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Abstract. A model for SU(2) gauge theory with invariant variables is pre-
sented. The strength tensor of the SU(2) gauge potentials and its Hodge
dual are obtained for a spherical symmetric model. Then, a metric tensor
associated to these tensors is constructed. The components of this metric
tensor are interpreted as gauge invariant variables for SU(2) theory. The
property of self-duality of the gauge model with respect to the metric ten-
sor is studied. The self-duality equations are written and their solution is
obtained. A comparison with the Yang-Mills field equations is also given.
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1 Introduction

Usually, the gauge theories are formulated in terms of non-gauge invariant variables,
like potentials Aa

µ (x) [2]. But, the physical observables are gauge invariant, and this
rises many difficulties both at classical and quantum level. Some models of gauge
theories on Euclidean and Minkowski 3-dimensional spaces have been developed [5,6]
in terms of gauge invariant variables. The fundamental quantity used in these theories
is the gauge invariant metric tensor gij = − 1

2Tr (∗Fi
∗Fj), where ∗Fi = 1

2εijkF jk is
the dual of the gauge field tensor F ij (i, j = 1, 2, 3). It has been shown that this metric
tensor satisfies the Einstein equations with the right-hand side of a simple form [5].
This theory was generalized to the case of a curved space-time [11]. Namely, a SU(2)
gauge theory on the 3-dimensional sphere S3 has been formulated. The manifold S3

is a space with constant curvature, and the generalization of the theory to this case
is not trivial. The corresponding model has the advantage that the dimensions of the
SU(2) group and of the sphere S3 are the same.

In this paper, we develope a model of SU(2) theory in terms of local gauge in-
variant variables defined on a 4-dimensional space-time. In Section 2 we determine
the components (gauge potentials) of the 2-form F and its dual ∗F and give the
equations of structure for the gauge group SU(2). We define a metric tensor gµν ,
µ, ν = 0, 1, 2, 3, in the Section 3 starting with the components of the curvature 2-form
F and its Hodge dual ∗F . The components gµν are interpreted as new local gauge
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variables and they are calculated for a particular gauge field defined over a Minkowski
space-time. In order to assure the property of self-duality of the 2-form F a conve-
nient scaling factor ∆ is introduced into the expression of the metric gµν . In Section
4 we obtain the self-duality equations and determine the independent gauge variables
gµν and Wµνρσ which are exactly the freedom degrees that are left after eliminating
the gauge degrees. The Section 5 is devoted to the study of compatibility between
self-duality and Yang-Mills equations. In fact, we will write the Einstein-Yang-Mills
equations and analyze only the Yang-Mills sector. The Einstein equations can not be
obtained of course from self-duality. They should be obtained if we would consider a
gauge theory having P × SU(2) as symmetry group, where P is the Poincaré group.
More generally, a gauge theory of N-extended supersymmetry can be developed by
imposing the self-duality condition.

2 Gauge potentials

We develop a SU(2) Yang-Mills gauge theory over a Minkowski space-time M4 en-
dowed with the spherically symmetric metric:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,(2.1)

where the coordinates are chosen such that (xµ) = (t, r, θ, ϕ), µ = 0, 1, 2, 3. The
components of the metric tensor are:

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ,(2.2)

and its determinant is

g = det (gµν) = −r4 sin2 θ,
√−g = r2 sin θ.(2.3)

Let P (M4, SU(2), π) be the principal fibre bundle with M4 as base manifold and
SU(2) as structural group. The mapping π : P −→ M4 is the natural projection of P
onto M4. The Lie algebra of SU(2) group is characterized by the following equations
of structure:

[Ta, Tb] = εabcTc, a, b, c = 1, 2, 3,(2.4)

where εabc is the Levi-Civita symbol of rank 3 with ε123 = +1. The gauge potentials
Aµ = Aa

µTa, with values in the Lie algebra of the group SU(2), determine a connection
on the principal fibre bundle P (M4, SU(2), π) [8]. The Lie algebra-valued 1-form of
connection on P is A = Aa

µTadxµ. Its 2-form of curvature F is defined by the formula:

F = dA +
1
2

[A,A] .(2.5)

If we write F in the form

F =
1
2
Fµνdxµ ∧ dxν =

1
2
F a

µνTadxµ ∧ dxν ,(2.6)

then we obtain the following expression for its components F a
µν (strength tensor of

the gauge fields):
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F a
µν = ∂µAν − ∂νAµ + εabcA

b
µAc

ν .(2.7)

The spherically symmetric SU(2) gauge potentials Aa
µ will be parametrized as

(Witten ansatz) [7]:

A = −W sin θdϕT1 + WdθT2 + (Udt + cos θdϕ)T3,(2.8)

where U and W are functions depending only on the variable r. Using (2.8), we obtain
the following non-null components of the strength tensor:

F 1
02 = −UW, F 1

13 = −W ′ sin θ,(2.9a)

F 2
03 = −UW sin θ, F 2

12 = W ′,(2.9b)

F 3
01 = −U ′, F 3

23 =
(
W 2 − 1

)
sin θ(2.9c)

with U ′ = dU
dr and W ′ = dW

dr .
Now, we introduce the dual 2-form ∗F (the symbol ”∗” denoting the Hodge dual

map) whose components are defined by

∗F a
µν =

1
2
√−gεµνρσF aρσ,(2.10)

where εµνρσ is the Levi-Civita symbol of rank 4 with ε0123 = +1, and F aρσ =
gρλgστF a

λτ . The non-null components of ∗F are:

∗F 1
02 = W ′, ∗F 1

13 = −UW sin θ,(2.11a)

∗F 2
03 = W ′ sin θ, ∗F 2

12 = UW,(2.11b)

∗F 3
01 =

W 2 − 1
r2

, F 3
23 = r2U ′ sin θ.(2.11c)

In the next section we will determine a metric tensor gµν starting with the components
F a

µν and ∗F a
µν . The components of this tensor will be interpreted as local gauge-

invariant variables for the SU(2) Yang-Mills gauge theory.

3 Local gauge variables

The gauge potentials Aa
µ are not invariant under the gauge transformations. But, we

can introduce new local gauge-invariant variables gµν , given by [4, 10]:

gµν =
1

3∆1/3
εabcF

a
µα

∗F bαβF c
βν ,(3.1)

and
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gµν =
2

3∆2/3
εabc

∗F aµαF b
αβ

∗F cβν .(3.2)

Here, ∆ is a scale factor which will be chosen of a convenient form in what follows.
The contravariant components of the dual 2-form ∗F are defined as usually

∗F aµν = gµρgνσ∗F a
ρσ.(3.3)

The non-null components in our model are:

∗F 102 = −W ′

r2
, ∗F 113 = − UW

r2 sin θ
,(3.4a)

∗F 203 = − W ′

r2 sin θ
, ∗F 212 =

UW

r2
,(3.4b)

∗F 301 =
1−W 2

r2
, ∗F 323 =

U ′

r2 sin θ
,(3.4c)

Introducing the expressions (2.9) and (3.4) into the definition (3.1), we obtain the
following non-null components of gµν :

g00 =
2

r2∆1/3
W 2U2U ′,(3.5a)

g11 =
2

r2∆1/3
W ′2U ′,(3.5b)

g22 =
2

r2∆1/3
(W 2 − 1)UWW ′,(3.5c)

g33 =
2

r2∆1/3
(W 2 − 1)UWW ′ sin2 θ.(3.5c)

Having these quantities determined, we introduce a new metric manifold, whose
line element written in the spherically variables (t, r, θ, ϕ) is

dσ2 = g00dt2 + g11dr2 + g22dθ2 + g33dϕ2,(3.6)

or

dσ2 =
2W 2U2U ′

r2

[
dt2 +

W ′2

W 2U2
dr2 +

W ′ (W 2 − 1
)

WUU ′
(
dθ2 + sin2 θdϕ2

)
]

(3.7)

If we chose now the scale factor ∆ in the form

∆1/3 =
2W 2U2U ′

r2
,(3.8)

then (3.7) reduces to (2.1) if we impose the following supplementary conditions:
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W ′ =
dW

dr
= −iUW, U ′ =

dU

dr
= i

W 2 − 1
r2

.(3.9)

But, these conditions are nothing else than the Yang-Mills field equations for the
potentials Aa

µ (x) [13]. In fact, the Yang-Mills equations are differential equations of
second order; in the case of ansatz (2.8), they have the following form:

d

dr

(
dW

dr2

)
= −WU2 +

W
(
W 2 − 1

)

r2
,(3.10)

d

dr

(
r2 dU

dr

)
= 2UW 2.(3.11)

It is easy to verify that the equations (3.10) and (3.11) result from the first-order
equations given in (3.9).

Therefore, we conclude that the scale factor ∆ chosen in (3.8), together with the
field equations (3.9), reduce the new metric gµν to that of the Minkowski space-time
M4.

4 Self-duality equations

A self-dual (or anti-self-dual) form T over a differential manifold M can be constructed
only if M is of even dimension and the following equation is satisfied [3]:

∗ ∗ T = λT ; rankT =
1
2

dim M.(4.1)

But, the dual map (or the Hodge-duality) has the property:

(4.2) ∗ ∗ T = (−1)k(n−k)T (for Euclidean metric),
∗ ∗ T = −(−1)k(n−k)T (for Minkowski metric),

where k is the rank of T and n is the dimension of M . This means that the quantity
λ in (4.1) is constrained to very special values:

±T = ∗ ∗ T = ∗(λT ) = λ2T ;

that is

(4.3)
λ = ±1, if ∗ ∗T = T , (Euclidean metric),
λ = ±i, if ∗ ∗T = −T, (Minkowski metric).

In our model, the rank of F is k = 2 and the dimension of the space-time M4 is
n = 4. Then, the self-duality condition is [3]:

∗F = iF(4.4)

Now, if we introduce the components (2.9) and (2.11) in (4.4), we obtain the self-
duality equations that coincide with the supplementary conditions (3.9). Therefore,
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the SU(2) gauge theory with the Witten ansatz (2.8) is a self-dual with respect to
the Minkowski metric (2.1). It is also self-dual with respect to the new metric gµν

defined by the equations (3.1) and (3.2). Indeed, the condition of self-duality with
respect to the metric gµν is [4]:

1
2

√
−gεµνρσF

aρσ
= iF a

µν ,(4.5)

where g = det
(
gµν

)
and F

aρσ
= gρλgστF a

λτ . The metric tensor gµν is symmetric and
has 10 independent component. We have

g ≡ det
(
gµν

)
=

1
4
∆2/3.(4.6)

The ∆ scalings in (3.1) and (3.2) have been chosen so that gµν will be a covariant
tensor. Actually, the distinction between self-dual and anti-self-dual properties here
is just what sign we take in

√−g = ±i∆1/3.
We define now, the tensor

Wµνρσ = F a
µνF a

ρσ −
1

24
√−g

εαβγδF a
αβF a

γδ

(
gµρgνσ − gµσgνρ +

√
−gεµνρσ

)
.(4.7)

It is traceless and gµν-self-dual tensor and has only five independent components.
Therefore, the 10 fields of the metric gµν together with the 5 independent fields
corresponding to Wµνρσ form 15 independent variables, which is exactly the number
of degrees of freedom that are left after eliminating the gauge degrees.

5 Einstein-Yang-Mills equations

We will impose the condition that the metric gµν determines a spherically symmetric
line element of the form [7,10]:

ds2 = Ndt2 − 1
N

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,(5.1)

where N is a function of the variable r only. For N = 1− 2m
r we obtain the Schwarz-

schild metric, while for N = 1 − 2m
r + Q2+1

r2 we have the Reissner-Nordström (RS)
metric. In this case, the supplementary conditions (3.9) have to be changed by:

NW ′ = −iUW, U ′ = i
W 2 − 1

r2
.(5.2)

In addition, the scaling factor ∆ is supposed to be defined as:

∆1/3 =
2W 2U2U ′

r2N
.(5.3)

It is easy to verify that the conditions (5.2) express the property of self duality for
the strength tensor F a

µν with respect to the new metric considered in (5.1).
The integral action of our model is [7]:
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SEY M =
∫ (

− 1
16πG

R− 1
4Kα2

s

TrFµνFµν

) √
−g d4x,(5.4)

where αs is the SU(2) gauge coupling (strong) constant, R is the scalar curvature
associated to gµν and Tr(TaTb) = Kδab. For G = SU(2) we choose Ta = 1

2τa (τa

being the Pauli matrices) and then K = 1
2 . The gravitational constant G is the only

dimensionful quantity in the action (the units ~ = c = 1 are understood).
Taking δSEY M = 0 with respect to Aa

µ and gµν fields, we obtain the following
general form of the EYM equations [9]:

1√−g
∂µ(

√
−gF aµν) + fa

bcA
b
µF cµν = 0, (Y ang −Mills equations),(5.5)

where fa
bc = −fa

cb are the structure constants of the gauge group, and respectively

Rµν − 1
2
gµν R = 8πGTµν , (Einstein equations),(5.6)

with the gauge-invariant stress-energy tensor

Tµν =
1

Kα2
s

Tr

(
−FµρFν

ρ +
1
4
FρλF ρλgµν

)
,(5.7)

For the SU(2) gauge group the structure constants fa
bc are given by the Levi-Civita

symbol εabc of rank 3, with ε123 = +1. Then, introducing the metric components gµν

in (5.5) and (5.6), we obtain the Einstein-Yang-Mills (EYM) equations of our model:

(NW ′)′ =
W

(
W 2 − 1

)

r2
− U2W

N
,(5.8)

(
r2U ′)′ =

2UW 2

N
,(5.9)

W ′2 +
W 2U2

rN2
= 0,(5.10)

1
2

(N ′r + N − 1) +
r2U ′2

2
+

U2W 2

N
+ NW ′2 +

(
W 2 − 1

)2

2r2
= 0,(5.11)

where we used K = 1
2 and 4πG

α2
s

= 1 units. These equations admit the particular
solution [6,8]:

U = 0, W = ±1, N = 1− 2m

r
,(5.12)

which describes the Schwarzschild metric and a pure gauge Yang-Mills field. Therefore,
the SU(2) gauge model (2.8) has the property of self-duality on a Schwarzschild space-
time.
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The EYM field equations (5.8)-(5.11) admit also the solution with a non-trivial
gauge field describing colored black holes [1]:

U = U0 +
Q

r
, W = 0, N = 1− 2m

r
+

Q2 + 1
r2

.(5.13)

where U0 is a constant. It corresponds to the RN metric with the electric charge Q and
the unit magnetic charge. However, it is not a solution of the self-duality equations
(5.2), so that the model (2.8) can not be self-dual on a RN space-time.

Many others solutions (particle-like, sphaleron type, with Λ-term, stringy type,
axially symmetric etc.) for the SU(2) gauge theory are given by Volkov and Gal’tsov
[7]. Local solutions of the static, spherically symmetric, EYM equations with SU(2)
gauge group are studied by Zotov [14] on the basis of dynamical system methods. In
this case it is proven the existence of solutions with oscillating metric as well as the
existence of local solutions for all known formal series expansions. Exact solutions
for SU(2) gauge theory with axial symmetry are given in Ref. [10]. However, these
solutions are not self-dual.

Let us compare now the self-duality equations (5.2) with the first two EYM equa-
tions (5.8) and (5.9). If we take the derivatives with respect to r of the equations
(5.2), then we obtain:

(5.14)
(NW ′)′ = −i (U ′W + UW ′) ,(
r2U ′)′ = 2iWW ′.

Now, if we replace iW ′ and iU ′ deduced from (5.2) into the right-hand sides of (5.14),
then we obtain the EYM equations (5.8) and (5.9). Of course, the other two EYM
equations (5.10) and (5.11) can not be obtained from the self-duality equations of the
gauge fields. This may be possible if we develope a gauge theory with the gauge group
P × SU(2), where P is the Poincaré group [10].
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