A note on Euclidean spheres
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Abstract. For an orientable compact and connected hypersurface in the
Euclidean space R™*! with scalar curvature S, mean curvature « and
sectional curvatures bounded below by a constant & > 0, it is shown that
the inequality

S<nn—10—(m—-16"|Val?
implies that the hypersurface is a sphere, where Va is the gradient of .

Mathematics Subject Classification: 53C42, 53C45.
Key words: hypersurfaces, mean curvature, scalar curvature, gradient, shape oper-
ator.

1 Introduction

The class of positively curved compact hypersurfaces in the Euclidean space R"*! is
quite large and therefore it is an interesting question in Geometry to obtain conditions
which characterize the spheres in this class. For any hypersurface in R"*! its scalar
curvature S is given by S = n?a?—||A||?, where ||A| is the length of the shape operator
A and « is the mean curvature. In light of the Schwarz inequality [|A]|?> > na?, the
scalar curvature S satisfies S < n(n — 1)a? for any hypersurface of R"*!, and in case
of a hypersphere the equality holds. It is therefore suggestive that in the inequality
S < n(n — 1)a? the right hand side be decreased by a factor so that it forces the
hypersurface to be a sphere. In this paper for a compact and connected hypersurface
with sectional curvatures bounded below by a constant § > 0, we show that this factor
is (n — 1)d71||Val|?. Indeed we prove the following:

Theorem 1.1. Let M be an orientable compact and connected hypersurface of the
Euclidean space R"' whose sectional curvatures are bounded below by a constant
6 > 0 If the scalar curvature S and the mean curvature o of M satisfy

S <n(n—1a?—(n—1)6"Val?

then « is a constant and M = S™(a?).

Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 44-49.
© Balkan Society of Geometers, Geometry Balkan Press 2006.



A note on Euclidean spheres 45

2 Preliminaries

Let M be an orientable hypersurface of the Euclidean space R"t!. We denote the
induced metric on M by g. Let V be the Euclidean connection and V be the Rie-
mannian connection on M with respect to the induced metric g. Let N be the unit
normal vector field and A be the shape operator. Then the Gauss and Weingarten
formulas for the hypersurface are

(2.1) VxY =VxY +g(AX,Y)N, VxN=-AX, X,Y €X(M)

where X(M) is the Lie algebra of smooth vector fields on M. We also have the following
Codazzi equation

(2.2) (VA(X,Y)=(VA)(Y,X), X, Y eX(M)

where (VA)(X,Y) = VxAY — AVxY. The mean curvature « of the hypersurface is
given by na = )", g(Ae;, e;), where {e1,...,e,} is a local orthonormal frame on M.
The square of the length of the shape operator A is given by

1412 = 3" g(Aes, e)? = tr.47
i

The scalar curvature S of the hypersurface is given by
(2.3) S =n?a® — || A

3 Some Lemmas

Let M be a hypersurface of R"™!. We define a symmetric operator B : X(M) — X(M)
by B =A — al. Let Va be the gradient of the mean curvature function a.

Lemma 3.1. The operator B satisfies
(i) trB =0,
(i) g(VB)(X,Y),Z) = g(Y,(VB)(X, Z))
(iii) (VB)(X,Y) = (VB)(Y,X) + Ro(X,Y)Va,
where Ro(X,Y)Z = g(Y, 2)X — g(X,Z2)Y, X,Y,Z € x(M).

The proof is straightforward and follows from the definition of B and the equation
(2.2).

Lemma 3.2. Let {ej1,...,en} be a local orthonormal frame on the hypersurface M.
Then

S (VB)(eives) = (n—1)Va

2
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Proof. Since tr.B = 0, choosing a pointwise constant local orthonormal frame, for
X € X(M) we have

0 = ZXQ(B%Q):Zg((VB)(X»ei)aei)

> 19((VB)(ei, X) + Ro(X, e;)Va, ;)]

i

= —(n=1g(Va, X) + 3" g(VB)(es, 1), X)

and the Lemma is proved. O

We define the second covariant derivative (V2B)(X,Y, Z) as
(V?’B)(X,Y,Z) =Vx(VB)(Y,Z) - B(VxY,Z) — B(Y,VxZ)
Then using Lemma 3.1, we immediately obtain the following

Lemma 3.3. (V2B)(X,Y,Z) = (V2B)(X, Z,Y)+Ha (X, Z2)Y —Ho(X,Y)Z, X,Y, Z €
X(M), where Ho(X,Y) = g(Vx(Va),Y) is the Hessian of .

Lemma 3.4. Let {e1,...,en} be a local orthonormal frame that diagonalizes B. If
Be; = \;e;, then

> = )" = nl|A|? - n?a?

i<j
Proof. We have ). \; = 0 by Lemma 3.1, and consequently we get
pOILURPULEED DY R BF LD PPV
ij ij ij ij
= 2|BIP-2> (D N ]|\
i J
= 2n|B|?

. 2 2 2
Since Zij (Ai—Aj)" = 2Zi<j (Ai = Aj)7, we get Zi<j (A —Aj)" = n||B|* =
n||Al|? — n2a?. O

Lemma 3.5. Let M be an orientable compact hypersurface of the Euclidean space
R™ 1. Then

«Q €i =—(n— ol
/M (;g(vﬁ(v ), B )) dv = —( 1)/M [Va?dV

where {e1,...,en} is a local orthonormal frame on M.
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Proof. Choosing a point wise covariant constant local orthonormal frame {ey, ..., e, }
on M, we compute

div (B(Va)) = Z e;g(Va, Be;) = Zg(vei (Va), Be;) + Zg(Va, (VB)(ej,e:))

K2

= > _9(Ve(Va), Bes) + (n = 1) Vol

Integrating this equation we get the Lemma. O

4 Proof of the Theorem 1.1

Let M be an orientable compact and connected hypersurface of the Euclidean space
R" 1!, Define a function f : M — R by f = %HBH2 Then by a straightforward
computation we get the Laplacian Af of the smooth function f as

(4.1) Af=|VBI>+> g ((V’B)(ej.ej,€:), Be;)

ij

where {ey, ..., e, } is local orthonormal frame on M.
Using Lemma 3.3 and (i) in Lemma 3.1, we arrive at

g((V2B) (ej,ej,€:),Be;) = g((VQB) (ej,€:,€5), Be;)
(42) + Ha(ej7ei)g(ej7Bei)
Now using the Ricci identity
(V?B) (X,Y,Z) = (V?B) (Y,X,Z) + R(X,Y)BZ — BR(X,Y)Z, X,Y, Z € x(M)

where R is the curvature tensor field of M, in equation (4.2) we get

9((V?B) (ej,ej,€;),Be;) = g((V®B) (e, €5,¢5), Be;) + g(R(ej, e;)Bej, Be;)
— g(R(ej,ei)ej,Bzei)+Ha(ej,ei)g(ej,Bei).

Thus in light of this equation the equation (4.1) takes the form

Af = |IVB|*+ Zg((VQB) (eire5,€5), Beg) + ZHa(ei7Bei)
(4.3) + Z [g(R(ej, ei)Bej, Be;) — g(R(ej, e;)ej, BQei)]

Using Lemma 3.2, we get
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(4.4) Z (V®B) (e;,€5,¢5) = (n — 1)V, (Va).

K2

Also we have

(4.5) Hq(ei, Bei) = g(Ve,(Va), Be;)

We choose a local orthonormal frame {ey, ..., e, } that diagonalizes B with Be; =
Aie; to compute

> [9(R(ej, e:)Bej, Be;) — g(R(e;, ei)e;, B2e;)]

ij
= =) MNNKG+ Y MK
©j ©j

N |

= S [2) NK;| =) NNE;
ij i

1
= 5 Z )\?Kij + Z )\?Kij -2 Z /\i/\jKij
| ij ij ij
1 2 2
=35 D= N Ky = (= A) Ky
ij i<j
where K;; = g(R(e;, ej)e;, e;) is the sectional curvature of the plane section spanned

by {ei,e;}. Using this last equation together with (4.4) and (4.5) in (4.3), we arrive
at

Af=|VBIP+nY g(Ve,(Va),Be:) + > (A — \)* Kij

i<j

Integrating this equation and using K;; > ¢, together with Lemmas 3.4 and 3.5,
we arrive at

(4.6) /M {IVB|]* = n(n — 1)[|[Va|?® + 6 (n||A|]> = n?a?)} dV <0

The condition S < n(n—1)a? — (n—1)6!(|Va||? in the statement of the theorem
together with equation (2.3) yields

n?a? — ||A||2 <n(n-— l)a2 —(n— 1)5*1||V01||2

that is,
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na? — MA|? < —(n—1)6 Y| Val/?

which takes the form

—n(n —1)||Val? + 6 (n||A]* — n?a®) > 0.

Consequently, from the integral inequality (4.6) we conclude that VB = 0, and
since M is irreducible (being of positive curvature), we must have B = AI for some
A. However, tr.B = 0 gives A\ = 0 and consequently that B = 0, that is A = al.
Hence by equation (2.2) we get that « is a constant and M is a totally umbilical
hypersurface and it is therefore the sphere S™(a?) of constant curvature o?. O

Finally we note that exactly on the similar lines the following theorem can be
proved for hypersurfaces of a real space form M (c) (A Riemannian manifold of con-
stant sectional curvature)

Theorem 4.1. Let M be an n-dimensional compact hypersurface of a real space form
M (c) with sectional curvatures bounded below by a constant 6 > 0. If the scalar
curvature S and the mean curvature o of M satisfy

S <n(n—1)(c+a?) — (n—1)671|Val?

then M is totally umbilical.
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