Some inequalities satisfied by periodical
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Abstract. The objective of this paper is to find some inequalities sat-
isfied by periodical solutions of multi-time Hamilton systems, when the
Hamiltonian is convex. To our knowledge, this subject of first-order field
theory is still open.

Section 1 recall well-known facts regarding the equivalence between Euler-
Lagrange equations and Hamilton equations and analyses the action that
produces multi-time Hamilton equations, emphasizing the role of the
polysymplectic structure. Section 2 extends two inequalities of [21] from
a cube to parallelipiped and proves two inequalityes concerning multiple
periodical solutions of multi-time Hamilton equations.
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1 Multi-time Hamilton equations and polysymplec-
tic structure

The paper studies the solutions with multiple periodicity of the Hamilton multi-time
equations.

A function u = (ul, e u”) with many variables (tl, e t”), is multiple periodical
with the period T = (Tl7 ...,Tp) € RP if

u(th + kT P+ k,TP) = u (., ),

where k1, ..., k, are integers. We consider the function u defined on the parallelepiped
Ty = [O,Tl] X [O,T2] X ... x [0,TP] C RP, with values in R". We will denote by
T = (Tl7 e Tp) € RP. The existence of the weak gradient of the function u assures
the multiple periodicity of the function u. We use the Hilbert space H1 attached to

the Sobolev space W%’2 of the functions u € L? (Tp, R™) which have a weak gradient

ou
e € L*(T,, R™). The Wirtinger inequality from this paper has a specific form be-
cause of the multidimensional character of the definition domain Ty. The inequalities
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from theorems 3 and 4 constitute generalizations of some theorems of [5], from the
particular case p = 1 to an arbitrary p.

The Euclidean structure on R™ is based on the scalar product (u,v) = §;;u’v’, and
the norm |u| = y/d;;u’u’. The Hilbert space H. is endowed with the scalar product

; : agOut - OvI
)= [ (30 007 0+ 8560 5 0 52 1)) i
and the corresponding norm /(u,u) = ||u]| .

1.1 Multi-time Hamilton equations

We consider the multi-time variable t = (tl, ...,tp) € T, C RP, the functions 2° :

RP - R, (tl7 ...7tp) — (tl, ...,tp), 1 =1,...,n , and the partial velocities z}, = 829;
,a=1..p.
Definition 1 The PDEs

0 oL _OL . _,
ot* ozi,  oxi’ T

(second order PDEs system on the n-dimensional space) are called Euler-Lagrange
equations for the Lagrangian

L : Rptntnr L, R, (t‘ﬁmﬂxg) — L (t%xﬂxi)

The Hamilton equations in the multi-time case are obtained using the partial

derivatives (polymomenta)
oL

k
oxk

PR = (1)
and the Hamiltonian H = p¢a® — L. If L satisfies some regularity conditions, then
the system (1) defines a C! bijective transformation z, — p¢ , called the Legendre
transformation for the multi-time case. By this transformation we have

i 8 8:02 oL 83:’5

_ _ 9L s _ i

—— =z
Opg* a TPk Opgt axg Opg* *

o _ ik
ozi Pz 9z Oxk O’ o'’

Consequently, the np + n Hamilton equations

o _on
ot op’
op; _ OH
ot dat

(summation after o), i =1,...,m, a = 1, ..., p are first order PDEs on the space R"*P"
equivalent to the Euler-Lagrange equations on R".
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There are different point of views to study these equations which appear in first-
order field theory (see [1]-[3], [8]-[10], [12]-[22]). In our context, we need of Hilbert-
Sobolev space methods for PDEs ([4], [6], [11]).

Let us write the multi-time Hamilton equations in the form

w007 OH WOzt OH o
030 ga * g7 =0 ~980igm t o7 0,i,j =1,.,m;a, B=1,..,p
or a
u
§®J)= =—VH 2
(6@ J) 5 =V, @)
where
Ol 0H
0 525t Ao Oxd
B9 ou ot 4
’ ( —056; 0 ) o op; v on
8to‘ 8}?5

The operator § ® J is a polysymplectic structure acting on R+ with values in
R™*"P_ The (1,2)-block 535; acts linearly by (5; and tracely by d5. The (2,1)-block
—656; acts lineraly both by (5; and 0. The operator § ® J induces a multisymplectic

PDE operator (6 ® J )% which work as follows

op§
0 55t j Y
(6®J)a<x>: G a(‘”‘”ﬁ) ot
ot \ p —0585 0 ot \ p; Oad
otP
Repeating we obtain the square
) 62p7 )
divp 0 R — —Az’
(5®J)68t<_61:>:< . 53) 8t8£;7 — 0%p]
ot - 55 5j 0 - m otBotY

1.2 The action that produces multi-time Hamilton equations

We consider a Hamiltonian H : To x R" x R™ — R, (t,u) — H (t,u) whose restriction
H (t,-) is C! and convex.

Theorem 1. [21] Let u = (z,p). The action W, whose Euler-Lagrange equations
are the Hamilton equations, s

¥ (u) :/T .c(t,u,(a;t‘) dtt A A dtP,

ou 1 ou
L (t7u7 ) == —§G (6®J8t’u) — H (t,u),
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where the scalar product is represented by the matriz

(Sij 0
G =
0 P,

(standard Riemannian metric from R™ TP ).
Proof. Indeed, the Euler-Lagrange equations produced by

1 (op> , 0z° _

L fopy 9w\ [ 0y o z*
T2 <8ta’6t5> ( o 895, ) (p? > S @)

can be rewritten

1opy _ 10pf OH op; _ OH
20t 20t 9z U ot T ox
and )
or oM
ote — ope’

2 Basic inequalities

2.1  Wirtinger multi-time inequality

In L? (Ty, R™) we use the scalar product
(u,v) = / (6i5u'v?) dt' A ... A dt?
To
and the norm ||ul| > = \/(u,u). Similarly, in L? (Tp, C™) we use the scalar product
(u, v) :/ (6;ju'?) dt' A ... A dt?
To

and the norm |ul| 2 = /(u,@).

Let us extend the Theorem 4.4 from [21] to the parallelipiped Tj.
Theorem 2 Any function u from HZL with mean zero satisfies the inequality

ou

2
dtT A A dEP.
ot

(ma (7)) |

2 4.1
w(t)|”dt” Ao AdEP < -
/o =

Proof. We express the function u as the sum of a multiple Fourier series

w(t) = (u' (¢ ), u™ (E L tP)
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_ oo G e L )

>, cn et (FEant'+ 4 3530t")
v Jnseeesdn
Jhaedn€ZP

We calculate the square of the norm

(i) = [ ()0 @)t nna? -

5 pT! TP
s 27 -1 -1 1 s - .pl
= Y (@) [ Bt [T el
rred 0 0

Jtoitezr

! P
1 2 r i2—"("1—"1)t1 1 T .o P jP)P
o Z (le jp) e Tt \In=n)t s . et 7 (=30 gep
Loeensdh
0 0

Jhsdn€ZP

1 2 1 D n 2 1 D
= > (Chg) T Y (on ) T

Jt.glezr Jisdi€EZP

If we denote

and

. k k
Z 2 L4+t
u = Ck1,...7]€pel W(Tl vt p p)
(kl,...,k,,)eZP

we find

(u,u) = Z ’C]gl,_”,kp’QTl...Tp.
(kiyeokp)E 2P

Similarly, we consider the scalar product

Oou Ov out Ovd
_ a7 1 P
(8t7 875) /1“06”5 ote 8t5dt A N

It follows the square of the norm

du ou
ot’ ot
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(chon) (Y s (atn) (B)

= Z .. TP

(k1,..kp)EZP

o) () e () ()

= Z T .. TP

(k1,...,kp)EZP

ok 2 ok, \ >
|Ck'1...kp|2( ;11> +...+|Ck1...k,,{2( ;f)

k1 \ 2 kp\°
o () o (B2))

4 2
% Z Tl...Tp|Ck1_“kp|2 (k‘%—&——kkf)

= Z T!.. TP

>
(maX{Ti}) (K1 o) EZP
4 2
> X TN Ch [
(max{Tz}) (kp,.rkp)EZP
4 2
> (Pt A e
(max{TZ}) To
Consequently
(mas {17})”
max {7T" ) oul?
|u(t)|2dt1/\.../\dtp§172/ T att AL Aat,
T 47 To 5t

and this ends the proof.

2.2 An estimate of the quadratic form

ou 1 »
/TO <5®Jat,u(t)> dt' A A dE

Let us extend the Theorem 4.5 from [21] to the parallelipiped Tj.
Theorem 3 For any u € H% we have

/ (5®Jau,u(t)) dtt AN dtP
T, ot
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2

Ou dtt A . A dEP.

vpmax {T'}
2~ 2w /Tg ot

Proof. We denote u (t) = u(t) — / u(t)dt* A ... A dtP.. By using the Cauchy-

To
Schwarz inequality and the multiple periodicity of u we obtain the inequality

/<5®Jau,u(t))dtl/\.../\dtp
T ot
du 1 1
= Sd@J—,u(t)+ [ uw(@)dt" A...AdP|dt" A ... AdtP
T ot To

:/ (5®Jau,ﬂ(t)> dt' A .. A dtP
T ot

+/ (5®Ja",/ u(t)dtl/\.../\dt”) dt* A ... A dt?
To at To

:/ G@Jaﬁaugd#AmAﬁp
" o
ou|? 1 2 2 el 3
> ([ ls0r2 at a..nde i ()2 Y A A de?
To ot To

From the inequality given by the Theorem 2 we have

X 2
e (mlaX{Tl}>
U < —mMWMW——
|u ()] dt” A ... AdEP < /T

2
Ty 47

i

dt' A ... A ditP
ot

ou

2
dt' A ... A diP.
ot

N2
(max {T* })
T 4 /TU
2

, we obtain

2
5®J%

Because
b ot

Ju
Sp‘@t

/ (5®Jau,u(t)) dtt A A dtP
7 ot

>_</ me {7}

2w

Nl

ou
5 o
®J8t

U

max {Tz}
Z VP 27 /To

2
dt' A ... /\dtp>

Nl

ou

ot

2
dt' A ... /\dtp>

ou|? 1
e dt* A ... N dEP.
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2.3 Inequalities satisfied by periodical solutions of multi-time
Hamilton equations

Let us find properties of solutions of (6 ® J) %—FVH (t,u(t)) = 0 a.e. on Ty satisfying
the boundary conditions

u|gr=1uls-,
were ST and S~ are opposite sides of the parallelipiped Tg. Practically, we refer to
bounds for such solutions.

Theorem 4 We consider the Hamiltonian
H:TyxR" ™ = R, (t,u) — H(t,u)
like a measurable function in t for any v € R™™™ and C' convex in u for any
te To=1[0,T"] x..x[0,T?] C R".

If there exists the constants

™

0, ———
Cypmax{T'}

ac 820,720,020

such that o
Olul+ 8 < H(t,u) < S ful® +9

forallt € Ty and w € R™"™ then, any multiple periodical solution
uw=(z;,p),i=1,.,n,a=1,..,p,

of the equation
5®J%+VH(t,u(t)):0, (3)

verifies the inequalities

2 1 P
/ Oul™ i p gy < 20 B+l T (4)
T, | O T —amax{T"} \/p
1 P
/ () de! Ao ndp < T TTBEY) (5)
To 5(7T—amax{TZ}\/]7>

Proof. From the inequality

Slul’ =8 < H(tu) < 5 Juf +14

we obtain
—B< H(tu) < a2 ul* +1.

By applying [5, Proposition 2.2], considering F (u) = H (t,u), p = ¢ = 2, v =
VH (t,u) we obtain
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oo IVH (6.0 < (VH (tu) ) + 5+,

Because u is the solution of the equation (3), we have VH (t,u) = -0 ® J%;L and the
previous inequality becomes

1 oul? ou

— | = — < | = — .

2@‘ 087 _( 6®J8t,u>+6+7 (6)

In the hypothesis’ conditions, by integration of the inequality (6) we have

2

1
dt' A .. A dtP

20 Ty

ou

ot

ot’

By using the inequality from Theorem 3, we have

+/ (5@ g u> dt' A AP < (B4 ) TE.TP.
To

2

1 9u dtt A A dt?
20[ Ty at

T 2

—%W{} A % dt' A Adt? < (B+)TL..TP.
0
So { }

1 /pmax 1" 2

- / @ dt' A .. A dtP

20{ 27T T at

< (B+7)T"..T"

and, as consequence

J,

By integration, the inequality

2

Oul™ U A A dt? <

ot

2ra (B +7) TH.. TP
T — amax {Ti} \/;5

Slul =B < H (t,u)

produces

S Ju@)|dt* Ao AdtP — BT TP < | H(t,u)dt* A ... AdtP.

To To
Because H (t,u) is convex in u,
H (t,u) = H(t,0) < (VH (,u (1)), u(t)),

we obtain
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H (t,u(t))dt A ... Adt?
To

g/ [H (t,0) + (VH (t,u (t)) ,u(t)] dt* A ... AdtP
To

<ATL.TP — / (6 ® Jau,u(t)> dt' A A dtP
T ot
vpmax {T"} 2
gyTl...Terzi/ Ou dtt A ... A dtP
27T To 325

vpmax {T°} 2ma (B + ) T'...T"

<ATL.TP + ,
2m <7T —amax {T"} \/I)>
7

By consequence

lu (t)| dt* A ... A dt?
To

\/ﬁm?x {Ti}oz(ﬁ—k’y)
™ — amiaX{Ti} N4

1

< BTY..TP +~T.. TP +

| =

meaning that

1
(B de A nder < — BENT T
To 5(7rfozrnax {TZ}\/p?)

and the proof ends.
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