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Abstract. In [4] B. Y. Chen studied warped product CR-submanifolds
in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained
a sharp inequality for the squared norm of the second fundamental form
for contact CR-warped products in Sasakian space form. Recently Alegre,
Blair and Carriago [1] introduced generalized Sasakian space form. The
aim of present paper is to study contact CR-warped product submanifolds
in generalized Sasakian space form.
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1 Preliminaries

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact
metric manifold if there exist on M a (1, 1)-tensor field ¢, a vector field £ ( called the
structure vector field) and a 1-form 7 such that

nE) =1, ¢*X = -X +n(X)¢ and g(¢X,0Y)=g(X,Y) —n(X)n(Y),

for any vector field X,Y on M.

In particular, in an almost contact metric manifold we also have ¢¢ = 0 and
1o ¢ = 0. Such a manifold is said to be a contact metric manifold if dn = ®, where
O(X,Y) = g(X,pY) is called the fundamental 2-form of M.

On the other hand, the almost contact metric structure of M is said to be normal
if [, 9)](X,Y) = —2dn(X,Y)E, for any X,Y, where [¢, #] denotes by the Nijenhuis
torsion of ¢, given by

[0, 0)(X.Y) = ¢?[X, Y] + [6X, 0] — ¢[¢X, Y] — ¢[X, ¢Y].

An almost contact metric manifold is called Sasakian manifold if
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(L.1) (Vx®)Y = —g(X,Y)§ +n(Y)X, Vx&=0X

for any X,Y where 57 denotes the Riemannian connection of g.

In 1985, J. A. Oubina introduced the notion of a trans-Sasakian manifold. An
almost contact metric manifold M is a trans-Sasakian manifold if there exist two
smooth functions o and 3 on M such that

(1.2) (Vx®)Y = a(g(X,Y)§ = n(Y)X) + B(g(¢X, V)€ — n(Y)$X),

for any X,Y on M and we say that trans-Sasakian structure is of type (a,3). In
particular, from (1.2), it is easy to see that the following equations hold for a trans-
Sasakian manifold

(1.3) Vx€=—agX + B(X - (X)),

(1.4) dn = ad.

In particular, if 3 = 0, M is said to be an a-Sasakian manifold. Sasakian manifolds
appear as examples of a-Sasakian manifolds, with o = 1. Another important kind of
trans-Sasakian manifold is that of cosymplectic manifolds, obtained for « = 3 = 0. If
a = 0, M is said to be a B-Kenmotsu manifold. Kenmotsu manifolds are particular
examples with g = 1.

Recently, Alegre, Blair and Carriazo [1] introduced the notion of a generalized
Sasakian space form. Given an almost contact metric manifold (M, ¢, &, 7, g) we say
that M is a generalized Sasakian space form denoted by M(f1, fa, f3) if there exist
three functions fi, fo and f3 on M such that [1].

RX,Y)Z = f{g(Y,2)X —g(X,Z2)Y} + fo{9(X, 0Z)pY
— gV, 0Z)pX +29(X,0Y)0Z} + fs{n(X)n(Z)Y
(1.5) — n(Y)n(2)X +g(X, Z)n(Y)E — g(Y, Z)n(X)EL,

for any vector fields X,Y, Z on M, where R denotes the curvature tensor of M.
This kind of a manifold appears as a natural generalization of the well known

Sasakian space form, which can be obtained as a particular case of generalized

Sasakian space forms by taking f; = 013, 2 = f3 = ‘311. Moreover, we can also

find some other examples.

Example 1.1 A Kenmotsu space form i.e a Kenmotsu manifold with constant ¢-

sectional curvature c is a generalized Sasakian space form with f; = %3, fo=fs=
c+1
a

Example 1.2 A cosymplectic space form M(c) i.e a cosymplectic manifold with con-
stant ¢-sectional curvature ¢, is a generalized Sasakian space form with f; = fo =

fs= 1

Example 1.3 An almost contact metric manifold is said to be an almost C(«)-
manifold if its Riemannian curvature tensor satisfies
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R(X,Y,Z,W) = R(X,)Y,¢0Z,¢W)+a{g(X,W)g(Y, Z)
9(X, Z)g(Y, W) + g(X, ¢Z)g(Y, pW)

for any vector fields X,Y, Z, W on M, where « is a real number. Moreover, if such

a manifold has constant ¢-sectional curvature equal to ¢, then its curvature tensor is
given by

pgev]

—~

Rxz = g 2)X - g(x,2)Y)
+ SH{9(X 902)0Y — g(Y,92)9X +29(X, 6V )62}
L Om@)Y - (Y n(2)x
(1.7) + 9(X,Z)nY )¢ —g(Y, Z)n(X)E},

., - . . . 2 _ 2
and so, it is a generalized Sasakian space form with f; = <39 fy = f3 = ¢=,

Let M be an n-dimensional submanifold immersed in a generalized Sasakian space
form M (f1, f2, f3). Let 7 and 7 be the Riemannian connection and the induced Levi-
Civita connection of M(fi, f2, f3) and M respectively. Then the Gauss and Wein-
garten formulas are given respectively by

(1.8) VyY =vxY +h(X,Y), VyxN=-AxX+ %N,

for vector fields X,Y tangent to M and a vector field N normal to M, where h
denotes the second fundamental form, vl the normal connection and Ay the shape
operator in the direction of V. The second fundamental form and the shape operator
are related by

(L9) g(h(X,Y),N) = g(ANX,Y).

Let R be the Riemannian curvature tensor of M, then the equation of Gauss is
given by [5]

R(X,Y,Z,W) = R(X,Y,Z,W)+g(h(X,W),h(Y, Z))
(1.10) — g(h(X, Z2), (Y, W),

for any vectors X,Y, Z and W tangent to M.

Let pe M and {e1,...,ep,...,eamyt1} an orthonormal basis of the tangent space
T,M(f1, f2, f3) such that eq,..., e, are tangent to M at p.

We denote by H the mean curvature vector that is

zn:h(ei,ei)-
=1

(L11) H(p) =

S|

We put
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(1.12) hi; = g(h(eisej),er), i,5 ={1,...,n}, r€{n+1,...,n+m},

and
n

||h||2 = Z g(h(ei’ej)’h(ei>ej))'

ij=1

Let M a Riemannian manifold of dimension k& and a a smooth function on M, we
recall

(i) v,, the gradient of a is defined by

<VavX> - X(a)>
for all vector field X on M.
(ii) A4, the Laplacian of a is defined by

k
Do =Y A(Ve,e5)a—ejej(a)} = —divyy,
j=1

where v/ is the Levi-Civita connection on M and {es, ..., ex} is an orthonormal
frame on M.

As a consequence, we have

k

17alP? = (ej()*.

Jj=1

There are different classes of submanifold. For submanifolds tangent to the struc-
ture vector field £. We mention the following three cases

(i) A submanifold M tangent to £ is called an invariant submanifold if ¢-preserves
any tangent space of M, that is ¢(T, M) C T,M, for every p € M.

(ii) A submanifold M tangent to ¢ is called anti-invariant submanifold if ¢ maps
a tangent space of M into the normal space, that is, ¢(T, M) C TPLM for all
p € M where T;-M denotes the normal space at p € M.

(iii) A submanifold M tangent to £ is called a contact CR-submanifold if it admits
an invariant distribution D whose orthogonal complementary distribution D is
anti-invariant, that is, T,M = D, @DIJ;, with ¢(D,) C D, and QS(DIJ;) C T;-M,
for every p € M.

2 Warped product submanifolds
Let (M, ¢1) and (Ms, g2) be the Riemannian manifolds and f a positive differentiable

function on M;. The warped product of M; and M, is the Riemannian manifold
My x§ My = (M; x Ms,g), where g = g1 + f2g2. On a warped product one has [5]
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(2.1) VoV =y U = (U f)V,

for any vector fields U tangent to M; and V tangent to Ms.

B. Y. Chen [4] established a sharp relationship between the warping function
[ of a warped product CR-submanifold M; x ¢ My of a Kaehler manifold M and
the squared norm of the second fundamental form ||h||%. In [5] Hasegawa and Mihai
proved a similar inequality for contact CR-warped product submanifold in a Sasakian
manifold.

In this section, we investigate warped products M = M; X y My which are contact
CR-submanifolds of a generalized Sasakian space form M (fi, f2, f3). Such submani-
folds are tangent to the structure vector field £&. We distinguish two cases

(a) & is tangent to M,
(b) & is tangent to Ms.
In case (a), one has two subcases :

(1) M is an anti-invariant submanifold and My is an invariant submanifold of M.

(2) M; is an invariant submanifold and My is an anti-invariant submanifold of M.
We start with the subcase (1):

Theorem 2.1 Let M(f1, f2, f3) be a (2m+1)-dimensional generalized Sasakian space
form.Then there do not exist warped product submanifolds M = My x ¢ My such that
M is an anti-invariant submanifold tangent to § and M an invariant submanifold
of M.

Proof. Assume M = M; x;y M3 is a warped product submanifold of a general-
ized Sasakian space form M(f1, f2, f3) such that M) is an anti-invariant submanifold
tangent to £ and Ms an invariant submanifold of M. From equation (2.1) we have

(2.2) VxZ=v,X = (ZInf)X,

for any vector fields Z and X tangent to M; and M5 respectively.
If in particular, we take Z = £, we get {f = 0. Using (1.1) and (2.2), we have

0=vVx{=vVxé=((Inf)X.

Thus M5 cannot exist. O
Now for the subcase(2), we have

Theorem 2.2 Let M(f1, f2, f3) be a (2m+1)-dimensional generalized Sasakian space
form and M = My x y Ma an n-dimensional warped product submanifold such that M
is a (2a+1)-dimensional invariant submanifold tangent to & and Ms a 3-dimensional
totally real submanifold of M(f1, f2, f3). Then
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(i) the squared norm of the second fundamental form of M satisfies

(2.3) 121* = 26(|[7 (I F)II* = A(ln f) + 1] + daB(f2 + 1),

where A denotes the Laplace operator on M.

(ii) the equality sign of (2.8) holds if My is a totally geodesic submanifold of
M(f1, f2, f3). Hence My is a generalized Sasakian space form of constant ¢-
sectional curvature (f1 + 3f2).

Proof. Let M = M; xy M, be a contact CR-warped product submanifold in
a generalized Sasakian space form M (fy, f2, f3) such that dimM; = 2a + 1 and
d1mM2 = ﬂ Let {XO = E,Xl,XQ, . 7XQ,XOL+1 = ¢X1, e 7X2a = ¢Xa, Zl, ey Zﬁ}
be a local orthonormal frame on M such that Xg,..., X5, are tangent to M; and
Zi,...,Z3 are tangent to M. For any unit vector field X tangent to M; and Z, W
tangent to My respectively, we have

9(h(¢X,Z),9Z) = 9(§2¢X,¢Z):9(¢§ZX,¢Z)
(2.4) = 9(VzX,2)=9(VzX,Z) = XInf.

On the other hand since Z is a vector field tangent to a totally real submanifold
My, we have

(2.5) hE Z) = oZ.

We denote by hyp (X, Z) the component of h(X, Z) in ¢D*. Therefore from (2.4)
and (2.5) we have

g(h(¢X, 2), W) = g(AewZ,¢X) = g(7 z0W, $X)
(2.6) = 9(VzW.X)=(X1nf)g(ZW).

Putting X = ¢X, W = ¢W in (2.6) we get
g(MX,2),W) = ¢X(In f)g(Z,¢W) = —¢X(In f)g(¢Z, W),

from which we obtain
MX,Z)=—¢X(ln f)pZ.

Therefore for X € TMy, Z € TM,

In(X, 2)]|? (X (In f))*9(6Z,0Z) = (6X(In f))*g(Z, Z)
(2.7) = (¢X(Inf))*.

Let v be the normal subbandle orthogonal to ¢ D. Obviously, we have

T+*M =¢Dt®v, ¢v=v.
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Let {e;}izo.... 2o and {Z;}1=1,... s are (local) orthonormal frame on M; and M, re-
spectively. On M7, we consider a ¢-adapted orthonormal frame namely {e;, ¢e;, E}iz1,....a-
We evaluate ||h(X, Z)||? for X € D and Z € D+. We know that

WNX,Z)=hypr(X,Z)+ h,(X, Z),

where hyp. (X, Z) € D+ and h, (X, Z) € v.
For X € TM,, Z € TM,, we have

2c¢ 3
(X, 2)[17 =D {llh(es, Zo)I1* + [|h(des, Z)| }‘FE:W%DL (& Z)I1?.
=1 t=1 t=1

Now from (2.7), we have
1hope (i, Zo)|I* = (¢ei(ln f))?

lhgp(ei, Zi)||* = (¢%ei(ln ))* = (es(n f))*.

Since )
Ivall* = (eia))*.
i=1
Then we get
2c
IV AP = Y (elnf)* + Z (dei(In f))?
i=1 i=1

2a¢ 3
|

DY llhgpe (s Zo)lI* + 1hspe (s Zo)IP)-

=1

(2.8)

—
~+

1=

Therefore from (2.5) and (2.8), we have

2

Q

B
Z (lhgp(es ZOI? + |lhgp (dei, Zi)| )

2a0
ZZ |h¢DJ_ X“Zt ||2 -

M HM

1hgpe (€, Z0)I1?

H
Il
—

(17 I + |6 Z: )

M=

H_
Il
_

Since ||¢Z¢||? = 1, thus we get

2a B &) B
DO Hlhgp (X0, 20| S AP+ (o2
t=0

i=0 t=0 t=0
Bl f)*+1)

(2.9)
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Next, for any unit vector field X tangent to M; and orthogonal to £ and Z tangent
to My orthogonal to £, equation (1.5) gives

R(X,¢X,Z,¢Z) fi{9(eX, Z)9(X, 0Z) — g(X, Z)g(¢ X, 9Z)}
2{9(X,02)9(0° X, 0Z) — g(6X,02Z)g(¢ X, $Z)
29(X, > X)g(¢Z, $2)} + fa{n(X)n(Z)g(¢X, ¢Z)
n(@X)n(Z)g(X,02) + g(X, Z)n(¢X)n(¢2)

= 9(¢X, Z)n(X)n(eZ)}

= 2/o{9(X,0°X)g(¢Z,0Z)}
(2.10) — 2.

+ +

On the other hand, by Codazzi equation, we have

R(X,0X,Z,¢Z) —9(Vxh(¢X.Z) — h(vx¢X, Z)

(2.11) - h(X,Vy¢xZ),¢Z)

By using equation (2.1) and structure equation of a generalized Sasakian manifold,
we get

9(Vxh(8X,2),6Z) = Xg(h(¢X,Z2),6Z) — g(h(¢X,Z),V x0Z)
= Xg(V;X.Z)~ g(h(X.Z),65 x Z)
= X(XWnf)g(Z Z)— (XInf)g(h(¢X,Z),6Z)
— g(h($X, 2),0h,(X, Z))
= (X2 [)g(Z,2)+ (X1 [)?g(Z, Z) — |Ih,(X., Z)| 1%,

where we denote by h, (X, Z) the v-component of h(X, Z). Also, we have

9(V2Vx0X,0Z) = 9(V z WX, ¢X),0Z)
= —9(X, X)9(Z,2) + (VxX)In f)g(Z, Z).

9(h(6X,VxZ),0Z) = (X In f)g(h(¢X,Z),6Z) = (X In f)*g(Z, Z).
Substituting the above relations in (2.11) we find
R(X,¢X.Z,0Z) = 2|lh(X,2)|” - (X*In f)g(Z, Z)
+ (VxX)Inf)g(Z,Z) - 29(X, X)g(Z, Z)
((0X)*1n f)g(Z, Z)
(2.12) + (Vex9X)In f)g(Z, 2).
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By Summing the equation (2.12) using equation (2.10), we get

200 (3
(2.13) DD (X, 2P = 205(f> +1) = BA( )
i=1 t=1
Combining (2.9) and (2.13), we obtain the inequality (2.3). O

Denote by k" the second fundamental form of M, in M, then we get
g0 (Z.W), X) = g(v W, X) = =X (In )g(Z, W),
or equivalently
(2.14) WA(ZW) = —g(ZW)v(n f).
If the equality sign of (2.3) holds identically then we obtain

(2.15) h(D,D) =0, h(D*+, D%)=0.

The first condition (2.15) implies that M; is totally geodesic in M, on the other
hand, one has

9(MX,9Y),02) = g(Vx9Y,0Z) = g(VxY,Z) = 0.

Thus M is totally geodesic in M (f1, f2, f3) and hence is a generalized Sasakian space
form with constant ¢-sectional curvature (f1 + 3f2). The second condition (2.15) and
(2.14) imply that M, is totally umbilical in M(f1, f2, f3). Moreover, by (2.15), it
follows that M is a minimal submanifold of M (f1, fa, f3).

Corollary 2.1 We have the following table :

Manifold My x5 My, €&€T,M;
M(f1, f2, f3) [A]1? > 28[||7(In f)|[* — A(ln f) + 1] + daB(f2 + 1)
M g4(c) AP > 26[||v7 In f[]* = A(ln f) + 1] + aB(c + 3)
M cosy(c) Al]> > 28[v In f|]* = Aln f + 1] + af(c + 4)
) )
) )

IRIP > 2B(||7 n f[|* = Aln f + 1] +26(c +5
AP > BllIvIn f]* = Aln f + 1]+ af(c —a® + 4

where M g,4(c), M cosy(c), M gon(c), Mc(a)(c) denote Sasakian space form, cosym-
plectic space form, Kenmotsu space form and C(«)-space form respectively.
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