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1 Introduction

It is well known that the orthogonal groups SO(n) ,n > 2 are connected, but are not
simply connected, since 71(SO(n)) & Z5. Their simply connected covering groups
Spin(n) are obtained by making use of the Clifford algebras C,,.

The pseudo-orthogonal groups SO(m,m) are also connected and not simply con-
nected. The groups Spin(m,m) are also defined by using convenient Clifford algebras.
It is worthwhile to note this

Proposition. When m > 2, m(SO(m,m)) ~ Zy x Z, .

Proof. The group SO(m,m) acts transitively on the group space SO(m) through
homographic transformations: A — (aA + b)(cA + d)~1; this action induces a tran-
sitive action on the space W formed by the pairs (A, B) € SO(m) x SO(m) with
det(A — B) # 0. The isotropy group H at the point (I, —1) is formed by the matrices

a ca

ca a
the tangent space T'SO(m). Thus W and H are homotopically equivalent to SO(m)
and therefore m (W) ~ m(H) ~ 71 (SO(m)) ~ Zs.

The exact sequence of homotopy groups associated with the fibration H C
SO(m,m) — W provides the final step of the proof.

) € SO(m,m), where (I —tc c¢)a 'a = I. The space W is diffeomorphic to

2 The spinorial representations of SO(4,4)

We denote by G the group defined as the set of real 8 x 8-matrices S verifying the
relations

dma:1ﬁszszaz:(o M).
Iy O

The group G is isomorphic to SO(4, 4).
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Let g be the Lie algebra of the group G.
We denote by E the real vector space spanned by the eight symbols

bo , b, (0 =0,1,2,3)

and endowed with the quadratic form
F(z)= Zmaxa , T = Z(maba + z,0%).

The relations S € G, x € E, s € g imply
Q(Sr)=Q(z), 's T+ X s=0.

When b,b" are two of the symbols b, ,b®, we denote by b/b’ the 8 x 8-matrix
characterized by the properties

/YY) =b, b/ =0, (' £V).
Then, whenever b,b',b" € b, we will have
(b/b") (' /") = b/b".
The Lie algebra g is linearly spanned by the 28 matrices
B? = b, /bs — b° /b"

Bag = ba/b° —bg/b* , B =% [bs — b by, (a < ).

As long as we will work with a vector space which is endowed with specific base,
we will identify any matrix with the endomorphism associated with that matrix.

Instead of considering the group SO(4,4), we will consider the group G.

Let Cy be the Clifford algebra spanned by the eight symbols ¢, , t* subject to the
relations

tatg +tate = 1217 + 1Pt =0, tot? +19t, =62 | (o, 3 =1,2,3,4).
‘We denote
o =tg+t"

We want to make explicit the two fundamental spinorial representations of the
group G. To this end, we denote

eo = titatsts , ¥ = —t 23 trey | e; = titte
et =titkey | (ijk = 123,231,312)
fo=tleg = peq , [ =1t'1?teq = pe°
fi=—teg=e;, f'=t"ttheg = e
Fi=tity, Gy =tjty , F'=t"t*, G' =itk

1
Hb = §(tatb —t',) , Hy=HY, (a,b=1,2,3,4)
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Then 1 1

H, = t,t% — = = = — t9¢,
272

taty . tt] = HS |, (a # c)

[taty , t°t%] = H, + H,
ptip=—t; , ptlo=—t", ptap=1t*, pttp =14
pFp=—F}, pFlpo=F;, ¢Gip=G;, pG'p=G'
pHlp=H] |, pHlp=—F,, pHip=—F', pHyp=—H, .

The symbols F, G, H span a Lie algebra, denoted I'. The algebra I' is isomorphic
to g. Multiplication by ¢ allows us to transform the action of F, G, H on the vectors
f%, fo into an action on the vectors e?, e,.

The sets e = (eg ,e; , e, e?), respectively f = (fo , fi, f°,f!) span two complex
8-dimensional vector spaces denoted £, F and multiplications on the left with F, G, H
define two fundamental spinorial representations

p+:I'— End() , p— : T — End(F)

of the Lie algebra T.
One has:

1 1 1
Hie():ieo,H4€0:§€0,H1'€O:—§60,H460: —€

1 1 ) 1 . . 1 .
Hiei = —§6i s Hiej = §€j 5 I{ieZ = 567' s Hiej = —563

1 1 1 1
Hifo=5fo, Hafo=—5fo, Hif* =—5f°, Haf* = 5 f°
2 2 2 2
Hif; = lf Hf_lf H,fi_lfi H;fl = lfj
i — 9 i i — 9 o i = 9 ’ % = 2
Fie; = —ep Fieo :ei7 Giei = —eq , G’ieo =e€;
Fleg=¢; , Fle' = =", Gleg=¢', G'ej = —¢€°
Ffl=fo, Fif* ==, Gif° = fi, Gif = —fo
Fify=f* Fifs==f". Gfo=f", G'fi=~f

where the triple ijk is one of the triples 123,231, 312.
Using the same convention, one has:

p+(H;) = %(60/60 —eifeitejfej +epfer — )’ v el fel — e [l — ek [eh)
p—(H;) = %(fo/fo_fi/fi+fj/fj+fk/fk —fOLO =P = R

1
pr(Hy) = 5(60/60 —e1/er —eg/es —ezfes —e /e + el Jet +e?/e? + ¥ /e?)
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po(Hi) = 3Uolfo = Filfy = fol fo = falfy = 10+ £/ £ 4 P52+ £ %)

pi(tits) = €'/e® —eofei , p—(tits) = fu/ ) — fi/f*

po(tite) = e/’ —eo/e’ . p_(tijtr) = fi/ [ — fo/ [

py(t'tY) =eifeo —®)e’ , p_(t'tY) = f*/f; — f7/ fx
(t't")

Pt tky = ei/eo —eo/ei , pf(tjlfk') = fi/fo —fo/fi

3 The vectorial representation

We will now consider the linear representation p of the Lie algebra I', which is induced
by the adjoint representation of the Clifford algebra Cg:

(F,t) — [EF)t], (G,t) — [G,t], (H,t)— [H,1].

Let D be the complex vector space spanned by the eight symbols ¢, , t* ,
(a =1,2,3,4). We have:

[F; t'] = ~tg, [Fi,tY) =t;, [Gi,t)] = ~t1,, [Gi ,t*] =1,
[Fiti] = —t*, [Flta =1, [Gt;] = —t*, [G't] = 1.

Thus D is an invariant subspace of Cg and we get the following endomorphisms
of D, defining the vectorial representation p : I' — End(D) ::

pltaty) =t /t° — o /1%, p(t?t?) =t /ty — t* /L, , p(tat®) = to/ty — t° /1% .

We resume the results concerning the two spinorial representations py ,p_ and
the vectorial representation p of the Lie algebra I', by composing the following tables:

el P+(7) p-(7) p(7)

tity e'/e¥ —eg/e; ex/el —ej/ek ei/e’ —eg/€l
titk e;/e’ — eo/ez: e;/e’ — e(?/ei ej'/ek —ex/el
it eifeo — /el eFle; — el ey e'Jeq — €% /e;
titF e'feg —e¥/e; e'feg —e¥/e; el /ey —eF/e;
t;tI e'jel —e;/e; e'/el —e;/e; eife; —el /e
tat? ek/ej—ej/ek eifeg — /e eo/e; — €' /el
t;t? ej/ef — ey /el eo/e; —e' /el ei/eo — €’ /el

titlitlti E07E1+E]+Ek E07E1+EJ+E]¢ 61'/61‘767'/6z
t4t4—t4t4 FEy—F,—FEy—FE3 —FEg+ FE1+ Ey+ E5 60/60—60/60

where the following notation has been used: E, = e, /e, — e*/e®.
Denoting, for o, 3 =0,1,2,3, a# g and a =1,2,3,4,

Eg =eq/ep —eﬁ/e" , Eap = ea/eﬁ —eg/e” EYP = e“/eg —eﬁ/ea

he = tat® — t%, |
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the following table will define the inverses of the representations p4, p—, p:

Eeg (p) "1 (E) (p-)"H(E) p~'(E)
-E} tita —tit* tity
E? titt —t'ty t;t?
E; tity titk tits
E® itk itk titt
—E; tit/ tit/ t't
E% tity —tit? itk
E; t;t? —t;ty titk

4F, h1 + ho + hs + hy h1+ he + hs — hy 4hy
4F;  —hi+hj+hy—hy —hi+hj+hy+hy 4h;
It is interesting to note that (p;) 1p_ , p~tp_ , (p)"!p_ are automorphisms of
the Lie algebra I' verifying the following periodicity relations:

(o)) = ()7 = (0)7x) = e

On the other side, according to the general theory regarding linear representations
of orthogonal groups, the G-module £ ® F decomposes into the direct sum of two
irreducible submodules of dimensions 8 and 56, with highest weights A1 respectively
A1+ Az + Ag, the first of which being isomorphic to D, while the second is isomorphic
to AR®; as a consequence, there exists a monomorphism of G-modules

v:D—ERQF;
in our setting, this monomorphism is defined by the formulas
b)) =eo@ [T~ —fraf - Mo
Bt = flidk g fl_ fli g flak _ fli g plki _ gk g plij,

where {4, j,k,1} = {1,2,3,4} and

Flmtley, fli=ttey , 9 = tliitie, .

For more details concerning the groups SO(8), Spin(8), SO(4,4) and Spin(4,4)

see the book Spin Geometry [1, p.56].

4 QOctets

Let H be the skew-field of quaternions and denote Q = H x H.

We shall introduce in Q a new multiplication law, by performing a slight modifi-
cation of the multiplication rules governing the Cayley algebra.

We will get a link between the so modified Cayley algebra and the fundamental
spinorial representations of the group SO(4,4).

We denote by 1,1, j, k the standard quaternions satisfying the relations

P==k=-1,ij=—ji=k
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The pairs (z,y) € Q = H x H will be named octets. The product of two octets,
the scalar product of two octets, the norm of an octet, the conjugate of an octet and
the inverse of a non vanishing octet are defined by the formulas:

(2, y)(u,v) = (zu + vy, vx + Yu)
< (z,y), (u,v) >=<z,u>—<y,v>, || (z,y) |\2:| T |2 — |y |2
* _ — fa_y
(l’,y) :(mv_y)7 (l‘,y) 1_¥

R
Then we will have

| (2, y)(u,0) =] (z,9) [* | (u,0) |
The last formula shows that multiplication either on the left or on the right with

objects (a,b) € Q having | a [* — | b |?>= 1 defines linear transformations that keep
invariant the quadratic form

Pz,y) =z~ |y *.
We introduce the following octets, forming two bases of the real vector space Q:
1"=(1,0), i =(i,0) , 7' = (4,0) , ¥ = (k,0)

1"=(0,1), i" = (0,i) , ;" =(0,4) , K" =(0,k)

1/ _ 1// Z’/ _"_ 7;// jl +j// k/ _"_ k//
€0 = 5 , €1 = 5 , €2 = B) , €3 = 5
eo: 1/_;1// ’ el:i/;i// 7 62:j/_2j// , 63:k,/_2k// .

Then we get:
1’2 7 , Z’2 j'2 _ k’2 - 71 , i/j/ 7]-/@./ —
1”2 _ i”2 _ j”2 _ k”2 -1 7 i”j” —
i = i =i = i = k"
(e0)> =eo, ()2 =¢", ege’ =%y =0
eoeq = €qe’ =eq , ' =g =", (a=1,2,3)
ele, = eqep = epe® = e%e® =0
(ea)?* = (e%)? =0, eqe” = —ey , e%eq = —€°
€%’ = —ebe® = e, | eqep = —epeq = €, (abc = 123,231, 312)
eaeb = ebea =0
i/:l/7 1/1:1// , g/:—i/ , g//:i//
Go=¢o, e =e", &, =—e", &

The formula
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defines a map E : R® — Q. One has:

E(2)E(y) = (2°° = 2ya)eo + (xoyo — Y way®)e’

+ (@ + 2o + Yo — Teth)ea + Y (ToYa + Tay + 2'y" — 2yP)e”.
a a

When we denote
3 3
E(z) = zoeo + 2% — Z(a:aea +xqe?) , Qz,y) = Z Ty,
a=0

a=1

we get ~
E(z)E(y) = Q(z,y) "+ Q(y, ) eo

+ Z ((fﬂallo — 2%y — 2"y + 2°Y")eq + (Tayo — ToYa — Toye + xcyb)e(L)
a=1

E@)E(y) + EW)E) = (Qz,y) + Q. 0)) 1, E(@)E(x) = Q) 1.

When zg + 2° = 39 + y° = 0, we also have

E(2)E(y) + E(y) E(x) = - (Q(z,9) + Q(y2)) 1"

Multiplication on the left w — E(z)w defines a linear map Q — Q. Using the
basis (eg ,...,e3 , €%, ...;e%), this linear map is represented by the matrix

:17014 Xl
El(‘r) - ( Xl' 1,014 3

where
0 T To T3 0 xt x? 23
—z1 0 3 —a? | —z! 0 T3 —Tg
X = 3 1 , X = 2
—x2 —x° 0 x —x —x3 0 T
—zg a2 -zl 0 —z3  xs —x1 0

We shall have, for each vector w € R® |
E(El(m)w) = E(x)E(w).

Similarly, the multiplication on the right w +— wE(x) is described by the matrix

X, X/
E,«(CL') = < X%, XTI, )7

where
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0 1 2 3

T r oz T 0 0 0 0
;L —x1 29 0 O /, 0 0 —z3 g2
X = —x9 0 29 O , Xy = 0 z8 0 —z!
—x3 0 0 x9 0 —z2 2zt 0
Zo r1 T2 23 0 0 0 0
1 .0
o —T €T 0 0 meo_ 0 0 —T3 T2
XT - —(L'Q 0 fEO 0 ’ XT o 0 I3 0 —X7
—23 0 0 2° 0 —x2 1 0
One has

Let us denote

115

Then G is the linear group formed by the real 8 x 8-matrices A which verify the

relations det(A) =1, F(Aw) = F(w).

When F(z) = 1, any of the relations E(w') = Ej(z)E(w), E(w') = E(w)E,(x)

implies F(w') = F(w). This means that
When F(x) = 1, the matrices Ey(x), E.(x) belong to the group G.
More generaly, denoting

—xoly X
vt = - ( 5 My, ).

E|(z)E;|(z) = ( Z maaco‘) Ig

we get

In particular, when zo + 2% = 0, one has EJ(z) = —E;(z) and

(El(gc))2 = —(az_omax“)lg .

Similar relations hold for the matrix E,(x).
Let us now consider the matrices ro ,7%, s, ,s® verifying the relations

3 3
El(x) = Z(_mara + xara) ) Er(y) = Z(yasa - yocsa)
a=0 a=0
and denote
r=r"—ry, s=5"— s
1 1
ko = i(rara —1%g) , he = 5(3(15“ —5%84)

We shall have, for w € R® and a = 0,1,2,3
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E(row) = eqE(w) , E(rfw) = e*E(w).

Using the relation E(z)E(y) + E(y)E(z) = (Q(x,y) + Q(y,x))l’, we get, for
a,b=1,2,3,
r2=s2=1Ig, ror +rr, = 52]8 , Sa8 + sPsy = 52 I
TTa + 1ot = 170+ 70 = 147y + 170 = 0 £ 707 =0
$Sa + Sa8 = 65% + 8%S = S48 + SpSa = s%s” + 5P = 0.
To get more precise formulas, let us denote by e/e’ the matrix having a single non
vanishing entry, equal to 1 and situated on the line e and the column €’; then we have

(61/6)(6l/62) = 566/ 61/62

and, under the restrictions a # b, abc = 123,231, 312,
3

3 3
ro = Zea/ea , 0= Zea/ea , T = Z (eo‘/eo‘ —ea/ea)
a=0 a=0

a=0
ra = —(ep/e — €./’ + € /eq — e /eq)
% =eg/e® —eq/e’ +eb/e. — e /ey
rorq = 7m0 = —(ep/e" — ec/eb) = —tatt
0ry = rorg = — (€ /eq — €% /eqg) = tbt°
ror® = %" = eg /e — e, /e’ = —tyt.

r0r® = rorg = eb/e. — e /ey, =ty
(TO)2 =To, (T0)2 = TO ) TOTO = 7’07"0 = (Ta)z = (Ta)2 =0
’l“ara — 60/60 + ea/ea + eb/eb +€c/€c

T%7q = €g/eo + €q/eq + €’ /e’ + €°/e°
1
ko = —=(eo/e0 + ea/ea — ep/er — ecfec — e /e’ —e®Je® + e’ /e + e/e).

When abc = 123,231, 312, we also get

ror? = —rbr, = —(ep/€a — ea/eb)
TaTh = —TpTa = €c/eg — €% /e = t°t*
rirt = —rPrt = /e’ —eg/e. =ty .
When we denote
R = —rirors , R =rir?s

we get
R=¢"ey, R =ep/e®, RR=r¢eg/eqg , RR =e"/c°

RR'R=R, RRR =R
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’ ’
" R=—esfeq, Rr*=¢e"/e" | 1" Rr¢ = —e, /e’
’ /
r® R=¢%/eg , Rr%r’ = —e%/e., 71" Rr@rt = —¢/eq
’ / ’ ’
r* Rrirt =e,/ew , 1% Rr® =e/e* | r® RR = —ey/e°

’ ’ ’ ’
4 RR' = e/, RR1% =ep/e® , RRror" = —eg/eq .

Let us redenote the basis of R® as follows

(4.1) ea:eo,e;:ei,eg:eo7ej:ei,(i:1,2,3)

and denote by e/e’ the matrix verifying the formula
(e/e')e" = beren e.

The matrix £, with matricial entries

— - — — + + + + — - — — + + + +
(eg €1 s€5 se3 ,eq €] ,e5 ,e3)/(eg seq ey ,e3 ,eq 1 €5 €3 )
writes:
6 =
R'R —R'Rr?r® —R'Rrért —R'Rrtr? R’ R'Rr! R'Rr? R'Rr3
—-r'R  rlRr%3 riRr3rt riRrir? —r'RR’ —rlRr! —rlRr? —riRr3
—r?R  r2Rr?s® r2Rr3r! r2Rrlr? —r?RR’ —r2Rr! —r2Rr? —r2Rr3
—r*R  r3Rr?p® r3Rrdr! r3Rrlr? —r*RR’ —r3 Rt —r3Rr? —r3Rr®
R —Rr?r3 —Rr3r! —Rr'r? RR’ Rr! Rr? Rr3
r?r®’R —r?r®Rr?r® 23Rl —208Rrr? P203RRY P20 Rrt 208 Rr? r208ReS
rriR —r3r'Rr?r®  —p3riRe3rt —p3riRer? p3r'RRY P3¢ Ret PSrtTe? P8RS
rir2T 22 Re?rd 12 Re3rt 12 Reie? p192RRY r1r2Rret r1r2Re?2 rl1r2ReS
Using the relation
I /
e/e’ = (e/eo)(eo/e€’)
we can write
T1T2T3
el
—r2
—p3
E = ] (R)( 1 —r2p3 el plp2 123 el g2 8 )
T2’I“3
7“37“1
,,,1,,,2

Denoting by R the column matrix on the left and by R' the matrix obtained by
transposing R and by applying the reversing operator to each entry, we can write

_ ! (0 Iy
5mezaj<_h())

As a consequence, we get the following relation:

E'=-J€EJ
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As far as concerns the matrices s, we get the following formulas:

3 3
s0 = eg/eg +Ze“/e“ , s0=2¢Y/¢0 —|—Zea/ea
a=1

a=1

3
s=e"/e —eofen+ (ea/ea B ea/ea>
a=1

Sa = €o/eq — /e’ —ep /e + ec/eb
50 = eafen — /68 + oo — ey
5050 = 5450 = eg/eq — /e’ = —rbr¢
%55 = 5450 = €./€ — ep /e =11,
508" = 57" = —e /ey, + €’ Je. = —1r,
§95% = 5% = —e" /e +e4/e0 = TpTe
(50)> =50, (592 =5, 505 =59 = (5,)% = (s7)2 =0,
SaSh = —8pSa = €o/e’ — e./e’ = ror¢
59" = —s%s* = /e, — e /eg = rr,
545" = (eo/eo +€%/e* +ep/ep + ec/es)
5%, = (€"/€” + eq/eq + € /e’ + €°/e°)

548" = —5%s, = ep/eq — e /e’ | (a #b)

1
ha = 5(60/80 —eafeat+ep/er+ecfec —e’[e + e e — e’ [e — e /)

S = —s's?s = —e¥/eg = —R , S = 518983 = —eg /e’ = — R/
SS" =eo/eg, S'S =€/, S§'S =5, 588 =5
545" = —e"/eq , 545,58 =ec/eq, S'sq =¢€"Jeq , S'sqs, = —€°/e°

SS's, = —eg/eq , SS'sq4sp =eg/e”, 545" S =e/e’ | 545,5'S = —e./e" ..

Resuming, we can give the matrix £ the following expressions:

518283
5283
5381
818
152 (—R)( 1 —S81 —82 —S83 —818283 S283 8381 S182 ):

—51

—89
—S3
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263 (R) ( —s's?s® s2s3 %t sls? 1 s' $2 $3 ).

S
S
—S°S

S

—S

N o= W N

We add the relations

1 1
ko (e/e') = 3 e/e , (e']e) kg = 3 e'/e , valid for e = ef ,e} e, ,e.

1 1
ko (e/e') = ~3 e/e , (e'/e)ky, = —5 /e, valid for e=¢} el ,eq ,e,

1 1
hq (e/e’) = 3 e/e , (e'/e) hy = 3 /e, valid for e = e, ,ed ,ef el

1 1
he (e/e') = ~3 efe’ , (e'/e) hy = ~5 ¢'/e, valid for e = ey ,e, e ,er.

We also have:
e; =eo = (eg/eg)eo = R'Reg = SS'eg

e; =e; = (eifeo)eo = —1'Reg = ;55 o
ed =€ = (e"/ep)eg = Reg = —S'e
ef =e' = (e'/eg)eo = rIr¥Reg = —5;5eo

(ijk = 123,231, 312).

5 Summary: the spinorial G-modules

The group G is formed by the real 8 x 8-matrices A verifying the relations det(A) =
1, F(Az) = F(x), where F is quadratic form

3
F(z) = Z T TV,
a=0

is spanned by the following 28 matrices:
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0

eofeo —€’)e’ =rg — 1

ea/ea—ea/e“:kb—i—kc—i—ro—rozhb—i—hc—ro—i—ro

eo/eq — €/ = —rPr¢ = 545,
eg/e® —eq /e’ = —ror® = sps,
eajey —€0/e = —ryr® = sp5°
eafeo — €¥/e = ryr. = —s%s%
ea/e’ —ep/e® = —rore = —5"s,

0

e Jey, —e’/e, = 10r¢ = —55°.

We produced four spinorial representations of the Lie algebra I', namely py , p_ , o', p".
It is not difficult to prove that p’ is equivalent to p,, while p” is equivalent to p_.

The six matrices r, ,r* generate algebraically a Clifford algebra Cg associated
with the quadratic form

3
Fy(x) = Z Tz,
a=1

The matrices 7,7, , 7%
quadratic form Fy(x) + 22.

For each e € {eg ,e1 ,ez ,e3 ,e’ el e?, €3}, the vector space V., which is linearly
spanned by the eight matrices e, /e , €*/e with o = 0,1, 2, 3, provides the fundamen-
tal spinorial representation of the pseudo-orthogonal group G’ &~ SO(3,4) associated
with the quadratic form Fy(x) + (2°)? and also the two fundamental spinorial repre-
sentations of the pseudo-orthogonal group G” ~ SO(3, 3) associated with Fy(x).

The 15 matrices 7,7y, , (a # b) , 7ar° — 77, , 797 | (a # b) span the Lie algebra
of the group G”.

The 21 matrices rrq , 77, 747 , 7o’ — 17, , 7% span the Lie algebra of the group
G'.

The 28 matrices tot, ,tot%, t%tq, 0%, tats Lo tl, ot span the Lie algebra g of the
pseudo-orthogonal group G = SO(4,4) associated with the quadratic form F(z) =

Zi:o ZToz®.

generate the Clifford algebra C7 associated with the

1
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