
Slant submanifolds with prescribed scalar curvature

into cosymplectic space form

Ram Shankar Gupta, S.M.Khrusheed Haider and A.Sharfuddin

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract. In this paper, we have proved that locally there exist infinitely
many three dimensional slant submanifolds with prescribed scalar curva-
ture into cosymplectic space form M

5
(c) with c ∈ {−4, 4}while there does

not exist flat minimal proper slant surface in M
5
(c) with c 6= 0. In section

5, we have established an inequality between mean curvature and sectional
curvature of the subamnifold and have given an example which satisfies
the equality sign.
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1 Introduction

The notion of a slant submanifold of an almost Hermitian manifold was intro-
duced by Chen [9]. Examples of slant submanifolds of C2 and C4 were given by Chen
and Tazawa [11, 12], while that of slant submanifolds of a Kaehler manifold were
given by Maeda, Ohnita and Udagawa [22]. On the other hand, A. Lotta [1] has de-
fined and studied slant submanifolds of an almost contact metric manifold. He has also
studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds
of K-Contact manifolds [2]. Later, L. Cabrerizo and others have investigated slant
submanifolds of a Sasakian manifold and obtained many interesting results [15, 16].
It was proved in [17] that every surface in a complex space form M

2
(4c) is proper

slant if it has constant curvature and non-zero parallel mean curvature vector. Exis-
tence of minimal proper slant surfaces in C2 have been proved in [10]. In contrast, It
was shown in [6] that there does not exist minimal proper slant surfaces in complex
projective and complex hyperbolic planes. There exists a slant surface in C2 with pre-
scribed Gaussian curvature [7]and existence of slant submanifolds in almost contact
metric manifolds have been proved in { [1], [15]}.

Also, Chen has established a sharp inequality between mean curvature and Gauss
curvature for proper slant surfaces in a complex space form [19]. Similar to this in-
equality we have established an inequality in section 5 for proper slant submanifolds
of cosymplectic manifolds.
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2 Preliminaries

LetM be a (2m + 1)-dimensional almost contact metric manifold with structure
tensors (ϕ, ξ, η, g), where ϕ is a (1,1) tensor field, ξ a vector field, η a 1-form and g
the Riemannian metric on M . These tensors satisfy [13]

{
ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1, η(ϕX) = 0;
g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)(2.2.1)

for any X, Y ∈ TM . A normal almost contact metric manifold is called a cosymplectic
manifold [13] if

(∇Xϕ)(Y ) = 0, ∇Xξ = 0(2.2.2)

where∇ denotes the levi-civita connection of M .
If a cosymplectic manifold M has constant φ-sectional curvature c, then M is called a
cosymplectic-space form. The curvature tensor R of cosymplectic manifold M is given
by [13]

R(X,Y )Z =
1
4
c(g(ϕY, ϕZ)X − g(ϕX, ϕZ)Y + η(Y )(X, Z)ξ(2.2.3)

−η(X)g(Y, Z)ξ + g(ϕY, Z)ϕX − g(ϕX,Z)ϕY + 2g(X, ϕY )ϕZ)
for all X,Y, Z ∈ TM .
Now, let M be an m-dimensional immersed submanifold of cosymplectic manifold M .

Let ∇ be the Riemannian connection on M. Then the Gauss and Weingarten
formulae are

∇XY = ∇XY + h(X,Y ), and(2.2.4)

∇XN = −ANX +∇⊥
XN(2.2.5)

for X,Y ∈ TM , N∈T
⊥
M ; where h and AN are the second fundamental forms related

by

g(ANX,Y ) = g(h(X,Y ), N)(2.2.6)

and ∇⊥
is the connection in the normal bundle T

⊥
M of M .

Denote by R the curvature tensor of M and by R
⊥

the curvature tensor of the normal
connection. The equations of Gauss, Ricci and Codazzi are given,respectively, by

R(X, Y, Z, W ) = R(X, Y, Z,W )− g(h(X, W ), h(Y,Z)) + g(h(X,Z), h(Y, W ))
(2.2.7)

R(X,Y, U, V ) = R
⊥
(X, Y, U, V )− g([AU , AV ]X, Y )(2.2.8)

[R(X, Y )Z]
⊥

= (∇Xh)(Y, Z)− (∇Y h)(X, Z)(2.2.9)



56 Ram Shankar Gupta, S.M.Khrusheed Haider and A.Sharfuddin

for all X,Y, Z,W ∈ TM and U, V ∈ T
⊥
M where [R(X, Y )Z]

⊥
denotes the normal

component of R(X, Y )Z and

(∇Xh)(Y,Z) = ∇⊥
X(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ)(2.2.10)

For any X ∈ TM and N ∈ T
⊥
M , we write

ϕX = PX + FX and ϕN = tN + fN(2.2.11)

where PX (resp. FX) denotes the tangential (resp. normal) component of ϕX,and
tN (resp. fN) denotes the tangential (resp. normal) component of ϕN .

In what follows,we suppose that the structure vector field ξ is tangent to M.
Hence, if we denote by D the orthogonal distribution to ξ in TM , we can consider
the orthogonal direct decomposition TM = D ⊕ {ξ}.

For each non zero X tangent to M at x such that X is not proportional to ξx, we
denote by θ(X) the Wirtinger angle of X, that is, the angle between ϕX and TxM .

The submanifold M is called slant if the Wirtinger angle θ(X) is a constant,
which is independent of the choice of x ∈ M and X ∈ TxM −{ξx} [1]. The Wirtinger
angle θ of a slant immersion is called the slant angle of the immersion. Invariant and
anti-invariant immersions are slant immersions with slant angle θ equal to 0 and π

2 ,
respectively. A slant immersion which is neither invariant nor anti-invariant is called
a proper slant immersion.

Now, suppose that M is θ-slant in a cosymplectic manifold M . Then, for any
X, Y ∈ TM , we have [20]

P 2 = − cos2 θ(X − η(X)ξ)(2.2.12)

If P is the endomorphism defined by (2.2.11), then

g(PX, Y ) + g(X, PY ) = 0(2.2.13)

On the other hand,the Gauss and Weingarten formulae together with (2.2.6) and
(2.2.7) imply

(∇XP )Y = AFY X + th(X, Y )(2.2.14)

∇⊥
X(FY )− F (∇XY ) = fh(X, Y )− h(X, PY )(2.2.15)

for any X,Y ∈ TM
We denote,for each X ∈ TM ,

X∗ =
FX

sin θ
(2.2.16)

We define the symmetric bilinear TM -valued form ρ on M by

ρ(X, Y ) = th(X,Y )(2.2.17)

Moreover, from (2.2.2), we can obtain
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ρ(X, ξ) = 0(2.2.18)

We have proved in [21] that

h(X, Y ) = csc2 θ(Pρ(X,Y )− ϕρ(X, Y ))(2.2.19)

R(X, Y, Z,W ) = cos2 θ(g(ρ(X,W ), ρ(Y, Z))− g(ρ(X, Z), ρ(Y, W )))(2.2.20)

+ c
4{g(Y, Z)g(X, W )− g(X,W )η(Y )η(Z)− g(X,Z)g(Y,W )

+g(Y, W )η(X)η(Z) + g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
+g(PY, Z)g(PX, W )− g(PX, Z)g(PY,W ) + 2g(X, PY )g(PZ, W )}

(∇Xρ)(Y, Z) + csc2 θ{Pρ(X, ρ(Y, Z)) + ρ(X, Pρ(Y,Z))}(2.2.21)

+ c
4 sin2 θ{g(X,PZ)(Y − η(Y )ξ) + g(X,PY )(Z − η(Z)ξ)}

= (∇Y ρ)(X, Z) + csc2 θ{Pρ(Y, ρ(X,Z)) + ρ(Y, Pρ(X, Z))}
+ c

4 sin2 θ{g(Y, PZ)(X − η(X)ξ) + g(Y, PX)(Z − η(Z)ξ)}

We recall the following existence and uniqueness theorem for slant immersion
into cosymplectic-space-form.
Theorem A (Existence) Let c and θ be two constants with 0<θ≤ π

2 and M be a
simply connected (m + 1)-dimensional Riemannian manifold with metric tensor g.
Suppose that there exist a unit global vector field ξ on M, an endomorphism P of the
tangent bundle TM and a symmetric bilinear TM -valued form ρ on M such that for
all X,Y,Z ∈ TM ,we have
(i) P (ξ) = 0, g(ρ(X,Y ), ξ)) = 0, ∇Xξ = 0
(ii) P 2 = − cos2 θ(X − η(X)ξ)
(iii) g(PX, Y ) + g(X, PY ) = 0
(iv) ρ(X, ξ) = 0
(v) g((∇XP )Y,Z) = g(ρ(X, Y ), Z)− g(ρ(X, Z), Y )
(vi) R(X,Y, Z,W ) = cos2 θ(g(ρ(X,W ), ρ(Y, Z))− g(ρ(X, Z), ρ(Y, W )))

+ c
4{g(Y,Z)g(X, W )− g(X, W )η(Y )η(Z)− g(X, Z)g(Y, W )

+g(Y,W )η(X)η(Z) + g(X, Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
+g(PY,Z)g(PX, W )−g(PX,Z)g(PY, W )+2g(X, PY )g(PZ,W )}

and
(vii) (∇Xρ)(Y, Z) + csc2 θ{Pρ(X, ρ(Y, Z)) + ρ(X, Pρ(Y,Z))}

+ c
4 sin2 θ{g(X,PZ)(Y − η(Y )ξ) + g(X, PY )(Z − η(Z)ξ)}

= (∇Y ρ)(X, Z) + csc2 θ{Pρ(Y, ρ(X, Z)) + ρ(Y, Pρ(X,Z))}
+ c

4 sin2 θ{g(Y, PZ)(X − η(X)ξ) + g(Y, PX)(Z − η(Z)ξ)}
where η is a dual 1-form of ξ. Then, there exists a θ-slant immersion from M into
M

2m+1
(c) whose second fundamental form h is given by

h(X, Y ) = csc2 θ(Pρ(X,Y )− ϕρ(X, Y ))

Theorem B (Uniqueness) Let x1,x2:M → M(c) be two slant immersions with slant
angle θ (0 < θ ≤ π

2 ), of a connected Riemannian manifold M
m+1

into the cosymplectic

space-form M
2m+1

(c). Let h1, h2 denote the second fundamental forms of x1 and x2
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respectively. Let there be a vector field ξ on M such that x1
∗p(ξp) = ξxi(p), for i = 1, 2

and p ∈ M , and
g(h1(X, Y ), ϕx1

∗Z) = g(h2(X, Y ), ϕx2
∗Z)

for all vector fields X, Y, Z tangent to M. Suppose also that we have one of the
following conditions:
(i) θ = π

2
(ii) there exists a point p of M such that P1 =P2

(iii) c 6= 0
Then there exists an isometry Ψ of M

2m+1
(c) such that x1=Ψox2.

3 Some Results

Let r = r(x) be a differentiable function defined on an open interval containing 0.
Let c and θ be two constants with 0<θ≤π

2 and M be simply-connected domain R3

containing origin. Consider the following Ricatti differential equation

ψ
′
(x) + ψ2(x) +

r(x)
2

= 0(3.3.1)

Suppose

f(x) = exp

∫
ψ(x)dx(3.3.2)

η = dz(3.3.3)

g = η ⊗ η + dx⊗ dx + f2(x)dy ⊗ dy(3.3.4)

and

e1 =
∂

∂x
, e2 =

1
f(x)

∂

∂y
, e3 = ξ =

∂

∂z
(3.3.5)

Now, it is easy to verify that {e1, e2, ξ} is a local orthonormal frame field of TM and
η is the dual 1-form of structure vector field ξ. Also, we can obtain

∇e1e1=0, ∇e1e2=0, ∇e1e3=0,
∇e2e1=ψe2, ∇e2e2=−ψe1, ∇e2e3=0,
∇e3e1=0, ∇e3e2=0, ∇e3e3=0.

We define the tensor ϕ and endomorphism P by
ϕe1 = e2, ϕe2 = −e1 and ϕe3 = ϕξ = 0, P = (cos θ)ϕ

and also define a symmetric bilinear TM-valued form ρ on M as follows:

ρ(e1, e1) = λe1 + µe2, ρ(e1, e2) = µe1 + φe2, ρ(e2, e2) = φe1 + δe2(3.3.6)

ρ(e1, ξ) = 0, ρ(e2, ξ) = 0, ρ(ξ, ξ) = 0(3.3.7)

Then,
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g(ρ(X, Y ), Z) = g(ρ(X,Z), Y )

for any X,Y,Z tangent to M.
It is easy to verify that (M,P, ρ) satisfies conditions (i)∼(v) of Theorem A. On the
other hand, after a lengthy calculation, we obtain that (M,P, ρ) satisfies the remaining
two conditions of the existence theorem if

λ =
1
φ
{µ2 + φ2 − µδ + [

r(x)
2

− c

4
(1 + 3 cos2 θ)] sin2 θ}(3.3.8)

y
′
1(x) = {2y2

3 − 2y1y2 + [
r(x)
2

− c

4
(1 + 3 cos2 θ)] sin2 θ} csc θ cot θ(3.3.9)

−3y1ψ + 3c
4 sin2 θ cos θ

y
′
2(x) = {2y1y2 − 2y2

3 − [
r(x)
2

− c

4
(1 + 3 cos2 θ)] sin2 θ} csc θ cot θ(3.3.10)

−(2y1 − y2)ψ + 3c
4 sin2 θ cos θ

y
′
3(x) =

ψ

y3
{y2

1 + y2
3 − y1y2 + [

r(x)
2

− c

4
(1 + 3 cos2 θ)] sin2 θ} − 2y3ψ(3.3.11)

+{y2
y3

[y2
1 + y2

3 − y1y2 + { r(x)
2 − c

4 (1+3 cos2 θ)} sin2 θ− y1y3} csc θ cot θ

where µ = y1, φ = y2, δ = y3, with initial conditions y1(0)=c1 , y2(0)=c2 and
y3(0)=c3 6=0. Thus by applying the Existence Theorem, we know that there exists a θ

slant isometric immersion from M into cosymplectic space form M
5
(c), whose second

fundamental form is given by

h(X, Y ) = csc2 θ(Pρ(X, Y )− ϕρ(X,Y )).(3.3.12)

From (3.3.1) and (3.3.8)∼ (3.3.11), we know that the scalar curvature of the slant
submanifold is given by r(x).

Now, we have the following:

Theorem 3.1. Locally, for any given θ(0<θ≤π
2 ) and for any given function r = r(x)

there exist infinitely many θ-slant submanifolds in complex projective space and in the
complex hyperbolic space M

5
(c) with r as prescribed scalar curvature.

Since for any prescribed scalar curvature r = r(x), the function ψ can be chosen
to be any of the solutions of the Riccati equation (3.3.1) and with c1, c2, c3, as any
of the three real numbers with c3 6=0, we have the above theorem.

Now, we give a theorem which shows that the above theorem is not true in
general.

Theorem 3.2. For any θ ∈ (0, π
2 ) , there does not exist θ-slant submanifold in the

cosymplectic space form M
5
(c)with zero prescribed mean curvature.

Or, we can also restate it as:
There does not exist flat minimal proper slant surface in M

5
(c) with c 6= 0.
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Proof. Assume that M is a three dimensional flat minimal proper slant submanifold
in a non-flat cosymplectic-space form M

5
(c). Since M is flat, the metric tensor g of

M is given by
g = dx⊗ dx + dy ⊗ dy + dz ⊗ dz

and
e1 =

∂

∂x
, e2 =

1
f(x)

∂

∂y
, e3 = ξ =

∂

∂z

Thus ∇ei
ej =0. Let θ be the slant angle of M in M

5
(c). Then

Pe1 = cos θe2, P e2 = − cos θe1 and Pξ = 0(3.3.13)

Since M is minimal, the second fundamental form h of M in M
5
(c) takes the

following form

h(e1, e1) = ae
∗
1 + be

∗
2, h(e1, e2) = be

∗
1 − ae

∗
2, h(e2, e2) = −ae

∗
1 − be

∗
2,(3.3.14)

h(e1, e3) = 0, h(e2, e3) = 0, h(e3, e3) = 0.
for some functions a and b.
Thus, from (3.3.14) and (2.2.17), we have

ρ(e1, e1) = − sin θ(ae1 + be2), ρ(e1, e2) = − sin θ(be1 − ae2),(3.3.15)

ρ(e2, e2) = sin θ(ae1 + be2), ρ(e1, e3) = 0, ρ(e2, e3) = 0, ρ(e3, e3) = 0.
Putting X = Y = e1, and Z = e2 in (2.2.21) and using (3.3.13) and (3.3.14), we
obtain

e1b− ae2 = −3c

4
sin θ cos θ(3.3.16)

Similarly, by putting X = Z = e2, and Y = e1 in (2.2.21), we find

e1b− ae2 = −3c

4
sin θ cos θ(3.3.17)

Combining (3.3.16) and (3.3.17), we get c sin θ cos θ=0, which is a contradiction, since
c6=0 and θ 6=0 or π

2 , by hypothesis.
Therefore, theorem 3.1 is not true in general. For example, if we replace the scalar
curvature by mean curvature, then from theorem 3.2, there does not exist θ-slant
submanifold in the cosymplectic space form M

5
(c) with zero prescribed mean curva-

ture.

4 Some Explicit solution of Differential system:

Consider the differential system (3.3.1), (3.3.9)∼(3.3.11) with c =±4. Then Ψ=0 is
the trivial solution of Ricatti equation (3.3.1) when r = 0 and from (3.3.9)∼(3.3.11)
, we have

y
′
1(x) = {2y2

3 − 2y1y2} csc θ cot θ − c

4
(1 + 3 cos 2θ) cos θ(4.4.1)
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y
′
2(x) = {2y1y2 − 2y2

3} csc θ cot θ + c cos θ(4.4.2)

y3y
′
3(x) = [y2{y2

1 − y1y2 − c

4
(1 + 3 cos2 θ) sin2 θ}(4.4.3)

+(y2 − y1)y2
3 ] csc θ cot θ

Combining (4.4.1) and (4.4.2), we get

y
′
1(x) + y

′
2(x) =

3c

2
cos θ sin2 θ(4.4.4)

On integrating (4.4.4), we have

y1(x) + y2(x) =
3c

2
cos θ sin2 θx− b1, for some constant b1.(4.4.5)

Combining (4.4.1) and (4.4.5), we obtain

y
′
1(x) = {2y2

3 + 2y2
1 + 2b1y1} csc θ cot θ − 3xy1c cos2 θ − c

4
(1 + 3 cos 2θ) cos θ(4.4.6)

Differentiating (4.4.6), we find

y
′′
1 (x) = 2{(b1 + 2y1)y

′
1 + 2y3y

′
3} csc θ cot θ − 3y1c cos2 θ − 3xy

′
1c cos2 θ(4.4.7)

Therefore, substituting (4.4.3), (4.4.5) and (4.4.6) into (4.4.8), we get

y
′′
1 (x) = c{2b1 − 3cx cos θ + 3xc cos 3θ} cot2 θ(4.4.8)

Solving (4.4.8), we obtain

y1(x) = b2 + b3x + b1cx
2 cot2 θ − 8x3 cos3 θ(4.4.9)

for some constants.
From (4.4.5) and (4.4.9), we have

y2(x) =
3cx

2
cos θ sin2 θ − b1cx

2 cot2 θ − 8x3 cos3 θ − b1 − b2 − b3x(4.4.10)

Hence, substituting (4.4.9) and (4.4.10) in (4.4.6), we find

y2
3(x) = −(b1cx

2 cot2 θ − 8x3 cos3 θ + b2 + b3x)(4.4.11)

×(b1cx
2 cot2 θ − 8x3 cos3 θ + b1 + b2 + b3x)

+ c
8 [1+3 cos 2θ+12x cos θ(b1cx

2 cot2 θ−8x3 cos3 θ+b2+b3x)] sin2 θ
+ 1

2 (2cb1x cot2 θ − 24x2 cos3 θ + b3) sin θ tan θ
If c = 4, and b1=b2=b3=0, then we have

y1 = −8x3 cos3 θ(4.4.12)

y2 = 6x cos θ sin2 θ + 8x3 cos3 θ(4.4.13)

y2
3(x) = −64x6 cos6 θ +

1
2
[1 + 3 cos 2θ − 96x4 cos4 θ] sin2 θ − 12x2 cos3 θ sin θ tan θ

(4.4.14)

Conversely, it is easy to verify that (4.4.9)∼ (4.4.11) satisfies the differential system
(4.4.1)∼ (4.4.3).
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5 An Inequality between Mean Curvature and Scalar
Curvature for Slant Submanifold.

In the following theorem we have established an inequality between mean cur-
vature and scalar curvature of slant submanifold of a cosymplectic manifold.

Theorem 5.1. Let M be a proper slant subamnifold in a cosymplectic space-form
M

5
(c) with slant angle θ. Then the squared mean curvature and the scalar curvature

of M satisfy

H2(p) ≥ 4
9
r(p)− (1 + 3 cos2 θ)

2c

9
(5.5.1)

at each point p ∈M .
The equality sign of (5.5.1) holds at a point p∈M if and only if, the shape oper-

ators of M at p take the following form with respect to a suitable adapted orthonormal
frame {e1, e2, ξ = e3, e4, e5}:

Ae4 =




3λ 0 0
0 λ 0
0 0 0


 , Ae5 =




0 λ 0
λ 0 0
0 0 0


(5.5.2)

Proof. Suppose that M is proper slant with slant angle θ in the cosymplectic space
form M

5
(c) . Then, for a unit tangent vector field e1 of M perpendicular to ξ, we put

e2 = (sec θ)Pe1, e3 = ξ, e4 = (csc θ)Fe1, e5 = (csc θ)Fe2.

Also, from Corollary 3.1 of [20], we have

g(AFY X, Z) = g(AFXY,Z)(5.5.3)

for any X,Y, Z ∈ TM
Then, with respect to adapted orthonormal frame {e1, e2, ξ = e3, e4, e5} and using
(5.5.3), we get

Ae4 =




a b 0
b c 0
0 0 0


 , Ae5 =




b c 0
c d 0
0 0 0


(5.5.4)

From (2.2.20) and (5.5.4), we find

9H2 = (a + c)2 + (b + d)2,
r

2
= ac− b2 + bd− c2 + (1 + 3cos2θ)

c

4
,

Or,

9H2(p)− 4r(p) + 2(1 + 3 cos2 θ)c = (a− 3c)2 + (3b− d)2 ≥ 0(5.5.5)

and consequently, we get (5.5.1). From (5.5.5), we know that the equality case of
(5.5.1) holds at a point p if and only if a = 3c, d = 3b. Hence, if we choose e1 in
such a way such that Fe1 is in the direction of the mean curvature vector H , then
the shape operators take the form (5.5.2). The converse can be proved by applying
(2.2.20).
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The following result shows that the inequality (5.5.1) is sharp for θ∈(0, π
2 ).

Proposition 5.2. There exists a three dimensional non-totally geodesic proper slant
subamnifold M in cosymplectic space-form M

5
(c) with slant angle θ which satisfies

the equality sign of (5.5.1) at some points in M.

Proof. Let φ=φ(x) and φi=φi(x), i = 1, 2, 3, be four functions defined on an open
interval containing 0. Let φ=φ(x) be defined such that φ(0)=0, b6=0. Consider the
system of first order ordinary differential equations

y′1 = −3y1y3 + cot θ csc θ(y2
2 + y2φ)

y′2 = φy3 − 2y3y2 − cot θ csc θ(y1φ + y2y1)(5.5.6)

y′3 = −y2
3 − csc2 θ(φy2 − 2y2

1 − y2
2),

with the initial conditions y1(0) =d1, y2(0) =d2 , y3(0) = d3 . Let φ1, φ2 and φ3

be the components of the unique solution of this differentiable system on some open
interval containing 0. Let M be a simply connected open neighbourhood of the origin
(0, 0, 0)∈<3 endowed with the metric

f(x) = exp

∫
φ3(x)dx(5.5.7)

η = dz(5.5.8)

g = η ⊗ η + dx⊗ dx + f2(x)dy ⊗ dy(5.5.9)

and

e1 =
∂

∂x
, e2 =

1
f(x)

∂

∂y
, e3 = ξ =

∂

∂z
(5.5.10)

Now, it is easy to verify that {e1, e2, ξ} is a local orthonormal frame field of TM such
that

∇e1e1=0, ∇e1e2=0, ∇e1e3=0,

∇e2e1 = φ3e2, ∇e2e2 = −φ3e1, ∇e2e3 = 0,(5.5.11)

∇e3e1=0, ∇e3e2=0, ∇e3e3=0.

We define a symmetric bilinear TM-valued form ρ on M as follows:

ρ(e1, e1) = φe1 + φ1e2, ρ(e1, e2) = φ1e1 + φ2e2, ρ(e2, e2) = φ2e1 − φ1e2(5.5.12)

ρ(e1, ξ) = 0, ρ(e2, ξ) = 0, ρ(ξ, ξ) = 0(5.5.13)

It is easy to check that (M, ϕ, ξ, η, g) is an almost contact metric manifold and
(∇Xϕ)Y =0, for any X, Y ∈ TM. We put P = cos θϕ, and after a lengthy calcu-
lation, we can show that it satisfy the conditions of Existence Theorem for c = 0.
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By applying Theorem A, we obtain that there exists a θ-slant isometric immersion
from M in M

5
(c), whose second fundamental form is given by

h(X,Y ) = cos2 θ(Pρ(X, Y )− ϕρ(X,Y ))

From the initial conditions it follows that the shape operators of M take the form of
(3.3.2) at the point p=(0, 0, 0) and satisfy the equality sign of (5.5.1). Also it follows
from (5.5.11) that the second fundamental form does not vanish identically. Hence,
the submanifold is non-totally geodesic.
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