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Abstract. In this paper, we have proved that locally there exist infinitely
many three dimensional slant submanifolds with prescribed scalar curva-

ture into cosymplectic space form M5(C) with ¢ € {—4,4}while there does

not exist flat minimal proper slant surface in M (¢) with ¢ # 0. In section
5, we have established an inequality between mean curvature and sectional
curvature of the subamnifold and have given an example which satisfies
the equality sign.
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1 Introduction

The notion of a slant submanifold of an almost Hermitian manifold was intro-
duced by Chen [9]. Examples of slant submanifolds of C? and C* were given by Chen
and Tazawa [11, 12], while that of slant submanifolds of a Kaehler manifold were
given by Maeda, Ohnita and Udagawa [22]. On the other hand, A. Lotta [1] has de-
fined and studied slant submanifolds of an almost contact metric manifold. He has also
studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds
of K-Contact manifolds [2]. Later, L. Cabrerizo and others have investigated slant
submanifolds of a Sasakian manifold and obtained many interesting results [15, 16].

It was proved in [17] that every surface in a complex space form M2(4c) is proper
slant if it has constant curvature and non-zero parallel mean curvature vector. Exis-
tence of minimal proper slant surfaces in C? have been proved in [10]. In contrast, It
was shown in [6] that there does not exist minimal proper slant surfaces in complex
projective and complex hyperbolic planes. There exists a slant surface in C? with pre-
scribed Gaussian curvature [7]and existence of slant submanifolds in almost contact
metric manifolds have been proved in { [1], [15]}.

Also, Chen has established a sharp inequality between mean curvature and Gauss
curvature for proper slant surfaces in a complex space form [19]. Similar to this in-
equality we have established an inequality in section 5 for proper slant submanifolds
of cosymplectic manifolds.
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2 Preliminaries

LetM be a (2m + 1)-dimensional almost contact metric manifold with structure
tensors (i, &, 1, g), where p is a (1,1) tensor field, £ a vector field, 5 a 1-form and g
the Riemannian metric on M . These tensors satisfy [13]

(2.2.1) { P2X = —X +(X)E, €=0, (&) =1, n(pX)=0;
9(pX,0Y) = g(X,Y) — n(X)n(Y), n(X) = g(X, €)

for any X,Y € T'M. A normal almost contact metric manifold is called a cosymplectic
manifold [13] if

(2.2.2) (Vx)(Y)=0, Vx(=0

whereV denotes the levi-civita connection of M. o

If a cosymplectic manifold M has constant ¢-sectional curvature c, then M is called a
cosymplectic-space form. The curvature tensor R of cosymplectic manifold M is given
by [13]

(2.2.3) R(X,Y)Z = 36(9(@’7 0Z)X — g(pX, pZ)Y +n(Y)(X, Z2)¢

_n(X)g(Y, 2)E + g(oY, Z)pX — g(0X, Z)pY +29(X, Y )pZ)
forall X,Y,Z € TM.
Now, let M be an m-dimensional immersed submanifold of cosymplectic manifold M.
Let V be the Riemannian connection on M. Then the Gauss and Weingarten
formulae are

(2.2.4) VxY =VxY +h(X,Y),and

(2.2.5) VxN = —AxyX + VN

for X, Y €eTM, N €T M ; where h and Ay are the second fundamental forms related
by

(2.2.6) 9(ANX.Y) = g(h(X.Y),N)

and V' is the connection in the normal bundle TjM of M.
Denote by R the curvature tensor of M and by R the curvature tensor of the normal
connection. The equations of Gauss, Ricci and Codazzi are given,respectively, by

(2.2.7)

R(Xa}/v Z» W) = R(Xv Yv Z7 W) - g(h(Xv W)7h(Y, Z)) + g(h(X, Z)vh(va W))

(2.2.8) R(X,Y,U,V) =R (X,Y,U,V) - g([Ay, Ay]X,Y)

(2.2.9) [R(X,Y)Z] = (Vxh)(Y, Z) - (Vyh)(X, 2)
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for all X,Y,Z,W € TM and U,Ve T"M where [R(X, Y)Z]L denotes the normal
component of R(X,Y)Z and

(2.2.10) (Vxh)(Y, Z) = Vx(h(Y, Z)) — h(VxY, Z) — h(Y,Vx Z)
For any X € TM and N € TLM7 we write
(2.2.11) ©X = PX + FX and ¢N =tN + fN

where PX (resp. FX) denotes the tangential (resp. normal) component of X and
tN (resp. fN) denotes the tangential (resp. normal) component of ¢ N.

In what follows,we suppose that the structure vector field £ is tangent to M.
Hence, if we denote by D the orthogonal distribution to & in T'M, we can consider
the orthogonal direct decomposition TM = D & {{}.

For each non zero X tangent to M at x such that X is not proportional to £, we
denote by 6(X) the Wirtinger angle of X, that is, the angle between ¢ X and T,, M.

The submanifold M is called slant if the Wirtinger angle 6(X) is a constant,
which is independent of the choice of z € M and X € T, M — {&,} [1]. The Wirtinger
angle 6 of a slant immersion is called the slant angle of the immersion. Invariant and
anti-invariant immersions are slant immersions with slant angle 6 equal to 0 and 7 ,
respectively. A slant immersion which is neither invariant nor anti-invariant is called
a proper slant immersion.

Now, suppose that M is 6-slant in a cosymplectic manifold M. Then, for any
X,Y € TM, we have [20]

(2.2.12) P? = —cos? (X — n(X)¢)
If P is the endomorphism defined by (2.2.11), then
(2.2.13) g(PX,Y)+g(X,PY)=0

On the other hand,the Gauss and Weingarten formulae together with (2.2.6) and
(2.2.7) imply

(2214) (VXP)Y =Apy X + th(X7Y)

(2.2.15) V(FY) - F(VxY) = fh(X,Y) — h(X, PY)

for any X, Y € TM
We denote,for each X € T M,

FX
2.2.16 X* ="
( ) sin 0

We define the symmetric bilinear T'M-valued form p on M by
(2.2.17) p(X,Y) =th(X,Y)

Moreover, from (2.2.2), we can obtain
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(2.2.18) p(X,6) =0
We have proved in [21] that

(2.2.19) h(X,Y) =csc?0(Pp(X,Y) — pp(X,Y))

+H9(Y, Z)g(X, W) — (X, W)n(Y)n(Z)
+9(Y, Wn(X)n(Z) + g(X, Z)n(Y )n(W)
+9(PY, Z)g(PX,W) — g(PX, Z)g(PY,

9(X, Z)g(Y, W)

(Y, Z)n(X)n(W)
)+ 29(X, PY)g(PZ, W)}

(2220)  R(X,Y,Z,W) = cos® 8(g(p(X, W), p(Y. Z)) — g(p(X, Z), p(Y. W)))
A

(2.2.29)xp)(Y, Z) + esc? 0{Pp(X, p(Y, Z)) + p(X, Pp(Y, Z))}

+4sin® 0{g(X, PZ)(Y — n(Y)) + g(X, PY)(Z — n(Z)€)}
= (Vyp)(X, 2) + esc? 0{Pp(Y, p(X, Z)) + p(Y, Pp(X, Z))}
+§sin® 0{g(Y, PZ)(X — (X)) + g(Y, PX)(Z = n(2)&)}

We recall the following existence and uniqueness theorem for slant immersion
into cosymplectic-space-form.
Theorem A (Existence) Let ¢ and 6 be two constants with 0<f< 7 and M be a
simply connected (m + 1)-dimensional Riemannian manifold with metric tensor g.
Suppose that there exist a unit global vector field £ on M, an endomorphism P of the
tangent bundle "M and a symmetric bilinear T'M-valued form p on M such that for
all X,Y,Z € TM ,we have

(7’) P(f) =0, g(p(X, Y),f)) =0, Vx{=0

(i4) P? = —cos? (X — n(X)¢E)

(iid) g(PX,Y)+g(X,PY) =0

(iv) p(X,£) =0

(U) g((vXP)Y’aZ):g(p(va)vZ)* (p(X7Z)>Y)

(Ui) R(X7Y727 W) :COSQG(g(p(X, )7p(}/7 Z))_g<p(Xa Z),p(Y,W)))
+1{9(Y, 2)g(X, W) — g(X, W)n(Y)n(Z) — (X, Z)g(Y, W)
+9(Y, Wn(X)n(Z) + g(X, Z)n(Y)n(W) — g(Y, Z)n(X)n(W)
+9(PY, 2)g(PX,W)—g(PX, Z)g(PY,W)+29(X, PY)g(PZ, W)}

and

(vii) (Vxp)(Y, Z) + csc® 0{Pp(X, p(Y, Z)) + p(X, Pp(Y, Z))}

+
+§ sin” 0{g(X, PZ)(Y — n(Y)E) + g(X, PY)(Z = n(Z)€)}
~ (Vyp)(X, 2) + csc? 6{Pp(Y, p(X, 2)) + p(Y, Pp(X. 2))}
+4 sin” 0{g(Y, PZ)(X —n(X)¢) + (Y, PX)(Z —n(Z)$)}
where 7 is a dual 1-form of £. Then, there exists a #-slant immersion from M into

MQmH(C) whose second fundamental form h is given by

h(X,Y) = csc?0(Pp(X,Y) — ¢p(X,Y))

Theorem B (Uniqueness) Let o1,2%:M — M(c) be two slant immersions with slant
angle 6 (0 < § < 7), of a connected Riemannian manifold M " into the cosymplectic

—2m+1
space-form M ' (c). Let h', h? denote the second fundamental forms of ! and 22



58 Ram Shankar Gupta, S.M.Khrusheed Haider and A.Sharfuddin

respectively. Let there be a vector field £ on M such that xip &) = Eai(p), fori=1,2
and p € M, and
g (X.Y), o2, Z) = g(h*(X.Y), 02l Z)

for all vector fields X, Y, Z tangent to M. Suppose also that we have one of the
following conditions:

(i) 6=73
(ii) there exists a point p of M such that P, =P;

(iii) ¢#0

. . —2
Then there exists an isometry ¥ of M mﬂ(c) such that z'=Vox?.

3 Some Results

Let r = r(x) be a differentiable function defined on an open interval containing 0.
Let ¢ and 6 be two constants with 0<0<F and M be simply-connected domain R3
containing origin. Consider the following Ricatti differential equation

r(z)

(3.3.1) (@) + 93 @) + = =0
Suppose

(3.3.2) flx) = exp/@/}(x)dz

(3.3.3) n=dz

(3.34) g=n®n+drdr+ fi(x)dy ® dy
and

(3.3.5) elzg ey = 0 e3=¢§ 0

9r’ 27 f(x) oy’ T 0z

Now, it is easy to verify that {e1, ez, £} is a local orthonormal frame field of TM and
71 is the dual 1-form of structure vector field . Also, we can obtain

Velelzo, VeleQ:O, VelegzO,

Ve,e1=10e2, Ve,ea=—ve1, V,,e3=0,

ve361:0, ve3€2:0, Ve3€3:0.

We define the tensor ¢ and endomorphism P by

pep = eg, peg = —ep and ez =& =0, P = (cosh)p

and also define a symmetric bilinear TM-valued form p on M as follows:

(3.3.6) pler,e1) = Aer + pea, pler,es) = pey + gea, pea,eax) = pey + deo

(3.3.7) ple1,§) =0, ple2,§) =0, p(§,§) =0
Then,
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9(p(X,Y), Z) = g(p(X, Z),Y)
for any X,Y,Z tangent to M.
It is easy to verify that (M, P, p) satisfies conditions (i)~(v) of Theorem A. On the

)
other hand, after a lengthy calculation, we obtain that (M, P, p) satisfies the remaining
two conditions of the existence theorem if

(3.3.8) A= %{,ﬁ +¢? — ud + [@ - 2(1 + 3cos? 0)] sin® 0}
(3.3.9) yi(z) = {203 — 21y + [TTx) - 2(1 + 3 cos? 0)] sin? A} csc 6 cot O

—3y1¢ + % sin? 6 cos 6

(3.3.10) Yo () = {20192 — 203 — [@ - 2(1 + 3 cos? 0)] sin? 0} csc  cot 0

—(2y1 — y2)¥ + % sin” 0 cos 0

(33.11)  yi(x) = %{y% 08 e+ 19— S0 4 Beos? )] sin 0) — 20

—l—{Z—g[y% + Y3 — Y192 + {%T) — 41+ 3cos?0)} sin? 6§ — y1y3} cscf cot 0
where = y1, ¢ = yo, § = y3, with initial conditions y;(0)=c; , y2(0)=co and
y3(0)=c37#£0. Thus by applying the Existence Theorem, we know that there exists a 6
slant isometric immersion from M into cosymplectic space form MS(C), whose second
fundamental form is given by

(3.3.12) h(X,Y) =csc? 0(Pp(X,Y) — pp(X,Y)).

From (3.3.1) and (3.3.8)~ (3.3.11), we know that the scalar curvature of the slant
submanifold is given by r(z).
Now, we have the following:

Theorem 3.1. Locally, for any given 0(0<0<7F ) and for any given function r = r(x)
there exist infinitely many 6-slant submanifolds in complex projective space and in the

complex hyperbolic space m’ (¢) with r as prescribed scalar curvature.

Since for any prescribed scalar curvature r = r(x), the function ¢ can be chosen
to be any of the solutions of the Riccati equation (3.3.1) and with ¢;, ¢, c3, as any
of the three real numbers with c37#0, we have the above theorem.

Now, we give a theorem which shows that the above theorem is not true in
general.

Theorem 3.2. For any 0 € (0,F) , there does not exist 0-slant submanifold in the

. -5 , ,
cosymplectic space form M (c)with zero prescribed mean curvature.
Or, we can also restate it as:

There does not exist flat minimal proper slant surface in M (¢) with ¢ # 0.
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Proof. Assume that M is a three dimensional flat minimal proper slant submanifold

in a non-flat cosymplectic-space form WE (c). Since M is flat, the metric tensor g of
M is given by

g=dr®dr+dyRdy+dz®dz
and

0 1 0 0
61:7 Co = e?):é-:E

9c’ T f() oy’
Thus V,e; =0. Let § be the slant angle of M in i (¢). Then

(3.3.13) Pey = cosfles, Peg = —cosfe; and PE=0

Since M is minimal, the second fundamental form h of M in Ms(c) takes the
following form

(3.3.14)  h(ei,e1) = ae, + bey, hler,es) =be; —aey, hles,ex) = —ae) — bey,

h(el, 63) = 07 h(€27 63) = 0, h(63,€3) = 0
for some functions a and b.
Thus, from (3.3.14) and (2.2.17), we have

(3.3.15) p(er,e1) = —sinb(aey + bes), pler,es) = —sinf(be; — aes),

plea, e2) = sinf(aer + bes), pler,es) =0, p(ea,es) =0, p(es,es) =0.
Putting X =Y = e, and Z = ey in (2.2.21) and using (3.3.13) and (3.3.14), we
obtain

3

(3.3.16) e1b—aey = _ZC sin @ cos 0

Similarly, by putting X = Z = e3, and Y = e; in (2.2.21), we find
3c .

(3.3.17) e1b —aey = 1 sin 6 cos 0

Combining (3.3.16) and (3.3.17), we get c¢sin 6 cos §=0, which is a contradiction, since
c#0 and 070 or 5 , by hypothesis.

Therefore, theorem 3.1 is not true in general. For example, if we replace the scalar
curvature by mean curvature, then from theorem 3.2, there does not exist #-slant
submanifold in the cosymplectic space form M (¢) with zero prescribed mean curva-

ture. ]

4 Some Explicit solution of Differential system:

Consider the differential system (3.3.1), (3.3.9)~(3.3.11) with ¢ =+4. Then ¥=0 is
the trivial solution of Ricatti equation (3.3.1) when r = 0 and from (3.3.9)~(3.3.11)
, we have

(4.4.1) yy (z) = {293 — 2y192} csc B cot § — 2(1 + 3 cos26) cos 0



Slant submanifolds with prescribed scalar curvature 61
(4.4.2) Yo () = {2y1y2 — 292} csc B cot O + ccos b

/ c .
(4.4.3) ysy3(w) = [v2{y? — y1y2 — 7 (1 + Bcos” ) sin” 0}

+(y2 — y1)y3] csc O cot O
Combining (4.4.1) and (4.4.2), we get

(4.4.4) Y1 (z) + yy(a) = % cos 0 sin? 0

On integrating (4.4.4), we have

(4.4.5) y1(x) + ya(x) = % cos 0 sin® @ — by, for some constant by .

Combining (4.4.1) and (4.4.5), we obtain

(4.4.6) y,(x) = {202 4 247 + 2byy1 } csc O cot § — 3zyyccos? 6 — 2(1 + 3cos26) cos b
Differentiating (4.4.6), we find

(4.4.7) (@) = 2{(by + 2y1)y; + 23y} escBcot§ — 3ypccos? f — 3ay, ccos® O
Therefore, substituting (4.4.3), (4.4.5) and (4.4.6) into (4.4.8), we get

(4.4.8) ) (x) = ¢{2b1 — 3cx cos O + 3zccos 30} cot 0
Solving (4.4.8), we obtain
(4.4.9) y1(x) = by + bgx + byca? cot? 6 — 82> cos® 0

for some constants.
From (4.4.5) and (4.4.9), we have

3
(4.4.10) ya(z) = % cos @sin? 0 — byca? cot? 6 — 823 cos® 6 — by — by — bz
Hence, substituting (4.4.9) and (4.4.10) in (4.4.6), we find
(44115 (x) = —(byca® cot? § — 823 cos® O + by + bzx)

x (byca? cot? @ — 823 cos® 6 + by + by + byw)
+£[143 cos 20412z cos O(by ca® cot? 0 — 813 cos® O+ by +bzx)] sin? 6
+35 (2¢byx cot® § — 2422 cos® 0 + bs) sin 0 tan 6

If ¢ = 4, and b;=by=b3=0, then we have

(4.4.12) y; = —8x% cos® 0
(4.4.13) Yo = 62 cos fsin” 0 + 8z° cos® 0
(4.4.14)

1
y3(z) = —642° cos® 0 + 3 [1+ 3cos 20 — 96z cos? §] sin? @ — 1222 cos® O sin O tan O

Conversely, it is easy to verify that (4.4.9)~ (4.4.11) satisfies the differential system
(4.4.1)~ (4.4.3).
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5 An Inequality between Mean Curvature and Scalar
Curvature for Slant Submanifold.

In the following theorem we have established an inequality between mean cur-
vature and scalar curvature of slant submanifold of a cosymplectic manifold.

Theorem 5.1. Let M be a proper slant subamnifold in a cosymplectic space-form
M (¢) with slant angle 0. Then the squared mean curvature and the scalar curvature

of M satisfy

(5.5.1) H*(p) >

2
r(p) — (1 + 3cos? 9)56

O i~

at each point p €M.

The equality sign of (5.5.1) holds at a point pe M if and only if, the shape oper-
ators of M at p take the following form with respect to a suitable adapted orthonormal
frame {e1, ea, & = e3, eq, e5}:

3 0 0 0 X0
(5.5.2) A= 0 X 0], 4= Ar 0 0
0 00 000

Proof. Suppose that M is proper slant with slant angle 6 in the cosymplectic space
form M~ (¢) . Then, for a unit tangent vector field e; of M perpendicular to £, we put

es = (secl)Pey, e3=¢, eq = (csch)Fey, e5 = (csch)Fes.
Also, from Corollary 3.1 of [20], we have

forany XY, Z € TM
Then, with respect to adapted orthonormal frame {e;, e2, & = e3, e4, 5} and using
(5.5.3), we get

a b 0
(5.5.4) A, = b ¢ 0], A, =
0 0 O

oo o
S U0
o O O

From (2.2.20) and (5.5.4), we find

9H? = (a+c)* + (b+d)?, g =ac—b*+bd—c*+(1+ 300529)27
Or,
(5.5.5) 9H?(p) — 4r(p) +2(1 + 3cos® )c = (a — 3c)* + (3b— d)* > 0

and consequently, we get (5.5.1). From (5.5.5), we know that the equality case of
(5.5.1) holds at a point p if and only if a = 3¢, d = 3b. Hence, if we choose e; in
such a way such that Fe; is in the direction of the mean curvature vector H , then
the shape operators take the form (5.5.2). The converse can be proved by applying
(2.2.20).

O
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The following result shows that the inequality (5.5.1) is sharp for 0<(0, 7).

Proposition 5.2. There exists a three dimensional non-totally geodesic proper slant

subamnifold M in cosymplectic space-form ME)(C) with slant angle 0 which satisfies
the equality sign of (5.5.1) at some points in M.

Proof. Let ¢p=¢(x) and ¢;=¢;(x), i = 1,2,3, be four functions defined on an open
interval containing 0. Let ¢=¢(z) be defined such that ¢(0)=0, b£0. Consider the
system of first order ordinary differential equations

yi = —3y1y3 4+ cot 0 CSC 9(2/% + yQQS)

(5.5.6) Yy = QY3 — 2y3y2 — cot O csc O(y1d + ya1y1)

Yy = —y3 — csc® 0(dy2 — 247 — u3),
with the initial conditions y1(0) =di, y2(0) =ds2 , y3(0) = ds . Let ¢1, ¢2 and ¢3
be the components of the unique solution of this differentiable system on some open

interval containing 0. Let M be a simply connected open neighbourhood of the origin
(0,0,0)€R3 endowed with the metric

(5.5.7) f(z) = emp/gbg(x)d:r

(5.5.8) n=dz

(5.5.9) g=n®n+dr®dr+ f*(x)dy @ dy
and

(5.5.10) ey = 9 eg = L 9 ez =¢§ 0

9x’ 27 f(x) oy’ T oz

Now, it is easy to verify that {e;, e, &} is a local orthonormal frame field of TM such
that
Velelz(), VeleQ:O, velegio,

(5.5.11) Ve,e1 = ¢3e2, Ve,ea = —¢ze1, Ve,e3 =0,

v63€1:0, V6362:0, Vegegzo.
We define a symmetric bilinear TM-valued form p on M as follows:

(5.5.12) p(er,e1) = ger + prea, pler,ea) = prer + daea, plez,e2) = paer — dren

(5.5.13) ple1,§) =0, plez, ) =0, p(§,&) =0

It is easy to check that (M, ¢,&,n,g) is an almost contact metric manifold and
(Vxe)Y=0, for any X, Y € TM. We put P = cosfp, and after a lengthy calcu-
lation, we can show that it satisfy the conditions of Existence Theorem for ¢ = 0.
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By applying Theorem A, we obtain that there exists a #-slant isometric immersion
. =5 L
from M in M " (c), whose second fundamental form is given by

h(va) = cos” Q(Pp(Xa Y) - (pp(XvY))

From the initial conditions it follows that the shape operators of M take the form of
(3.3.2) at the point p=(0,0,0) and satisfy the equality sign of (5.5.1). Also it follows
from (5.5.11) that the second fundamental form does not vanish identically. Hence,
the submanifold is non-totally geodesic. O
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