
Contact CR-warped product submanifolds

in generalized Sasakian Space Forms

Reem Al-Ghefari, Falleh R. Al-Solamy and Mohammed H. Shahid

Abstract. In [4] B. Y. Chen studied warped product CR-submanifolds
in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained
a sharp inequality for the squared norm of the second fundamental form
for contact CR-warped products in Sasakian space form. Recently Alegre,
Blair and Carriago [1] introduced generalized Sasakian space form. The
aim of present paper is to study contact CR-warped product submanifolds
in generalized Sasakian space form.
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1 Preliminaries

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact
metric manifold if there exist on M a (1, 1)-tensor field φ, a vector field ξ ( called the
structure vector field) and a 1-form η such that

η(ξ) = 1, φ2X = −X + η(X)ξ and g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any vector field X, Y on M.
In particular, in an almost contact metric manifold we also have φξ = 0 and

η ◦ φ = 0. Such a manifold is said to be a contact metric manifold if dη = Φ, where
Φ(X, Y ) = g(X, φY ) is called the fundamental 2-form of M .

On the other hand, the almost contact metric structure of M is said to be normal
if [φ, φ](X,Y ) = −2dη(X,Y )ξ, for any X, Y, where [φ, φ] denotes by the Nijenhuis
torsion of φ, given by

[φ, φ](X, Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ].

An almost contact metric manifold is called Sasakian manifold if
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(5Xφ)Y = −g(X,Y )ξ + η(Y )X, 5Xξ = φX(1.1)

for any X, Y where 5 denotes the Riemannian connection of g.
In 1985, J. A. Oubina introduced the notion of a trans-Sasakian manifold. An

almost contact metric manifold M is a trans-Sasakian manifold if there exist two
smooth functions α and β on M such that

(5Xφ)Y = α(g(X, Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),(1.2)

for any X, Y on M and we say that trans-Sasakian structure is of type (α, β). In
particular, from (1.2), it is easy to see that the following equations hold for a trans-
Sasakian manifold

5Xξ = −αφX + β(X − η(X)ξ),(1.3)

dη = αΦ.(1.4)

In particular, if β = 0, M is said to be an α-Sasakian manifold. Sasakian manifolds
appear as examples of α-Sasakian manifolds, with α = 1. Another important kind of
trans-Sasakian manifold is that of cosymplectic manifolds, obtained for α = β = 0. If
α = 0, M is said to be a β-Kenmotsu manifold. Kenmotsu manifolds are particular
examples with β = 1.

Recently, Alegre, Blair and Carriazo [1] introduced the notion of a generalized
Sasakian space form. Given an almost contact metric manifold (M, φ, ξ, η, g) we say
that M is a generalized Sasakian space form denoted by M(f1, f2, f3) if there exist
three functions f1, f2 and f3 on M such that [1].

R(X, Y )Z = f1{g(Y, Z)X − g(X,Z)Y }+ f2{g(X, φZ)φY

− g(Y, φZ)φX + 2g(X, φY )φZ}+ f3{η(X)η(Z)Y
− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ},(1.5)

for any vector fields X,Y, Z on M , where R denotes the curvature tensor of M .
This kind of a manifold appears as a natural generalization of the well known

Sasakian space form, which can be obtained as a particular case of generalized
Sasakian space forms by taking f1 = c+3

4 , f2 = f3 = c−1
4 . Moreover, we can also

find some other examples.
Example 1.1 A Kenmotsu space form i.e a Kenmotsu manifold with constant φ-
sectional curvature c is a generalized Sasakian space form with f1 = c−3

4 , f2 = f3 =
c+1
4 .

Example 1.2 A cosymplectic space form M(c) i.e a cosymplectic manifold with con-
stant φ-sectional curvature c, is a generalized Sasakian space form with f1 = f2 =
f3 = c

4 .

Example 1.3 An almost contact metric manifold is said to be an almost C(α)-
manifold if its Riemannian curvature tensor satisfies



Contact CR-warped product submanifolds 3

R(X, Y, Z, W ) = R(X, Y, φZ, φW ) + α{g(X,W )g(Y, Z)
− g(X, Z)g(Y,W ) + g(X, φZ)g(Y, φW )
− g(X, φW )g(Y, φZ)},(1.6)

for any vector fields X, Y, Z, W on M , where α is a real number. Moreover, if such
a manifold has constant φ-sectional curvature equal to c, then its curvature tensor is
given by

R(X, Y )Z =
c + 3α2

4
{g(Y, Z)X − g(X,Z)Y }

+
c− α2

4
{g(X, φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
c− α2

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X, Z)η(Y )ξ − g(Y,Z)η(X)ξ},(1.7)

and so, it is a generalized Sasakian space form with f1 = c+3α2

4 , f2 = f3 = c−α2

4 .

Let M be an n-dimensional submanifold immersed in a generalized Sasakian space
form M(f1, f2, f3). Let5 and5 be the Riemannian connection and the induced Levi-
Civita connection of M(f1, f2, f3) and M respectively. Then the Gauss and Wein-
garten formulas are given respectively by

5XY = 5XY + h(X, Y ), 5XN = −ANX +5⊥
XN,(1.8)

for vector fields X, Y tangent to M and a vector field N normal to M , where h
denotes the second fundamental form, 5⊥ the normal connection and AN the shape
operator in the direction of N . The second fundamental form and the shape operator
are related by

g(h(X, Y ), N) = g(ANX, Y ).(1.9)

Let R be the Riemannian curvature tensor of M , then the equation of Gauss is
given by [5]

R(X, Y, Z, W ) = R(X,Y, Z,W ) + g(h(X, W ), h(Y, Z))
− g(h(X,Z), h(Y, W )),(1.10)

for any vectors X, Y, Z and W tangent to M .
Let p ∈ M and {e1, . . . , en, . . . , e2m+1} an orthonormal basis of the tangent space

TpM(f1, f2, f3) such that e1, . . . , en are tangent to M at p.
We denote by H the mean curvature vector that is

H(p) =
1
n

n∑

i=1

h(ei, ei).(1.11)

We put
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hr
ij = g(h(ei, ej), er), i, j = {1, . . . , n}, r ∈ {n + 1, . . . , n + m},(1.12)

and

||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

Let M a Riemannian manifold of dimension k and a a smooth function on M , we
recall

(i) 5a, the gradient of a is defined by

〈5a, X〉 = X(a),

for all vector field X on M .

(ii) 4a, the Laplacian of a is defined by

4a =
k∑

j=1

{(5ej
ej)a− ejej(a)} = −div5a,

where 5 is the Levi-Civita connection on M and {e1, ..., ek} is an orthonormal
frame on M .

As a consequence, we have

||5a||2 =
k∑

j=1

(ej(a))2.

There are different classes of submanifold. For submanifolds tangent to the struc-
ture vector field ξ. We mention the following three cases

(i) A submanifold M tangent to ξ is called an invariant submanifold if φ-preserves
any tangent space of M , that is φ(TpM) ⊂ TpM, for every p ∈ M.

(ii) A submanifold M tangent to ξ is called anti-invariant submanifold if φ maps
a tangent space of M into the normal space, that is, φ(TpM) ⊂ T⊥p M for all
p ∈ M where T⊥p M denotes the normal space at p ∈ M .

(iii) A submanifold M tangent to ξ is called a contact CR-submanifold if it admits
an invariant distribution D whose orthogonal complementary distribution D⊥ is
anti-invariant, that is, TpM = Dp⊕D⊥

p , with φ(Dp) ⊂ Dp and φ(D⊥
p ) ⊂ T⊥p M,

for every p ∈ M.

2 Warped product submanifolds

Let (M1, g1) and (M2, g2) be the Riemannian manifolds and f a positive differentiable
function on M1. The warped product of M1 and M2 is the Riemannian manifold
M1 ×f M2 = (M1 ×M2, g), where g = g1 + f2g2. On a warped product one has [5]
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5UV = 5V U = (U ln f)V,(2.1)

for any vector fields U tangent to M1 and V tangent to M2.
B. Y. Chen [4] established a sharp relationship between the warping function

f of a warped product CR-submanifold M1 ×f M2 of a Kaehler manifold M and
the squared norm of the second fundamental form ||h||2. In [5] Hasegawa and Mihai
proved a similar inequality for contact CR-warped product submanifold in a Sasakian
manifold.

In this section, we investigate warped products M = M1×f M2 which are contact
CR-submanifolds of a generalized Sasakian space form M(f1, f2, f3). Such submani-
folds are tangent to the structure vector field ξ. We distinguish two cases

(a) ξ is tangent to M1,

(b) ξ is tangent to M2.

In case (a), one has two subcases :

(1) M1 is an anti-invariant submanifold and M2 is an invariant submanifold of M .

(2) M1 is an invariant submanifold and M2 is an anti-invariant submanifold of M .

We start with the subcase (1):

Theorem 2.1 Let M(f1, f2, f3) be a (2m+1)-dimensional generalized Sasakian space
form.Then there do not exist warped product submanifolds M = M1 ×f M2 such that
M1 is an anti-invariant submanifold tangent to ξ and M2 an invariant submanifold
of M .

Proof. Assume M = M1 ×f M2 is a warped product submanifold of a general-
ized Sasakian space form M(f1, f2, f3) such that M1 is an anti-invariant submanifold
tangent to ξ and M2 an invariant submanifold of M. From equation (2.1) we have

5XZ = 5ZX = (Z ln f)X,(2.2)

for any vector fields Z and X tangent to M1 and M2 respectively.
If in particular, we take Z = ξ, we get ξf = 0. Using (1.1) and (2.2), we have

0 = 5Xξ = 5Xξ = (ξ ln f)X.

Thus M2 cannot exist. 2

Now for the subcase(2), we have

Theorem 2.2 Let M(f1, f2, f3) be a (2m+1)-dimensional generalized Sasakian space
form and M = M1×f M2 an n-dimensional warped product submanifold such that M1

is a (2α+1)-dimensional invariant submanifold tangent to ξ and M2 a β-dimensional
totally real submanifold of M(f1, f2, f3). Then
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(i) the squared norm of the second fundamental form of M satisfies

||h||2 ≥ 2β[||5(ln f)||2 −∆(ln f) + 1] + 4αβ(f2 + 1),(2.3)

where ∆ denotes the Laplace operator on M1.

(ii) the equality sign of (2.3) holds if M1 is a totally geodesic submanifold of
M(f1, f2, f3). Hence M1 is a generalized Sasakian space form of constant φ-
sectional curvature (f1 + 3f2).

Proof. Let M = M1 ×f M2 be a contact CR-warped product submanifold in
a generalized Sasakian space form M(f1, f2, f3) such that dimM1 = 2α + 1 and
dimM2 = β. Let {X0 = ξ, X1, X2, . . . , Xα, Xα+1 = φX1, . . . , X2α = φXα, Z1, . . . , Zβ}
be a local orthonormal frame on M such that X0, . . . , X2α are tangent to M1 and
Z1, . . . , Zβ are tangent to M2. For any unit vector field X tangent to M1 and Z, W
tangent to M2 respectively, we have

g(h(φX,Z), φZ) = g(5ZφX, φZ) = g(φ5ZX, φZ)
= g(5ZX, Z) = g(5ZX, Z) = X ln f.(2.4)

On the other hand since Z is a vector field tangent to a totally real submanifold
M2, we have

h(ξ, Z) = φZ.(2.5)

We denote by hφD⊥(X, Z) the component of h(X,Z) in φD⊥. Therefore from (2.4)
and (2.5) we have

g(h(φX, Z), φW ) = g(AφW Z, φX) = g(5ZφW,φX)
= g(5ZW,X) = (X ln f)g(Z, W ).(2.6)

Putting X = φX, W = φW in (2.6) we get

g(h(X,Z), W ) = φX(ln f)g(Z, φW ) = −φX(ln f)g(φZ, W ),

from which we obtain
h(X, Z) = −φX(ln f)φZ.

Therefore for X ∈ TM1, Z ∈ TM2

||h(X, Z)||2 = (φX(ln f))2g(φZ, φZ) = (φX(ln f))2g(Z,Z)
= (φX(ln f))2.(2.7)

Let ν be the normal subbandle orthogonal to φD⊥. Obviously, we have

T⊥M = φD⊥ ⊕ ν, φν = ν.
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Let {ei}i=0,...,2α and {Zt}t=1,...,β are (local) orthonormal frame on M1 and M2 re-
spectively. On M1, we consider a φ-adapted orthonormal frame namely {ei, φei, ξ}i=1,...,α.
We evaluate ||h(X,Z)||2 for X ∈ D and Z ∈ D⊥. We know that

h(X,Z) = hφD⊥(X, Z) + hν(X,Z),

where hφD⊥(X,Z) ∈ φD⊥ and hν(X, Z) ∈ ν.
For X ∈ TM1, Z ∈ TM2, we have

||h(X, Z)||2 =
2α∑

i=1

β∑
t=1

{||h(ei, Zt)||2 + ||h(φei, Zt)||2}+
β∑

t=1

||hφD⊥(ξ, Zt)||2.

Now from (2.7), we have

||hφD⊥(ei, Zt)||2 = (φei(ln f))2

||hφD⊥(φei, Zt)||2 = (φ2ei(ln f))2 = (ei(ln f))2.

Since

||5a||2 =
2α∑

i=1

(ei(a))2.

Then we get

||5(ln f)||2 =
2α∑

i=1

(ei(ln f))2 +
2α∑

i=1

(φei(ln f))2

=
2α∑

i=1

β∑
t=1

(||hφD⊥(φei, Zt)||2 + ||hφD⊥(ei, Zt)||2).(2.8)

Therefore from (2.5) and (2.8), we have

2α∑

i=1

β∑
t=1

||hφD⊥(Xi, Zt)||2 =
2α∑

i=1

β∑
t=1

(||hφD⊥(ei, Zt)||2 + ||hφD⊥(φei, Zt)||2)

+
β∑

t=1

||hφD⊥(ξ, Zt)||2

=
β∑

t=1

(||5(ln f)||2 + ||φZt||2).

Since ||φZt||2 = 1, thus we get

2α∑

i=0

β∑
t=0

||hφD⊥(Xi, Zt)||2 =
β∑

t=0

||5(ln f)||2 +
β∑

t=0

||φZt||2

= β(||5(ln f)||2 + 1)(2.9)
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Next, for any unit vector field X tangent to M1 and orthogonal to ξ and Z tangent
to M2 orthogonal to ξ, equation (1.5) gives

R(X, φX,Z, φZ) = f1{g(φX, Z)g(X, φZ)− g(X, Z)g(φX, φZ)}
+ f2{g(X, φZ)g(φ2X, φZ)− g(φX, φZ)g(φX, φZ)
+ 2g(X, φ2X)g(φZ, φZ)}+ f3{η(X)η(Z)g(φX, φZ)
− η(φX)η(Z)g(X,φZ) + g(X,Z)η(φX)η(φZ)
− g(φX, Z)η(X)η(φZ)}
= 2f2{g(X, φ2X)g(φZ, φZ)}
= −2f2.(2.10)

On the other hand, by Codazzi equation, we have

R(X,φX, Z, φZ) = −g(5⊥
Xh(φX,Z)− h(5XφX, Z)

− h(φX,5XZ), φZ) + g(5⊥
φXh(X, Z)− h(5φXX, Z)

− h(X,5φXZ), φZ)(2.11)

By using equation (2.1) and structure equation of a generalized Sasakian manifold,
we get

g(5⊥
Xh(φX, Z), φZ) = Xg(h(φX,Z), φZ)− g(h(φX, Z),5XφZ)

= Xg(5ZX, Z)− g(h(φX, Z), φ5XZ)
= X(X ln f)g(Z, Z)− (X ln f)g(h(φX,Z), φZ)
− g(h(φX, Z), φhν(X,Z))
= (X2 ln f)g(Z, Z) + (X ln f)2g(Z,Z)− ||hν(X, Z)||2,

where we denote by hν(X, Z) the ν-component of h(X, Z). Also, we have

g(h(5XφX, Z), φZ) = g(5Z5XφX, φZ)
= g(5Z5XφX, φZ)− g(5Zh(X, φX), φZ)
= −g(X,X)g(Z, Z) + ((5XX) ln f)g(Z,Z).

g(h(φX,5XZ), φZ) = (X ln f)g(h(φX,Z), φZ) = (X ln f)2g(Z, Z).

Substituting the above relations in (2.11) we find

R(X,φX, Z, φZ) = 2||hν(X,Z)||2 − (X2 ln f)g(Z,Z)
+ ((5XX) ln f)g(Z,Z)− 2g(X,X)g(Z, Z)
− ((φX)2 ln f)g(Z, Z)
+ ((5φXφX) ln f)g(Z, Z).(2.12)
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By Summing the equation (2.12) using equation (2.10), we get

2α∑

i=1

β∑
t=1

||hν(X, Z)||2 = 2αβ(f2 + 1)− β∆(ln f)(2.13)

Combining (2.9) and (2.13), we obtain the inequality (2.3). 2

Denote by h
′′

the second fundamental form of M2 in M , then we get

g(h
′′
(Z, W ), X) = g(5ZW,X) = −X(ln f)g(Z,W ),

or equivalently

h
′′
(Z, W ) = −g(Z,W )5(ln f).(2.14)

If the equality sign of (2.3) holds identically then we obtain

h(D, D) = 0, h(D⊥, D⊥) = 0.(2.15)

The first condition (2.15) implies that M1 is totally geodesic in M, on the other
hand, one has

g(h(X,φY ), φZ) = g(5XφY, φZ) = g(5XY,Z) = 0.

Thus M1 is totally geodesic in M(f1, f2, f3) and hence is a generalized Sasakian space
form with constant φ-sectional curvature (f1 + 3f2). The second condition (2.15) and
(2.14) imply that M2 is totally umbilical in M(f1, f2, f3). Moreover, by (2.15), it
follows that M is a minimal submanifold of M(f1, f2, f3).

Corollary 2.1 We have the following table :

Manifold M1 ×f M2, ξ ∈ TpM1

M(f1, f2, f3) ||h||2 ≥ 2β[||5(ln f)||2 −∆(ln f) + 1] + 4αβ(f2 + 1)

MSas(c) ||h||2 ≥ 2β[||5 ln f ||2 −∆(ln f) + 1] + αβ(c + 3)

Mcosy(c) ||h||2 ≥ 2β[5 ln f ||2 −∆ln f + 1] + αβ(c + 4)

MKen(c) ||h||2 ≥ 2β[||5 ln f ||2 −∆ ln f + 1] + 2β(c + 5)

MC(α)(c) ||h||2 ≥ β[||5 ln f ||2 −∆ln f + 1] + αβ(c− α2 + 4)

where MSas(c), Mcosy(c), MKen(c), MC(α)(c) denote Sasakian space form, cosym-
plectic space form, Kenmotsu space form and C(α)-space form respectively.
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