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Abstract. For an orientable compact and connected hypersurface in the
Euclidean space Rn+1 with scalar curvature S, mean curvature α and
sectional curvatures bounded below by a constant δ > 0, it is shown that
the inequality

S ≤ n(n− 1)α2 − (n− 1)δ−1 ‖∇α‖2

implies that the hypersurface is a sphere, where ∇α is the gradient of α.
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1 Introduction

The class of positively curved compact hypersurfaces in the Euclidean space Rn+1 is
quite large and therefore it is an interesting question in Geometry to obtain conditions
which characterize the spheres in this class. For any hypersurface in Rn+1 its scalar
curvature S is given by S = n2α2−‖A‖2, where ‖A‖ is the length of the shape operator
A and α is the mean curvature. In light of the Schwarz inequality ‖A‖2 ≥ nα2, the
scalar curvature S satisfies S ≤ n(n− 1)α2 for any hypersurface of Rn+1, and in case
of a hypersphere the equality holds. It is therefore suggestive that in the inequality
S ≤ n(n − 1)α2 the right hand side be decreased by a factor so that it forces the
hypersurface to be a sphere. In this paper for a compact and connected hypersurface
with sectional curvatures bounded below by a constant δ > 0, we show that this factor
is (n− 1)δ−1‖∇α‖2. Indeed we prove the following:

Theorem 1.1. Let M be an orientable compact and connected hypersurface of the
Euclidean space Rn+1 whose sectional curvatures are bounded below by a constant
δ > 0 If the scalar curvature S and the mean curvature α of M satisfy

S ≤ n(n− 1)α2 − (n− 1)δ−1‖∇α‖2

then α is a constant and M = Sn(α2).

∗Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 44-49.
c© Balkan Society of Geometers, Geometry Balkan Press 2006.



A note on Euclidean spheres 45

2 Preliminaries

Let M be an orientable hypersurface of the Euclidean space Rn+1. We denote the
induced metric on M by g. Let ∇ be the Euclidean connection and ∇ be the Rie-
mannian connection on M with respect to the induced metric g. Let N be the unit
normal vector field and A be the shape operator. Then the Gauss and Weingarten
formulas for the hypersurface are

∇XY = ∇XY + g(AX, Y )N, ∇XN = −AX, X, Y ∈ X(M)(2.1)

where X(M) is the Lie algebra of smooth vector fields on M. We also have the following
Codazzi equation

(∇A)(X, Y ) = (∇A)(Y, X), X, Y ∈ X(M)(2.2)

where (∇A)(X, Y ) = ∇XAY −A∇XY . The mean curvature α of the hypersurface is
given by nα =

∑
i g(Aei, ei), where {e1, ..., en} is a local orthonormal frame on M .

The square of the length of the shape operator A is given by

‖A‖2 =
∑

ij

g(Aei, ej)2 = tr.A2

The scalar curvature S of the hypersurface is given by

S = n2α2 − ‖A‖2(2.3)

3 Some Lemmas

Let M be a hypersurface of Rn+1. We define a symmetric operator B : X(M) → X(M)
by B = A− αI. Let ∇α be the gradient of the mean curvature function α.

Lemma 3.1. The operator B satisfies

(i) trB = 0,

(ii) g((∇B)(X,Y ), Z) = g(Y, (∇B)(X, Z))

(iii) (∇B)(X, Y ) = (∇B)(Y, X) + R0(X, Y )∇α,

where R0(X, Y )Z = g(Y, Z)X − g(X, Z)Y , X,Y, Z ∈ χ(M).

The proof is straightforward and follows from the definition of B and the equation
(2.2).

Lemma 3.2. Let {e1, ..., en} be a local orthonormal frame on the hypersurface M .
Then

∑

i

(∇B)(ei, ei) = (n− 1)∇α
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Proof. Since tr.B = 0, choosing a pointwise constant local orthonormal frame, for
X ∈ X(M) we have

0 =
∑

i

Xg(Bei, ei) =
∑

i

g((∇B)(X, ei), ei)

=
∑

i

[g((∇B)(ei, X) + R0(X, ei)∇α, ei)]

= −(n− 1)g(∇α,X) +
∑

i

g((∇B)(ei, ei), X)

and the Lemma is proved. 2

We define the second covariant derivative (∇2B)(X,Y, Z) as

(∇2B)(X, Y, Z) = ∇X(∇B)(Y,Z)−B(∇XY, Z)−B(Y,∇XZ)

Then using Lemma 3.1, we immediately obtain the following

Lemma 3.3. (∇2B)(X, Y, Z) = (∇2B)(X, Z, Y )+Hα(X, Z)Y−Hα(X,Y )Z, X, Y, Z ∈
χ(M), where Hα(X, Y ) = g(∇X(∇α), Y ) is the Hessian of α.

Lemma 3.4. Let {e1, ..., en} be a local orthonormal frame that diagonalizes B. If
Bei = λiei, then

∑

i<j

(λi − λj)
2 = n‖A‖2 − n2α2

Proof. We have
∑

i λi = 0 by Lemma 3.1, and consequently we get

∑

ij

(λi − λj)
2 =

∑

ij

λ2
i +

∑

ij

λ2
j − 2

∑

ij

λiλj

= 2n‖B‖2 − 2
∑

i


∑

j

λj


λi

= 2n‖B‖2

Since
∑

ij (λi − λj)
2 = 2

∑
i<j (λi − λj)

2, we get
∑

i<j (λi − λj)
2 = n‖B‖2 =

n‖A‖2 − n2α2. 2

Lemma 3.5. Let M be an orientable compact hypersurface of the Euclidean space
Rn+1. Then

∫

M

(∑

i

g(∇ei(∇α), Bei)

)
dV = −(n− 1)

∫

M

‖∇α‖2dV

where {e1, ..., en} is a local orthonormal frame on M .
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Proof. Choosing a point wise covariant constant local orthonormal frame {e1, ..., en}
on M , we compute

div (B(∇α)) =
∑

i

eig(∇α, Bei) =
∑

i

g(∇ei(∇α), Bei) +
∑

i

g(∇α, (∇B)(ei, ei))

=
∑

i

g(∇ei(∇α), Bei) + (n− 1)‖∇α‖2

Integrating this equation we get the Lemma. 2

4 Proof of the Theorem 1.1

Let M be an orientable compact and connected hypersurface of the Euclidean space
Rn+1. Define a function f : M → R by f = 1

2‖B‖2. Then by a straightforward
computation we get the Laplacian ∆f of the smooth function f as

∆f = ‖∇B‖2 +
∑

ij

g
(
(∇2B)(ej , ej , ei), Bei

)
(4.1)

where {e1, ..., en} is local orthonormal frame on M .
Using Lemma 3.3 and (i) in Lemma 3.1, we arrive at

g(
(∇2B

)
(ej , ej , ei), Bei) = g(

(∇2B
)
(ej , ei, ej), Bei)

+ Hα(ej , ei)g(ej , Bei)(4.2)

Now using the Ricci identity
(∇2B

)
(X,Y, Z) =

(∇2B
)
(Y, X,Z) + R(X, Y )BZ −BR(X, Y )Z, X, Y, Z ∈ χ(M)

where R is the curvature tensor field of M , in equation (4.2) we get

g(
(∇2B

)
(ej , ej , ei), Bei) = g(

(∇2B
)
(ei, ej , ej), Bei) + g(R(ej , ei)Bej , Bei)

− g(R(ej , ei)ej , B
2ei) + Hα(ej , ei)g(ej , Bei).

Thus in light of this equation the equation (4.1) takes the form

∆f = ‖∇B‖2 +
∑

ij

g(
(∇2B

)
(ei, ej , ej), Bei) +

∑

i

Hα(ei, Bei)

+
∑

ij

[
g(R(ej , ei)Bej , Bei)− g(R(ej , ei)ej , B

2ei)
]

(4.3)

Using Lemma 3.2, we get
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∑

i

(∇2B
)
(ei, ej , ej) = (n− 1)∇ei

(∇α).(4.4)

Also we have

Hα(ei, Bei) = g(∇ei(∇α), Bei)(4.5)

We choose a local orthonormal frame {e1, ..., en} that diagonalizes B with Bei =
λiei to compute

∑

ij

[
g(R(ej , ei)Bej , Bei)− g(R(ej , ei)ej , B

2ei)
]

= −
∑

ij

λiλjKij +
∑

ij

λ2
i Kij

=
1
2


2

∑

ij

λ2
i Kij


−

∑

ij

λiλjKij

=
1
2


∑

ij

λ2
i Kij +

∑

ij

λ2
jKij − 2

∑

ij

λiλjKij




=
1
2

∑

ij

(λi − λj)
2
Kij =

∑

i<j

(λi − λj)
2
Kij

where Kij = g(R(ei, ej)ej , ei) is the sectional curvature of the plane section spanned
by {ei, ej}. Using this last equation together with (4.4) and (4.5) in (4.3), we arrive
at

∆f = ‖∇B‖2 + n
∑

i

g(∇ei(∇α), Bei) +
∑

i<j

(λi − λj)
2
Kij

Integrating this equation and using Kij > δ, together with Lemmas 3.4 and 3.5,
we arrive at

∫

M

{‖∇B‖2 − n(n− 1)‖∇α‖2 + δ
(
n‖A‖2 − n2α2

)}
dV ≤ 0(4.6)

The condition S ≤ n(n−1)α2− (n−1)δ−1‖∇α‖2 in the statement of the theorem
together with equation (2.3) yields

n2α2 − ‖A‖2 ≤ n(n− 1)α2 − (n− 1)δ−1‖∇α‖2

that is,
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nα2 − λ|A‖2 ≤ −(n− 1)δ−1‖∇α‖2

which takes the form

−n(n− 1)‖∇α‖2 + δ
(
n‖A‖2 − n2α2

) ≥ 0.

Consequently, from the integral inequality (4.6) we conclude that ∇B = 0, and
since M is irreducible (being of positive curvature), we must have B = λI for some
λ. However, tr.B = 0 gives λ = 0 and consequently that B = 0, that is A = αI.
Hence by equation (2.2) we get that α is a constant and M is a totally umbilical
hypersurface and it is therefore the sphere Sn(α2) of constant curvature α2. 2

Finally we note that exactly on the similar lines the following theorem can be
proved for hypersurfaces of a real space form M(c) (A Riemannian manifold of con-
stant sectional curvature)

Theorem 4.1. Let M be an n-dimensional compact hypersurface of a real space form
M(c) with sectional curvatures bounded below by a constant δ > 0. If the scalar
curvature S and the mean curvature α of M satisfy

S ≤ n(n− 1)(c + α2)− (n− 1)δ−1‖∇α‖2

then M is totally umbilical.
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