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Abstract. We study the PDEs systems determined by the equalities
between two connections, one produced by a pseudo-Riemannian met-
ric g and other produced by pseudo-Riemannian Hessian metrics h = V; f
respectively k = V% f, where f is the unknown function. In this context we
introduce the notion of Hessian-harmonic function. Some solutions of our
geometrical PDEs systems are important for Mathematical Optimization
and for string theory (WDVV equations) on pseudo-Riemannian mani-
folds.
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1 Introduction

Studying optimization on the Riemannian manifold we got acquainted with the
notion of the Riemannian Hessian metric.

Trying to solve some open problems formulated by C. Udrigte in [9], we replaced
the initial Euclidean space R"™ with an arbitrary pseudo-Riemannian manifold. For
the beginning, we studied [11] the properties of the pseudo-Riemannian manifold
(M, h = Vg f), where (M, g) is an initial pseudo-Riemannian manifold and f: M — R
is a function whose Hessian Vg f with respect to g is non-degenerate and with constant
signature. Now, we develope further this theory using an ideea from the paper [7],
where is studied the geometry of a general diagonal metric defined on the positive
orthant R’} and on the hypercube Cf' = (0,1)".

The purpose of this paper is to analyse the geometrical PDEs determined by the
equalities between two connections, one produced by a diagonal metric and other
produced by pseudo-Riemannian Hessian metrics h = Vg f and, respectively, k =
V,QL f- We are motivated by many important examples and applications of pseudo-
Riemannian Hessian structures. For example, see [1], [2] and [10].

The paper is organized as follows:

Section 2 recalls some basic facts of pseudo-Riemannian Hessian geometry and
general diagonal geometry. In Section 3 we start with the study of PDEs system de-

termined by the conditions f;;- = I‘fj for all 7, j, k = 1, n, where I‘fj are the Christoffel
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. . =k .
symbols of the general diagonal metric g and T';; are the Christoffel symbols of the
pseudo-Riemannian Hessian metric h = Vg f- We determine some particular solu-
tions when f is a separable function. Then we continue with the study of PDEs

system fi]; = I‘fj for all 4,7,k = 1,n, where fi]; are the Christoffel symbols of the
pseudo-Riemannian Hessian metric k = V,zl f of an unknown separable function f.
In Section 4 we determine a class of Hessian-selfharmonic functions. In section 5 we
characterize the associativity of the algebra (M, V,V) by a system of PDEs that
reduces to zero curvature when the initial metric is Euclidean.

2 Preliminaries on pseudo-Riemannian Hessian
Geometry

Let (M, g) be a pseudo-Riemannian manifold and f: M — R a smooth function.
If the Hessian Vg f is non-degenerate and with constant signature, then h = Vg fis
a pseudo-Riemannian Hessian metric.

Theorem 2.1 [11] Let Ffj be the Christoffel symbols and RZ‘Lk be the components of

the curvature tensor field produced by the pseudo-Riemannian metric g;;. If f.PF are
the contravariant components of the pseudo-Riemannian metric hpr = f,pr, then the
components of Levi-Civita connection Vj, are given by the following formula

= 1
T3 = U5+ S 27 [Fage+ (R + Rj) fom ] -

In the paper [7] E. A. Papa Quiroz and P. Roberto Oliveira derived some geometric
properties of the general diagonal Riemannian metric

1
0 0
g ()
g(xl zn) = .. o
0 0 !
g ")

defined on the positive orthant R';, where g;: Ry — R\ {0} are differentiable func-
tions. Due to the fact that the metric on the hypercube C§' = (0,1)™ is induced by
the metric on R, the properties hold on the hypercube.

Thus the Christoffel symbols of metric g are given by the formula

1 i (2
pr— L _9ul@)s s
J gi(l'z) oxt
, 1 g
or equivalent I'}, = — ) ga(aj ) and 0 in rest. They also proved that the Rie-
gi\x T

mannian manifold R} endowed with the metric g has null curvature, i. e., Rfjk =0
for all 4,7, k, £ =1,n.
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3 PDEs representing the equality of suitable
connections

3.1 First step

Let us consider the pseudo-Riemannian manifold (M, g). Let us introduce a smooth
function f: M — R having a non-degenerate and of constant signature Hessian h =
Vg I

Then the pseudo-Riemannian Hessian metric h = Vg f has the Christoffel symbols
given by the formula

TP 1 k m m
T, =T+ §f’p [frige + (R + Rit) fom | -
The condition I = I is reduced to the PDEs system

Frige + (R + R) fum =0

with the unknown function f.
In the particular case when M = R/ and the Riemannian metric is of diagonal
type, i.e.,

1
—— 0
) gi(zt)
glat,...,a") = -
0 0
gn(@")

it follows that R}, = 0 for all i,7,k,m = 1,n. Thus the conditions ffj =TI}, for all
i,J,p = 1,n are equivalent to f,;x =0 for all i, j,k = 1,n or to the PDEs system

af7i j .o
(31) al'k] _Fisz@] _Fijfafi:(L VZ,j,k = 17”'
First case.i=j=k
We have of
3.2 9T fri = 0.
( ) 8‘11 zzf?
) 1 : 7 2
But I =~ a%g ) and f= a?xify — T f . Since T7? # 0 only for i = m,

we may write that

e 0% f n 1 9dgi(z*) of
(a2 gi(xt) Ot Ot
Then the relation (3.2) becomes
*f 1 0g@) &f | 1 (Bgi() 2+ 1 9%gi(at)] of
5@y | @) or 0@y | #@)\ o ) T a@) 0@y | o
1 9dgi(z?) [ 0% f 1 9gi(z?) af]
9 =0

gi(z?) Ozt (xi)2+gi(xi) oxt  Ox?

+2
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or equivalent

0 w0 (of i\ _ o
@ |:gz(x >8xz (895191(&6 )>:| - 07 Vi = ]-an-

Second case. i =j # k

8f7ii

The system of PDEs (3.1) takes the form Dk = 0 or equivalent
x

0 0% f ;
- | ———g;(z")| =0, | £ k.
or’ [(’93&’“89#9 (= )} 0, Vi#
The third case. i # j
1) i # k and j # k. The system of PDEs (3.1) has the form %f,;j = 0 or equivalent
x
837]0—0& Ni#£j#k
driozidzk TR )
2) i # j and i = k. The system of PEDs (3.1) takes the form éf;] —T%fuj=0
6 7
. az[z( )faz]] . . L. an
or equivalent ¥L—————— = (. Since i # j, it follows that f,;; = ——=—.
gi (2t O0xt0xI

A PN
Hence we obtain o7 [gz( )&Czaxy}

3) j =k and i # k. We find % {gj (27) ajng} = 0. Thus the system of PDEs
(3.1) is
aiz {9( i)aiz (ngim(wi))] =0, Vi=TIn
aii [axa’jgx’gl( ﬂ =0 Vi#k
. or gj:{(?xk 0, Vi j#k
(’)i { 83618333] Vi j
53“] [g'( j)axajaxa} =0 Vi #

Remark 3.1 We also have to impose the condition that h = sz is non-degenerate,
*f

o laj,for all i # j and

which is equivalent to det (hy) # 0, where hy; = fi; =
o*f 1 0gi(') Of

A(xH)?  gi(z) Oxt Ozt

hzz = fvii =

Particular case

We suppose that the unknown function f is a separable function f:R! — R,
[ 2") = fi(@') + fa(z?) + - + fu(a™), where fi: Ry— R are differentiable
functions. It follows that
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of  0f *f 9% f; o f

drt ~ dri Pz B(ai)? and

=0, Vi#j

All equations of system of PDEs (3.3), excepting the first, are satisfied identically.
The first equation takes the form

% {gi(zi)aii (gﬁgz(xz))] —0.

The condition det(h;;) # 0 is equivalent to hq1ha2 - - - Ay 7# 0 or hy; # 0 foralli = 1, n.
Hence we have to impose the conditions

& fi 1 dgi(2") dfi
A(xh)?  gi(x?t) Ozt Oxt

0 . Ofi
or equivalent —— [gi(xl) /
x

#£0, Vi=1,n

| #0for alli =1, n.
0 ox?
Therefore the system of PDEs (3.3) takes the form

5zﬁﬂwﬁéii(gﬁgﬂx5)]::0

o [ofi . o
axi |:8$lg1(x ):| #0? Z_l5n'

Since in each equation it appears only the variable z?, we replace =’ by z, ¢; by G
and fl by F.

[GGF)] =0 G(GF) =c

or equivalent where ¢

(GF') #0

Hence we may write
GF' # k,

and k are real constants.
In the following we shall derive some solutions of this system.
1) We seek F such that F'G = InG. Then the equation G(F'G)" = ¢ produces a
!
constraint for G, i. e., GE = ¢. Consequently G must have the form G(z) = cx + b,

where b and c¢ are real positive constants.

1
From the relation F’G = InG it follows that F' = n—G, hence

G
In?(cz + b)
Flx)=——=.
(z) 50
Therefore on M = Ri7 the initial metric is
1
- 0 ... 0
(cx' 4+ 1)
g(xl7 ") =
0 0 !
(cz™ + b)?

and the function f is
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1 1
flt .. 2™ = % In?(cal +b) + -+ % In?(cz™ +b),

where b,¢ > 0 and (z',...,2") € R].. Moreover F'G =InG # k.
1
2) We seek F such that F'G = Yok Then the constraint for G becomes G’ = ¢G,
hence G(z) = e~ ***?. We consider the solution G(z) = e,

1 1
From the relation F'G = rel it follows that F’ = i e2C hence

e2cw 0 0
g(xla 7xn) =
0 0 e2ccr
1 1 n 1
and f(z',...,2") = %62cw1 +o 4 ?cezcw . Moreover F'G = e £ k.

Remark 3.2 a) The Riemannian metric g from the previous example was related
to an n-dimensional ecological Volterra-Hamiltonian system of ordinary differential
equations by Antonelli [2].

b) In the paper [8] T. Rapcsik and T. Csendes use the metric g in order to discuss
nonlinear coordinate transformations.

3) If the unknown function F satisfy the relation F'G = G, a > 0, then the
1

a+1
«

T
constraint for G is aG*G’ = c. In other words, G(x) = [ (cz + ab)} and

F(x)/Gal(x)dx;(a+1) (chrab)c?*fl, b,c> 0.
c o

Therefore on M = R}, the initial metric is

! - 0 .. 0
TN
g(atl, ’x"> =
0 0 ! —
{a + (cz™ + ab)} o
a
and

1 1\ a 1 1\ .
f(:cl,...,x”):2<a+ ) (cx1+ab)az+1+~-~+2(a+ ) (cx"+ab)o?7+1, b,c > 0.
c\ « e\ «
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4) We seek F such that F'G = F’. Then the equation G(F'G)" = ¢ produces a

constraint for G, i. e. G(x) = 1 and the equation G(F'G)’ = ¢ becomes F" = ¢, hence
2

F(:c):%+bx+d.

1 0 - 0
Thus on M = R, the initial metric g(z!,...,2") = [ -+ -+ -+ o ] is
o 0 --- 1
1y2 ny2
Euclidean and f(z!,...,2") = (C(Iz) + bat +d) + ot <c(1’2) + bz" +d>.
1 1
5) We seek F' such that F'G = yak Then G = Wk Introducing G into the

equation G(F'G)" = ¢ we have F"'(F')~* = —¢, hence F'~2 = 3cx — 3b. Then F(z) =
%C(ch - 3b)% and G(x) =
¢ > 0. Then 3cx — 3b # 0.
Therefore on M = R}, the metric g is
1
(3ca! — 3b)3

3cx — 3b)%. Since x > 0, we choose b < 0 and

1
e

1
0 0 .
(3ca™ — 3b)s
Lo a) = S (Bert —36)3 4 4 = (3ca™ - 30)}
and f(z',...,z"™) 20(3cm 3b)5 + +20(305E 3b)3,b< 0 and ¢ > 0.

3.2 Second step

Let us consider the Riemannian manifold (R, g), where

1
0 --- 0
gi (')
g(xlv 71,71): )
0 0 _b
g (z™)
! ") € R is of diagonal type and g;: Ry — R\ {0} are differentiable functions

(xt,...,x

for all i = 1,n. We introduce a smooth separable function f:R} — R,

fata") = A+t fala”),

having the Hessian with respect to g non-degenerate and of constant signature.
We also suppose that the Hessian of f with respect to h = Vg f is non-degenerate
and of constant signature.

In the following we study the system of PDEs determined by the conditions iej =
7 for all 4, j,p = T,n, where ﬁaj are the Christoffel symbols produced by the pseudo-
Riemannian Hessian metric k = V3 f, where h = V3 f.

Firstly, let us calculate the Christoffel symbols ffj when f is a smooth separable

function. We have already derived that the pseudo-Riemannian Hessian metric h =
V;f has the form
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O f 1L 9gi(z") 8f1
(x1)?  gi(x') Ox' Ozt

0 --- 0

0 0o ... 0% fr L Ogn(2") 0fn
A(zm)?  gn(zn) Oz Ozm

and since h is of diagonal type metric, it follows that the components of the curvature
tensor field R are 0, i. e., Rfjk =0forall¢,j,k,¢=1n.

— 1
We also deduced the Christoffel symbols Ffj = Ffj + §f R ,ijk produced by the

metric h. The inverse metric A1 is

=) = <f>1kp>

1
02 f1 n 1 9gi(zh) afr
A(xh)?  gi(zl) Ozl Oxt

0o --- 0

1
> fn 1 Ogn(a™) Ofn
a(xn)Z In (xn) oxn oxn

0 0

— 1
Hence, if k # p, then f** = 0. Thus T}; =T?, + ifﬂ”” Frijp for all i, j,p = T, n.
_ afn'j

We use the formula f,;;, = 9 Ff;ifmj _Ff)jf,gi. Since f,¢; # 0 only for £ = j,
z
f,ei 7 0 only for £ =i and OLsis 0 only for i = j = p, we have that f,;;, # 0 only
oxP JpP
Of,ii ;
for i = j = p. Moreover f,;; = 3f’z‘ — 2T, f,i;- Then
x

. ) 1 .. ) 1 Af,ii ; 1 Of.u
(%3 1% + 2f7 f? (%3 + 2f7u ( 83;1 “f > an'i axz
10

T 994 (In fi) -

0 [0fi :
oz | 9z gi(z")
But we proved that f,; = . . Therefore
gi(z*)
0 (Oh
— 10 9zt \ 9z
' =—— |In -
" 20x¢ gi(x?)

and ffj = 0 in rest.

The Hessian of f with respect to h, k = V3 f has the components k;; = f,ij =0
ifi # j and
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0_(ofi (")
kii=f —ﬁ,fif,f 0%fi 10 I 92t ozt I ofi
1 T J g T a(xi)2 @i a(xz)Z 2 8331 gi(wi) 8$Z

The Hessian k is non-degenerate if and only if det(k;j) # O or equivalent k;; # 0 for
alli =1,n.

=p P
In order to study the system I';; = Ffj for all 7,j,p = 1,n, we use the relations
= 1-ii- —i R —i )
T, = 1";» + §f7“f,iii and 1"; =TI+ §f,” fiii- Then the conditions I';; = I'; lead us
to

(34) faii f?i’ii = _.]?7“.]?71'% .
i 1 8fall i 1 8.f7n i
But f," fiii= E < o QFiifaii> = o i 2T, and also
Fiig 1 Ofyi o 1 Of,; 11
o i _opt = — Zhii o fpio g Z o)
f7 f7z’n f,ii azl 1 f,ii 3xl 11 + 2 f,ii f7
T O f i dgi(x")
Then (3.4) is equivalent to — f”:i = 2T"% or Oz’ _ o 0Ox' By integration,
frii 0! Frii gi(z")
we deduce that -
<35) fnzg'? =¢
where c is a real constant. Using the formula for f,;; we obtain
o (0f (2)
56) fi 10 | a7 \0at" ofi | o,
' o(x*)?  20at gi(z?) ar (J1 T

Since it appears only the variable 2z, we replace z' by z, g; by G and f;

1 F'a) 7’
by F. The relation (3.6) takes the form {F”— 3 {ln( e )} F'}G2 = ¢ or

2 G

/

" ey ! "
equivalent F’{F 1 [ln (F G)] }G2 = c. Since % = (InF’) we obtain

F" P (FG)y1™!
/ 2 —_— = = 1
F'G*® |In FGY 2c¢. But FGY [ 726 } and then we may write that
G G
FaiYal
F'G? [ln (5/262 } = —2c.

Introducing the function P = F'G, we deduce

1 !/
(3.7) GP (ln 1;?) = —2c.
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p( PG\
We also have to impose the condition k;; # 0, which is equivalent to Ie (111 132> #*
0.
In the following we shall find some solutions of this system.
Pl
1) We seek F' such that In P—f = In PG. Then P3 = P’; hence
P(z) = :l:;
V=2 — 24
1
We recall that > 0. We choose P(x) = NASTELT and a < 0 such that —z—a > 0.
—2z — 2a

The relation (3.7) becomes GP(In PG)' = —2¢ or equivalent (PG)" = —2¢, hence
P(z)G(z) = —2cx+b. Then G(z) = (—2cx+b)v/—2x — 2a. From the relation F’'(z) =
1

P(x) ,
Ga) ~ D)@ t2a) it follows that

1 2cx — b
F(z) = o .
2(2ac + b) z+a
But —z —a > 0, hence |z + a] = —x — a. We choose ¢ > 0, b < 0 and then F(z) =

1 In 2cx —b
2(2ac + b) —x—a)’
Therefore M becomes a hypercube

M={(z"...,.a")eR} |0< 2’ <—a, i=1,n, a<0},

the initial metric g is

1
(—2cx® + b)2(—2z' — 2a) 0 - 0
g(ml,...,xn):
0 0 (—2cz™ + b)2(—2z™ — 2a)
1 2cx! — b 1 2cx™ —b
d Lo.,an) = 1 1
and f(z,....2") 2(2ac +b) n(—xl—a)+ +2(2ac+b) n(—l‘"—a)’
where a < 0, ¢ > 0 and b < 0 are real constants.
2) The relation (3.7) is also equivalent to
(P'G '
P2 > P3 (PGY
GPTG—_QC or P(P2> = —2c.
P2
PG\ p3 pa~?
We seek F' such that ( P2 ) = P a > 0. We have FPO‘ = —2c or o =

722 + a. It follows that P(x) = [(a+2) (ﬁ faﬂ_m. From the constraint
c

PG’ "
<P2> = P® we obtain that



Pseudo- Riemannian structures 33

P [l (-]

hence

G(z) = —2¢° {(a +2) (% - a)} o

But F'(z) = ]CDJE;;’ hence

F(x) /gg;du’c fﬁ [(04+2) (;Cfa)}_m.

We take ¢ < 0, a > 0 and then it follows that ; —a#0.
c
Therefore M = R,

1
2(a+3) U 0
. ) 2! at2
4 L
ct [(a+2) 50 @
g(‘rlv 7In):
1
0 0 " 2(a+3)
a+2
et () (5 o)
A (a+2) e ¢
and

1 n 1 z! S
2
-1 & —wh
. 2 (L - .
v oo (5 )]
3) If M =R is endowed with the Euclidean metric, then G(x) = 1. The relation
P2

3.1 It is easy to check that P(x) = tgx is a solution for ¢ = 1. Then F'(z) =
P(z)

N/
(3.7) becomes P (111 > = —2c. We found two solutions of this equation.

= tgx and hence F(z) = /tgmdm = —In|cosz|. We choose x € (0, g), then

G(
F(z) = —In(cos ). Therefore M is the hypercube

M:{(ml,...,x")eRi|0<xi<g, Vi:ﬁ},

1 0 -~ 0
g(xl, ’xn):
o 0 --- 1
and
f(z',...,2") = —In(cosz') — - - - — In(cos ™).

3.2 The function P(x) = —ctgz is also a solution for ¢ = 1. Then
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F'(z)= = —ctgz and F(z)= /—Ctgxdm = —In|sinx|.

We choose z € (07 ) and then F'(z) = —In(sin ). That is why

us
2

M:{(x17...,xn)eR1|0<xi<g, \ﬁ:m},

1 0 --- 0
glaty ey =
o o --- 1
and
f(z, ..., 2") = —In(sinz!) — - -- — In(sin 2™).

4 Hessian-harmonic functions

Let us consider an n-dimensional pseudo-Riemannian manifold (M, g). We suppose
that there exists a function f: M — R such that the Hessian h = Vg f is non-
degenerate and of constant signature. Let us consider a smooth function ¢: M — R.

Definition 4.1 ¢ is called Hessian-harmonic function if it has the property that the
Laplacian

Apo =0.
In a coordinate chart (U, z,...,2™) on M, the condition Ay¢ = 0 becomes
S P 0
i T ) =0
U (8:1618:59 * 6;10’“) ’

where f‘fj are the Christoffel components of connection V. Using the theorem 2.1 we
may write

iy 0%¢ 1 m m 0P
f,J {8ml8x3 - |:F§] + if,kp (f,ijp + (Ripj + jpi) f,’m):l axk} =0

or, equivalent,
ij 1 ©j m m
(4.1) 7945 — if,Jf,kp [f.ijp + (BRI + BT fm] ok = 0.
Definition 4.2 f is called Hessian-selfharmonic if A, f = 0.
Thus, if ¢ = f, then (4.1) becomes
1 ..
(4.2) n— §f,uf,kp [fip + (Rzn;j + ;Zi) fm] fr=0.

We notice that all indices 4, j, k, p are indices of sum.

Particular case. If M = R/, the initial metric g is of diagonal type, i.e.
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0 --- 0
) gi(zt)
glat,...,a") = o o
0 0
gn(@")

and
FRY =R, f(zl... 2" = fila!) +- + fula)

is a smooth separable functions, then I'}, = _gi(lxi) agazgz)’ Vi =1,n, and 0 in rest,
Rfjk =0,Vi,j,k=1n, f;= gﬁ,
0, if ¢ # 4, - 0, ifis#j,

1 .
The relation (4.2) takes the form n — 3 Z PP fiipfp = 0. But fi;, # 0 only if
&,p
1 3
i = p, hence we obtain n — 3 Z(f7“)2f7ii,»f,,» = 0 or, equivalent,

i

(43) 2 H}Z:z])c; - 2} -0

%

If

(f.i)?
for all i = 1, n, then f(z!,...,2") = fi(z') + - - + fa(a™) satisfies relation (4.3).
In the following we determine a class of functions which satisty relation (4.4). We

(;; {gi(xi)ajg;ffi)] % [gi(xi)gii (gi(xi)aggi)ﬂ

fﬂli = g (1’1) ) f,iii - 912 (ml)

—2=0,

Since it appears only the variable z!, we replace z° by z, g; by G and f; by F. Then
F/ F/ Al P
M = 2. Denote P = F'G, hence F’ = rek

[(F'G)]?
GP"Y P
Therefore we have ap - 2 or, equivalent, ( a P’) = 25. By integration, we

obtain GP' = aP? (a > 0 is a real constant) or, equivalent, G(F'G)" = a(F'G)?.

F/ /
Multiplying with F’, we have F'G(F'G) = aF'(F'G)? or (F’CC? = aF’. By

integration, we deduce In(F'(z)G(x)) = aF(z) + b or F'(z)e”*F®) = ¢b

the relation (4.4) has the form
P (GP'Y

Gy By

integration we have
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_apb 1 b
e F@ = [ 22 gy or F(z)=—1In 9% da.

G(z) a G(z)

-1 1
Finally we may write F(x) = — ln/ mdw + ¢, where a, ¢ are real constants,
a T

a > 0.
Proposition 4.1. For an arbitrary initial metric of diagonal type
1
0o --- 0
1 PHED
g(m) 7:1;"): “e. “e ,
0 0 1
g (x™)

a local solution of equation (4.3) is

1 1 -1
f(asl,.._J;"):_,]n/ dg;1+...+71n/
a

a g1 ()

1
dx" + ¢,
gn(z™)

where a > 0 and c are arbitrary constants.

5 The PDEs determined by associativity
of the deformation algebra

We recall that if M is an n-dimensional C'*° manifold, then we denote by F (M) the
ring of C*°-real functions defined on M. We also denote by X' (M) the F(M)-module
of vector fields.

We suppose that the manifold M is endowed with two linear connections (V, V).
If X,Y € X(M), then one can define the product between X and Y by X x Y =
VxY — VxY. Thus X(M) becomes an F(M)-algebra. This algebra is called the
algebra of deformation of pair of connections (V,V) and it is denoted U(M,V,V)
[6].

We also introduce the (1,2)-tensor field A = V — V. Let (U,z',...,2") be a
coordinate chart on M. If we denote Afj the components of A, then the condition of
associativity of the algebra U(M,V,V) is AikA;Te _AiéAjk =0, foralli, j, ¢, k=1n.

In our case, let us consider the Riemannian manifold (R, g, V), where

1
0 0
gi(z!)
g(xl ") =
0 0 1
gn(z")

is of diagonal type and g;: Ry — R\ {0} are differentiable functions for all i = 1,n.

If R} — R is a smooth function having the Hessian with respect to g non-
degenerate and with constant signature, then we consider the pseudo-Riemannian
Hessian metric h = V2f and the pseudo-Riemannian manifold (R}, h,V). So we
may introduce the algebra of deformation L{(RQL_,V,W) and the (1,2)-tensor field
A =V — V. In alocal chart, A has the components
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)

—p 1
A, =T, —T} = §f,pk Foijh -
Thus the condition of associativity of the algebra U(R,V, V) is

1 %, sr 1 % sr
Zfapfa faskpfajfr_z.fvpfv fvslpf,jkrzo

or equivalent f,"? f,5" (f,skp frjer —frstp frjer ) = 0. In these relations s, p and r are
indices of sum. Finally we may write

(5.1) 157 (Foski frjer — fosei frjir ) = 0.

Since the matrix (f,rs) is symmetric, it follows that the inverse of this matrix
(f,7%) is also symmetric. Thus we may change r with s in the last term:

f’ST fasei fajkr = f”l"S fa’!‘fi fajk‘s = f,S’I" .f)'fei f;jks .

Therefore the relation (5.1) is equivalent to

(5.2) 157 (foski fojer —Forei frjes ) = 0.

It is known (see for example [5] and [11]) that if M = R" is endowed with the
Euclidean metric and f: R™ — R is a smooth strongly convex function, then h;;(z) =
0’ f
Oxt0xI
given by

(z) defines a Riemannian structure which has the Riemannian curvature tensor

03 f o3 f
0xk0xtOxs () Oz 0xI Oxt ()
3 f 3 f
 Oxkdxidzs () Oz Oxtoxt (@) -

_ 1
Rigij(x) = —zhsr(fﬂ)

In our case if M = Ri is endowed with the Euclidean metric

o f 3f
th Z == f’ 71“ -
en friy 021029 Frige 021023 Ox*
Hence the condition (5.2) is equivalent to

Ryeij =0, forall k,¢,i,5 =1,n.
Therefore we obtained the following result:

Proposition 5.1 If R is endowed with the Euclidean metric, then the algebra of
deformation U(RY, V,V) is associative if and only if the curvature tensor field of the
metric h = V3f identically vanishes (R =0).

Remark 5.1 As we already have seen, if f:R!! — R is a separable function, then
R = 0. Hence for a separable function, the algebra U(R',,V,V) is associative.
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