= 0 only for i = j = p, we have that f,ijp 6= 0 only

for i = j = p. Moreover f,iii =
∂f,ii
∂xi

− 2Γi
iif,ii. Then

Γ
i

ii = Γi
ii +

1
2
f,ii f,iii = Γi

ii +
1

2f,ii

(
∂f,ii
∂xi

− 2Γi
iif,ii

)
=

1
2f,ii

∂f,ii
∂xi

=
1
2

∂

∂xi
(ln f,ii ) .

But we proved that f,ii =

∂

∂xi

[
∂fi

∂xi
gi(xi)

]

gi(xi)
. Therefore

Γ
i

ii =
1
2

∂

∂xi


ln

∂

∂xi

(
∂fi

∂xi
gi(xi)

)

gi(xi)




and Γ
p

ij = 0 in rest.
The Hessian of f with respect to h, k = ∇2

hf has the components kij = f̄,ij = 0
if i 6= j and
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kii = f̄,ii =
∂2fi

∂(xi)2
− Γ

i

iif,i =
∂2fi

∂(xi)2
− 1

2
∂

∂xi


ln

∂

∂xi

(
∂fi

∂xi
gi(xi)

)

gi(xi)




∂fi

∂xi
.

The Hessian k is non-degenerate if and only if det(kij) 6= 0 or equivalent kii 6= 0 for
all i = 1, n.

In order to study the system Γ
p

ij = Γp
ij for all i, j, p = 1, n, we use the relations

Γ
i

ii = Γ
i

ii +
1
2
f̄,

ii
f̄,iii and Γ

i

ii = Γi
ii +

1
2
f,ii f,iii. Then the conditions Γ

i

ii = Γi
ii lead us

to
f,ii f,iii = −f̄,

ii
f̄ ,iii .(3.4)

But f,ii f,iii =
1

f,ii

(
∂f,ii
∂xi

− 2Γi
iif,ii

)
=

1
f,ii

∂f,ii
∂xi

− 2Γi
ii and also

f̄,
ii
f̄,iii =

1
f̄,ii

∂f̄,ii
∂xi

− 2Γ
i

ii =
1

f̄,ii

∂f̄,ii
∂xi

− 2
(

Γi
ii +

1
2

1
f,ii

f,iii

)
.

Then (3.4) is equivalent to
1

f̄,ii

∂f̄,ii
∂xi

= 2Γi
ii or

∂f̄,ii
∂xi

f̄,ii
= −2

∂gi(xi)
∂xi

gi(xi)
. By integration,

we deduce that
f̄,iig

2
i = c,(3.5)

where c is a real constant. Using the formula for f̄,ii we obtain




∂2fi

∂(xi)2
− 1

2
∂

∂xi


ln

∂

∂xi

(
∂fi

∂xi
gi(xi)

)

gi(xi)




∂fi

∂xi





g2
i = c.(3.6)

Since it appears only the variable xi, we replace xi by x, gi by G and fi

by F . The relation (3.6) takes the form

{
F ′′ − 1

2

[
ln

(F ′G)′

G

]′
F ′

}
G2 = c or

equivalent F ′
{

F ′′

F ′
− 1

2

[
ln

(F ′G)′

G

]′}
G2 = c. Since

F ′′

F ′
= (ln F ′)′ we obtain

F ′G2


ln

F ′2

(F ′G)′

G




′

= 2c. But
F ′2

(F ′G)′

G

=
[
(F ′G)′

F ′2G

]−1

and then we may write that

F ′G2

[
ln

(F ′G)′

F ′2G

]′
= −2c.

Introducing the function P = F ′G, we deduce

GP

(
ln

P ′G
P 2

)′
= −2c.(3.7)
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We also have to impose the condition kii 6= 0, which is equivalent to
P

G

(
ln

P ′G
P 2

)′
6=

0.
In the following we shall find some solutions of this system.

1) We seek F such that ln
P ′G
P 2

= ln PG. Then P 3 = P ′, hence

P (x) = ± 1√−2x− 2a
.

We recall that x > 0. We choose P (x) =
1√−2x− 2a

and a < 0 such that −x−a > 0.

The relation (3.7) becomes GP (ln PG)′ = −2c or equivalent (PG)′ = −2c, hence
P (x)G(x) = −2cx+b. Then G(x) = (−2cx+b)

√−2x− 2a. From the relation F ′(x) =
P (x)
G(x)

=
1

(2cx− b)(2x + 2a)
, it follows that

F (x) =
1

2(2ac + b)
ln

∣∣∣∣
2cx− b

x + a

∣∣∣∣ .

But −x − a > 0, hence |x + a| = −x − a. We choose c > 0, b < 0 and then F (x) =
1

2(2ac + b)
ln

(
2cx− b

−x− a

)
.

Therefore M becomes a hypercube

M =
{
(x1, . . . , xn) ∈ Rn

+ | 0 < xi < −a, i = 1, n, a < 0
}

,

the initial metric g is

g(x1, . . . , xn) =




1

(−2cx1 + b)2(−2x1 − 2a)
0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

(−2cxn + b)2(−2xn − 2a)




and f(x1, . . . , xn) =
1

2(2ac + b)
ln

(
2cx1 − b

−x1 − a

)
+ · · · +

1
2(2ac + b)

ln
(

2cxn − b

−xn − a

)
,

where a < 0, c > 0 and b < 0 are real constants.
2) The relation (3.7) is also equivalent to

GP

(
P ′G
P 2

)′

P ′G
P 2

= −2c or
P 3

P ′

(
P ′G
P 2

)′
= −2c.

We seek F such that
(

P ′G
P 2

)′
= Pα, α > 0. We have

P 3

P ′
Pα = −2c or

P−α−2

−α− 2
=

− x

2c
+ a. It follows that P (x) =

[
(α + 2)

( x

2c
− a

)]− 1
α+2

. From the constraint
(

P ′G
P 2

)′
= Pα we obtain that



Pseudo- Riemannian structures 33

P ′(x)G(x)
P 2(x)

=
∫

Pα(x)dx = c
[
(α + 2)

( x

2c
− a

)] 2
α+2

,

hence

G(x) = −2c2
[
(α + 2)

( x

2c
− a

)]α+3
α+2

.

But F ′(x) =
P (x)
G(x)

, hence

F (x) =
∫

P (x)
G(x)

dx = − 1
c(α + 2)

[
(α + 2)

( x

2c
− a

)]− 2
α+2

.

We take c < 0, a > 0 and then it follows that
x

2c
− a 6= 0.

Therefore M = Rn
+,

g(x1, . . . , xn)=




1

4c4

[
(α + 2)

(
x1

2c
− a

)] 2(α+3)
α+2

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

4c4

[
(α + 2)

(
xn

2c
− a

)] 2(α+3)
α+2




and

f(x1, . . . , xn) = − 1
c(α + 2)

[
(α + 2)

(
x1

2c
− a

)]− 2
α+2

+ · · ·+ −1
c(α + 2)

[
(α + 2)

(
xn

2c
− a

)]− 2
α+2

.

3) If M = Rn
+ is endowed with the Euclidean metric, then G(x) = 1. The relation

(3.7) becomes P

(
ln

P ′

P 2

)′
= −2c. We found two solutions of this equation.

3.1 It is easy to check that P (x) = tg x is a solution for c = 1. Then F ′(x) =
P (x)
G(x)

= tg x and hence F (x) =
∫

tgxdx = − ln | cos x|. We choose x ∈
(
0,

π

2

)
, then

F (x) = − ln(cos x). Therefore M is the hypercube

M =
{

(x1, . . . , xn) ∈ Rn
+ | 0 < xi <

π

2
, ∀i = 1, n

}
,

g(x1, . . . , xn) =




1 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1




and
f(x1, . . . , xn) = − ln(cos x1)− · · · − ln(cos xn).

3.2 The function P (x) = −ctg x is also a solution for c = 1. Then
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F ′(x) =
P (x)
G(x)

= −ctg x and F (x) =
∫
−ctg xdx = − ln | sin x|.

We choose x ∈
(
0,

π

2

)
and then F (x) = − ln(sinx). That is why

M =
{

(x1, . . . , xn) ∈ Rn
+ | 0 < xi <

π

2
, ∀i = 1, n

}
,

g(x1, . . . , xn) =




1 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1




and
f(x1, . . . , xn) = − ln(sin x1)− · · · − ln(sinxn).

4 Hessian-harmonic functions

Let us consider an n-dimensional pseudo-Riemannian manifold (M, g). We suppose
that there exists a function f : M → R such that the Hessian h = ∇2

gf is non-
degenerate and of constant signature. Let us consider a smooth function φ: M → R.

Definition 4.1 φ is called Hessian-harmonic function if it has the property that the
Laplacian

∆hφ = 0.

In a coordinate chart (U, x1, . . . , xn) on M , the condition ∆hφ = 0 becomes

f ij
,

(
∂2φ

∂xi∂xj
− Γ̄k

ij

∂φ

∂xk

)
= 0,

where Γ̄k
ij are the Christoffel components of connection ∇h. Using the theorem 2.1 we

may write

f ij
,

{
∂2φ

∂xi∂xj
−

[
Γk

ij +
1
2
fkp

,

(
f,ijp +

(
Rm

ipj + Rm
jpi

)
f,m

)] ∂φ

∂xk

}
= 0

or, equivalent,

f ij
, φ,ij − 1

2
f ij

, fkp
,

[
f,ijp +

(
Rm

ipj + Rm
jpi

)
f,m

]
φ,k = 0.(4.1)

Definition 4.2 f is called Hessian-selfharmonic if ∆hf = 0.

Thus, if φ = f , then (4.1) becomes

n− 1
2
f ij

, fkp
,

[
f,ijp +

(
Rm

ipj + Rm
jpi

)
f,m

]
f,k = 0.(4.2)

We notice that all indices i, j, k, p are indices of sum.

Particular case. If M = Rn
+, the initial metric g is of diagonal type, i.e.
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g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)




and
f :Rn

+ → R, f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn)

is a smooth separable functions, then Γi
ii = − 1

gi(xi)
∂gi(xi)

∂xi
, ∀i = 1, n, and 0 in rest,

R`
ijk = 0, ∀i, j, k = 1, n, f,i =

∂fi

∂xi
,

f,ij =





0, if i 6= j,
∂2f

∂(xi)2
, if i = f,

f ij
, =





0, if i 6= j,
1

f,ii
, if i = f.

The relation (4.2) takes the form n− 1
2

∑

i,p

f ii
, fpp

, f,iipf,p = 0. But f,iip 6= 0 only if

i = p, hence we obtain n− 1
2

∑

i

(f ii
, )2f,iiif,i = 0 or, equivalent,

∑

i

[
f,iiif,i

(f,ii)2
− 2

]
= 0.(4.3)

If
f,iiif,i

(f,ii)2
− 2 = 0,(4.4)

for all i = 1, n, then f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn) satisfies relation (4.3).
In the following we determine a class of functions which satisfy relation (4.4). We

use

f,ii =

∂

∂xi

[
gi(xi)

∂fi(xi)
∂xi

]

gi(xi)
, f,iii =

∂

∂xi

[
gi(xi)

∂

∂xi

(
gi(xi)

∂fi(xi)
∂xi

)]

g2
i (xi)

.

Since it appears only the variable xi, we replace xi by x, gi by G and fi by F . Then

the relation (4.4) has the form
F ′[G(F ′G)′]′

[(F ′G)′]2
= 2. Denote P = F ′G, hence F ′ =

P

G
.

Therefore we have
P

P ′
(GP ′)′

GP ′
= 2 or, equivalent,

(GP ′)′

GP ′
= 2

P ′

P
. By integration, we

obtain GP ′ = aP 2 (a > 0 is a real constant) or, equivalent, G(F ′G)′ = a(F ′G)2.

Multiplying with F ′, we have F ′G(F ′G)′ = aF ′(F ′G)2 or
(F ′G)′

F ′G
= aF ′. By

integration, we deduce ln(F ′(x)G(x)) = aF (x) + b or F ′(x)e−aF (x) = eb 1
G(x)

. By

integration we have
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e−aF (x) =
∫ −aeb

G(x)
dx or F (x) =

−1
a

ln
∫ −aeb

G(x)
dx.

Finally we may write F (x) =
−1
a

ln
∫

1
G(x)

dx + c, where a, c are real constants,

a > 0.
Proposition 4.1. For an arbitrary initial metric of diagonal type

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)


 ,

a local solution of equation (4.3) is

f(x1, . . . , xn) = −1
a

ln
∫

1
g1(x1)

dx1 + · · ·+ −1
a

ln
∫

1
gn(xn)

dxn + c,

where a > 0 and c are arbitrary constants.

5 The PDEs determined by associativity
of the deformation algebra

We recall that if M is an n-dimensional C∞ manifold, then we denote by F(M) the
ring of C∞-real functions defined on M . We also denote by X (M) the F(M)-module
of vector fields.

We suppose that the manifold M is endowed with two linear connections (∇,∇).
If X, Y ∈ X (M), then one can define the product between X and Y by X ∗ Y =
∇XY − ∇XY . Thus X (M) becomes an F(M)-algebra. This algebra is called the
algebra of deformation of pair of connections (∇,∇) and it is denoted U(M,∇,∇)
[6].

We also introduce the (1, 2)-tensor field A = ∇ − ∇. Let (U, x1, . . . , xn) be a
coordinate chart on M . If we denote Ak

ij the components of A, then the condition of
associativity of the algebra U(M,∇,∇) is Ai

skAs
j`−Ai

s`A
s
jk = 0, for all i, j, `, k = 1, n.

In our case, let us consider the Riemannian manifold (Rn
+, g,∇), where

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

g2
n(xn)




is of diagonal type and gi:R+ → R \ {0} are differentiable functions for all i = 1, n.
If f :Rn

+ → R is a smooth function having the Hessian with respect to g non-
degenerate and with constant signature, then we consider the pseudo-Riemannian
Hessian metric h = ∇2

gf and the pseudo-Riemannian manifold (Rn
+, h,∇). So we

may introduce the algebra of deformation U(Rn
+,∇,∇) and the (1, 2)-tensor field

A = ∇−∇. In a local chart, A has the components
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Ap
ij = Γ

p

ij − Γp
ij =

1
2
f,pk f,ijk .

Thus the condition of associativity of the algebra U(Rn
+,∇,∇) is

1
4
f,ip f,sr f,skp f,j`r −1

4
f,ip f,sr f,slp f,jkr = 0

or equivalent f,ip f,sr (f,skp f,j`r −f,s`p f,jkr ) = 0. In these relations s, p and r are
indices of sum. Finally we may write

f,sr (f,ski f,j`r −f,s`i f,jkr ) = 0.(5.1)

Since the matrix (f,rs ) is symmetric, it follows that the inverse of this matrix
(f,rs ) is also symmetric. Thus we may change r with s in the last term:

f,sr f,s`i f,jkr = f,rs f,r`i f,jks = f,sr f,r`i f,jks .

Therefore the relation (5.1) is equivalent to

f,sr (f,ski f,j`r −f,r`i f,jks ) = 0.(5.2)

It is known (see for example [5] and [11]) that if M = Rn is endowed with the
Euclidean metric and f :Rn → R is a smooth strongly convex function, then hij(x) =

∂2f

∂xi∂xj
(x) defines a Riemannian structure which has the Riemannian curvature tensor

given by

R̄k`ij(x) = −1
4
hsr(x)

[
∂3f

∂xk∂xi∂xs
(x)

∂3f

∂xr∂xj∂x`
(x)

− ∂3f

∂xk∂xj∂xs
(x)

∂3f

∂xr∂xi∂x`
(x)

]
.

In our case if M = Rn
+ is endowed with the Euclidean metric

δ(x1, . . . , xn) =




1 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1


 ,

then f,ij =
∂2f

∂xi∂xj
, f,ijk =

∂3f

∂xi∂xj∂xk
.

Hence the condition (5.2) is equivalent to

R̄k`ij = 0, for all k, `, i, j = 1, n.

Therefore we obtained the following result:

Proposition 5.1 If Rn
+ is endowed with the Euclidean metric, then the algebra of

deformation U(Rn
+,∇,∇) is associative if and only if the curvature tensor field of the

metric h = ∇2
δf identically vanishes (R̄ = 0).

Remark 5.1 As we already have seen, if f :Rn
+ → R is a separable function, then

R̄ = 0. Hence for a separable function, the algebra U(Rn
+,∇,∇) is associative.
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