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Abstract. We study biminimal submanifolds in contact 3-manifolds.
In particular, biminimal curves in homogeneous contact Riemannian 3-
manifolds and biminimal Hopf cylinders in Sasakian 3-space forms are
investigated.

M.S.C. 2000: 53C42, 53C25.
Key words: biminimal immersion, biharmonic map, harmonic map, contact mani-
folds.

1 Introduction

A smooth map φ : (M, g) → (N,h) between Riemannian manifolds is said to be
biharmonic if it is a critical point of the bienergy functional:

E2(φ) =
∫

M

|τ(φ)|2dvg,

where τ(φ) = tr∇dφ is the tension field of φ. Clearly, if φ is harmonic, i.e., τ(φ) = 0,
then φ is biharmonic. A biharmonic map is said to be proper if it is not harmonic.

B. Y. Chen and S. Ishikawa [7] studied biharmonic curves and surfaces in semi-
Euclidean space (see also [11]–[12]). In particular, Chen and Ishikawa proved the
non-existence of proper biharmonic surfaces in Euclidean 3-space R3. R. Caddeo,
S. Montaldo and C. Oniciuc generalized this non-existence theorem to surfaces in
3-dimensional space forms of non-positive curvature [5].

Biharmonic submanifolds in the 3-sphere S3 are classified by Caddeo, Montaldo
and Oniciuc [4]. Since, S3 is a typical example of contact Riemannian 3-manifold,
it is interesting to study biharmonic submanifolds in contact Riemannian manifolds.
In our previous paper [13], we have studied biharmonic Legendre curves and Hopf
cylinders in Sasakian 3-space forms. J. T. Cho, J. E. Lee and the present author
[8]–[9] studied biharmonic curves in unimodular homogeneous contact Riemannian
3-manifolds.

K. Arslan, R. Ezentas, C. Murathan and T. Sasahara studied biharmonic subman-
ifolds in 3 or 5-dimensional contact Riemannian manifolds [1], [2], [19].
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On the other hand, in [14], E. Loubeau and S. Montaldo introduced the notion of
biminimal immersion.

An isometric immersion φ : (M, g) → (N, h) is said to be biminimal if it is a critical
point of the bienergy functional under all normal variations. Thus the biminimality
is weaker than biharmonicity for isometric immersions, in general.

In this paper, we study biminimal submanifolds in contact 3-manifolds. In par-
ticular we study biminimality of Legendre curves and Hopf cylinders (anti-invariant
surfaces) in Sasakian 3-space forms.

2 Preliminaries

2.1

Let (Mm, g) and (Nn, h) be Riemannian manifolds and φ : M → N a smooth map.
Denote by∇φ the connection of the vector bundle φ∗TN induced from the Levi-Civita
connection ∇h of (N,h). The second fundamental form ∇dφ is defined by

(∇dφ)(X, Y ) = ∇φ
Xdφ(Y )− dφ(∇XY ), X, Y ∈ Γ(TM).

Here ∇ is the Levi-Civita connection of (M, g). The tension field τ(φ) is a section of
φ∗TN defined by

τ(φ) = tr∇dφ.

A smooth map φ is said to be harmonic if its tension field vanishes. It is well
known that φ is harmonic if and only if φ is a critical point of the energy:

E(φ) =
1
2

∫
|dφ|2dvg

over every compact region of M . Now let φ : M → N be a harmonic map. Then the
Hessian Hφ of E is given by

Hφ(V, W ) =
∫

h(Jφ(V ),W )dvg, V, W ∈ Γ(φ∗TN).

Here the Jacobi operator Jφ is defined by

Jφ(V ) := 4̄φV −Rφ(V ), V ∈ Γ(φ∗TN),

4̄φ := −
m∑

i=1

(∇φ
ei
∇φ

ei
−∇φ

∇ei
ei

), Rφ(V ) =
m∑

i=1

RN (V, dφ(ei))dφ(ei),

where RN and {ei} are the Riemannian curvature of N , and a local orthonormal frame
field of M , respectively. For general theory of harmonic maps, we refer to Urakawa’s
monograph [21].

J. Eells and J. H. Sampson [10] suggested to study polyharmonic maps. In this
paper, we only consider polyharmonic maps of order 2. Such maps are frequently
called biharmonic maps.
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Definition 2.1. A smooth map φ : (M, g) → (N,h) is said to be biharmonic if it is
a critical point of the bienergy functional:

E2(φ) =
1
2

∫

M

|τ(φ)|2 dvg,

with respect to all compactly supported variation.

The Euler-Lagrange equation of E2 is

τ2(φ) := −Jφ(τ(φ)) = 0.

The section τ2(φ) is called the bitension field of φ. If φ is an isometric immersion,
then τ(φ) = mH, where H is the mean curvature vector field. Hence φ is harmonic
if and only if φ is a minimal immersion. As is well known, an isometric immersion
φ : M → N is minimal if and only if it is a critical point of the volume functional V.
The Euler-Lagrange equation of V is H = 0.

Motivated by this coincidence, the following notion was introduced by Loubeau
and Montaldo:

Definition 2.2. ([14]) An isometric immersion φ : (Mm, g) → (Nn, h) is called a
biminimal immersion if it is a critical point of the bienergy functional E2 with respect
to all normal variation with compact support. Here, a normal variation means a
variation {φt} through φ = φ0 such that the variational vector field V = dφt/dt|t=0

is normal to M .

The Euler-Lagrange equation of this variational problem is τ2(φ)⊥ = 0. Here
τ2(φ)⊥ is the normal component of τ2(φ). Since τ(φ) = mH, the Euler-Lagrange
equation is given explicitly by

{4̄φH−Rφ(H)
}⊥ = 0(2.2.1)

Obviously, every biharmonic immersioin is biminimal, but the converse is not
always true.

Submanifolds with harmonic mean curvature 4H = 0 or normal harmonic mean
curvature 4⊥H = 0 have been studied extensively. Here ∆⊥ is the Laplace-Beltrami
operator of the normal bundle (and called the normal Laplacian). More generally,
submanifolds with property 4H = λH or 4⊥H = λH have been studied extensively
by many authors (See references in [13]). Analogusly, we may generalize the notion
of biminimal immersion to the following one:

Definition 2.3. An isometric immersion φ : M → N is called a λ-biminimal immer-
sion if it is a crtical point of the functional:

E2,λ(φ) = E2(φ) + λE(φ), λ ∈ R
The Euler-Lagrange equation for λ-biminimal immersions is

τ2(φ)⊥ = λτ(φ).

More explicitly,
{4̄φH−Rφ(H)}⊥ = −λH

or equivalently
Jφ(H)⊥ = −λH.
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2.2

To close this section, we here collect fundamental ingredients of contact Riemannian
geometry from [3] for our use.

Let M be a 3-dimensional manifold. A one-form η is called a contact form on M if
it satisfies dη ∧ η 6= 0 on M . A 3-manifold M together with a contact form η is called
a contact 3-manifold (in the restricted sense). The contact distribution D of (M,η) is
defined by

D = {X ∈ TM | η(X) = 0}.
On a contact 3-manifold (M, η), there exist a unique vector field ξ such that

η(ξ) = 1, dη(ξ, ·) = 0.

This vector field ξ is called the Reeb vector field of (M, η). Moreover, there exists an
endomorphism field ϕ and a Riemannian metric g such that

ϕ2 = −I + η ⊗ ξ, g(ξ, ·) = η,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

dη(X, Y ) = 2g(X,ϕY )

for all vector fields X, Y on M . A contact 3-manifold (M, η) together with structure
tensors (ξ, ϕ, g) is called a contact Riemannian 3-manifold.

Definition 2.4. A contact Riemannian 3-manifold (M, η; ξ, ϕ, g) is said to be a 3-
dimesnional Sasaki manifold (or Sasaki 3-maifold) if

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X

for all vector fields X, Y on M . Here ∇ denotes the Levi-Civita connection of (M, g).

Let (M,η; ξ, ϕ, g) be a contact Riemannian 3-manifold. A tangent plane at a point
p is said to be holomorphic if it is invariant under ϕ. The sectional curvature of a
holomorphic tangent plane is called a holomorphic sectional curvature. If the sectional
curvature function is constant on all holomorphic planes in TM , then M is said to be of
constant holomorphic sectional curvature. In particular, complete Sasaki 3-manifolds
of constant holomorphic sectional curvature are called Sasakian 3-space forms.

A contact Riemannian 3-manifold M is said to be regular if ξ generates a one-
parameter group K of isometries on M such that the action of K on M is simply
transitive. If M is regular, then ϕ and η are invariant under K-action. Moreover the
contact Riemannian structure on M induces an almost Kähler structure (ḡ, J) on
the orbit space M := M/K. The natural projection π : M → M is a Riemannian
submersion.

Now let M be a regular Sasaki 3-manifold. Take a regular curve γ̄ parametrized by
the arclength with signed curvature function κ̄. Then the inverse image Sγ̄ := π−1{γ̄}
is a flat surface in M with mean curvature H = (κ̄ ◦ π)/2. This flat surface is called
the Hopf cylinder over γ̄.
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3 Biminimal curves

First of all we recall the following well known result (cf. [14]).

Lemma 3.1.

i) A curve γ in a Riemannian 2-manifold of Gaussian curvature K is biminimal
if and only if its signed curvature κ satisfies:

κ′′ − κ3 + κK = 0.(3.3.1)

ii) A curve γ in a Riemannian 3-manifold of constant sectional curvature c is
biminimal if and only if its curvature κ and torsion τ fulfill the system:

{
κ′′ − κ3 − κτ2 + κc = 0
κ2τ = constant(3.3.2)

Note that γ is biharmonic if and only if γ is biminimal and additionally satisfies
κκ′ = 0. Thus a non-geodesic biharmonic curve has constant curvature κ.

Corollary 3.1. (1) A non-geodesic curve in a Riemannian 2-manifold is bihar-
monic if and only if γ is a Riemannain circle of signed curvature κ. The signed
curvature κ satisfies K = κ2 > 0. Thus proper biharmonic curves can be exist
only in positive curvature 2-manifolds.

(2) There are no proper biharmonic curves in Riemannian 3-manifolds of constant
nonpositive curvature.

Proper biharmonic curves in S3 are classified in [4].

Corollary 3.2. A non-geodesic curve γ in a Riemannian 2-manifold is λ-biminimal
if and only if

κ′′ − κ3 + κ (K − λ) = 0.

4 Biminimal curves in homogeneous contact
3-manifolds

4.1

A contact Riemannian 3-manifold is said to be homogeneous if there exists a connected
Lie group G acting transitively as a group of isometries on it which preserve the
contact form.

D. Perrone [18] has proven that simply connected homogeneous contact Rie-
mannian 3-manifolds are Lie group together with a left invariant contact Riemannian
structure.

Now let M be a 3-dimensional unimodular Lie group with left invariant Rie-
mannian metric g = 〈·, ·〉. Then M admits its compatible left-invariant contact Rie-
mannian structure if and only if there exists an orthonormal basis {e1, e2, e3} of the
Lie algebra m such that (cf. [18]):
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[e1, e2] = 2e3, [e2, e3] = c2e1, [e3, e1] = c3e2.

The Reeb vector filed ξ is obtained by left translation of e3. The contact distribution
D is spanned by e1 and e2.

By the Koszul formula, one can calculate the Levi-Civita connection ∇ in terms
of the basis {e1, e2, e3} as follows:

∇e1e2 =
1
2
(c3 − c2 + 2)e3, ∇e1e3 = −1

2
(c3 − c2 + 2)e2,

∇e2e1 =
1
2
(c3 − c2 − 2)e3, ∇e2e3 = −1

2
(c3 − c2 − 2)e1,

∇e3e1 =
1
2
(c3 + c2 − 2)e2, ∇e3e2 = −1

2
(c3 + c2 − 2)e1,

all others are zero.

(4.4.1)

In particular, M is a Sasaki manifold if and only if c2 = c3, and it is of constant
holomorphic sectional curvature c = −3 + 2c2 (cf. [18]). The Riemannian curvature
R is given by

R(e1, e2)e2 = {1
4
(c3 − c2)2 − 3 + c3 + c2}e1,

R(e1, e3)e3 = {−1
4
(c3 − c2)2 − 1

2
(c3

2 − c2
2) + 1− c2 + c3}e1,

R(e2, e1)e1 = {1
4
(c3 − c2)2 − 3 + c3 + c2}e2,

R(e2, e3)e3 = {1
4
(c3 + c2)2 − c2

2 + 1 + c2 − c3}e2,

R(e3, e1)e1 = {−1
4
(c3 − c2)2 − 1

2
(c3

2 − c2
2) + 1− c2 + c3}e3,

R(e3, e2)e2 = {1
4
(c3 + c2)2 − c2

2 + 1 + c2 − c3}e3.

4.2

Now we study biharmonic curves in homogeneous contact Riemannian 3-manifold M .
Let γ : I → M be a curve parametrized by arc-length with Frenet frame (t, n, b).

Expand t, n, b as t = T1e1 +T2e2 +T3e3, n = N1e1 +N2e2 +N3e3, b = B1e1 +B2e2 +
B3e3 with respect to the basis {e1, e2, e3}. Since (t, n, b) is positively oriented,

B1 = T2N3 − T3N2, B2 = T3N1 − T1N3, B3 = T1N2 − T2N1.

Direct computation shows
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R(n, t)t =
[
B1

2{1
4
(c3 + c2)2 − c2

2 + 1 + c2 − c3}

−B2
2{1

4
(c3 − c2)2 +

1
2
(c3

2 − c2
2)− 1 + c2 − c3}

+B3
2{1

4
(c3 − c2)2 − 3 + c2 + c3}

]
n

+
[−B1N1{1

4
(c3 + c2)2 − c2

2 + 1 + c2 − c3}

+B2N2{1
4
(c3 − c2)2 +

1
2
(c3

2 − c2
2)− 1 + c2 − c3}

−B3N3{1
4
(c3 − c2)2 − 3 + c2 + c3}

]
b.

The bitension field τ2(γ) is given by τ2(γ) = ∇t∇t∇tt + R(κn, t)t.
Hence we have [8]:

τ2(γ)⊥ =
[
(κ′′ − κ3 − κτ2) + κ

{
B1

2(
1
4
(c3 + c2)2 − c2

2 + 1 + c2 − c3)

−B2
2(

1
4
(c3 − c2)2 +

1
2
(c3

2 − c2
2)− 1 + c2 − c3)

+B3
2(

1
4
(c3 − c2)2 − 3 + c2 + c3)

}]
n

+
[
(2τκ′ + κτ ′)− κ

{−B1N1(
1
4
(c3 + c2)2 − c2

2 + 1 + c2 − c3)

+B2N2(
1
4
((c3 − c2)2 +

1
2
(c3

2 − c2
2)− 1 + c2 − c3)

−B3N3(
1
4
(c3 − c2)2 − 3 + c2 + c3)

}]
b.

Now we assume that γ is a Legendre curve, that is, γ tangents to the contact
distribution. Then B1 = B2 = T3 = N3 = 0 and B3 = 1.

τ2(γ)⊥ =
[
∇t∇t∇tt + R(κn, t)t

]⊥

=
[
(κ′′ − κ3 − κτ2) + κ

{
(
1
4
(c3 − c2)2 − 3 + c2 + c3)

}]
n

+
[
(2τκ′ + κτ ′)

]
ξ.

Proposition 4.1. Let γ be a Legendre curve in a unimodular homogeneous contact
Riemannian 3-manifold. Then γ is biminimal if and only if

(κ′′ − κ3 − κτ2) + κ

{
1
4
(c3 − c2)2 − 3 + c2 + c3

}
= 0

and
2τκ′ + κτ ′ = 0.

Corollary 4.1. Let γ be a non-geodesic Legendre curve in a unimodular homogeneous
contact Riemannian 3-manifold. Then γ is biharmonic if and only if γ is a helix such
that
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κ2 + τ2 =
1
4
(c3 − c2)2 − 3 + c2 + c3.

In particular, there are no proper biharmonic Legendre curves in homogeneous contact
3-manifold with 1

4 (c3 − c2)2 − 3 + c2 + c3 ≤ 0.

Note that Corollary 4.1 is a special case of [2]. In fact, every homogeneous contact
Riemannian 3-manifold is a (κ, µ)-space.

Example 4.1. (Solvable Lie groups) Choose c3 = 0 and c2 > 0. Then M is the
Euclidean motion group E(2). Hence, if c2 > 2, then M = E(2) admits proper
biharmonic Legendre helices. On the other hand, if c3 = 0 and c2 < 0, then M is the
Minkowski motion group E(1, 1). In this case, M = E(1, 1) admits proper biharmonic
Legendre helices if and only if c2 < −6. Note that E(1, 1) with left invariant metric
c2 < −6 is not isomorphic to the model space Sol (c2 = −2) of the solvegeometry in
the sense of W. Thurston. Hence Sol admits no proper biharmonic Legendre curves.

5 Biminimal submanifolds in Sasakian 3-space forms

5.1

Let us denote by M3(c) a Sasakian 3-space form of constant holomorphic sectional
curvature c. Then M3(c) is regular and its orbit space M2 is a complex space form of
constant curvature (c+3). Take a curve γ̄(s) in the orbit spaceM2(c+3) parametrized
by arclength s. Denote by {t, n} the Frenet frame of γ̄. The arclength parameter s is
also an arclength parameter of the horizontal lift γ̄∗ in M3(c). Thus the Frenet frame
of γ̄∗ is given by (p1, p2, p3), where

p1 = t = t
∗
, p2 = n = n∗ = ϕ t, p3 = ±ξ.

Without loss of generality, we may assume that p3 = ξ.

5.2

Let γ : I → M3(c) be a curve in a Sasakian 3-space form which is not a geodesic.
Then the bitension field of γ is computed as ([13], p. 175):

τ2(γ) = −3κκ′p1 + (κ′′ − κ3 − κτ2)p2 + (2κ′τ + κτ ′)p3 + κR(p2,p1)p1.

Now assume that γ is Legendre. Then R(p2, p1)p1 = cp2. Hence

τ2(γ)⊥ = (κ′′ − κ3 − κ + cκ)ϕt + 2κ′ξ

Thus γ is λ-biminimal if and only if

(κ′′ − κ3 − κ + cκ)ϕt + 2κ′ξ = 2λκϕ t.

From this, we obtain
κ = constant, κ2 = c− 1− 2λ.

Proposition 5.1. Let γ be a non-geodesic Legendre curve in M3(c). Then γ is λ-
biminimal if and only if it is a Legendre helix satisfying κ2 = c− 1− 2λ.
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As we obatined in [13], γ is biharmonic if and only if its curvature κ satisfies
κ2 = c− 1. Thus we obtain

Corollary 5.1. Let γ be a Legendre curve in M3(c). Then γ is biharmonic if and
only if it is biminimal.

5.3

Let M3(c) be a Sasakian 3-space form and π : M → M2(c + 3) its fibering. Take
a curve γ̄ and denote by S = Sγ̄ = π−1{γ̄} the Hopf cylinder over γ. The mean
curvature vector field of S is H = Hn, H = (κ̄ ◦ π)/2. Here κ̄ is the signed curvature
of γ̄. Let us denote by ι the inclusion map of S in M3(c). The following formulas were
obtained in [13]:

4̄ιH = 4H, Rι(H) = (c + 1)Hn.

Hence
τ2(ι)⊥ = 2(H ′′ − 4H3 + (c− 1)H)n.

Since τ(ι)⊥ = 2Hn, S is λ-biminimal if and only if

H ′′ − 4H3 + (c− 1)H = λH.

This is rewritten as

κ̄′′ − κ̄3 + {(c− 1)− λ}κ̄ = 0.(5.5.1)

The equation (5.5.1) implies the following results.

Theorem 5.1. A Hopf cylinder S is (−4)-biminimal if and only if the base curve is
biminimal.

Theorem 5.2. A Hopf cylinder S is c-biminimal if and only if the base curve is
(c + 4)-biminimal.

Corollary 5.2. A Hopf cylinder S in S3 is (−4)-biminimal if and only if the base
curve is biminimal in S2(4).

In [14], the following result is obtained.

Theorem 5.3. ([14], Theorem 3.1) Let π : M3(c) → M2(c̄) be a Riemannian sub-
mersion with minimal fibers from a space form of constant sectional curvature c to a
surface of constant Gaussian curvature c̄. Let γ̄ : I ⊂ R → M2 be a curve parame-
trized by arc-length. Then S = π−1{γ̄} ⊂ M3 is a biminimal surface if and only if γ̄
is a c̄-biminimal curve.

In particular, the base curves of biminimal Hopf cyliders in S3 are 4-biminimal
curves in S2(4). This result for S3 can be generalized to Sasakian space forms as
follows:

Theorem 5.4. Let M3(c) be a Sasakian 3-space form and π : M3(c) → M2(c̄)
(c̄ = c + 3), its associated fibering. Let γ̄ : I ⊂ R → M2 be a curve parametrized by
arc-length. Then the Hopf cylinder S = π−1{γ̄} is a biminimal surface if and only if
γ̄ is a c̄-biminimal curve.
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Proof. A Hopf cylinder Sγ̄ in M3(c) is biminimal if and only if κ′′ − κ3 = 0. This is
equivalent to

κ′′ − κ3 + (c + 3)κ = (c + 3)λ.

Namley, γ̄ is (c + 3)-biminimal in the base space form. ¤

Remark 1. The λ-biminimality is different from 4H = λH or 4⊥H = λH. In fact,
the following results are known.

Proposition 5.2. ([13], Theorem 2.1) A Hopf cylinder satisfies 4H = λH if and
only if the base curve is a geodesic (λ = 0) or a Riemannian circle (λ 6= 0). In the
latter case, λ = κ̄2 + 2 > 2.

Proposition 5.3. ([13], Theorem 2.3, Corollary 2.2) A Hopf cylinder satisfies4⊥H =
λH if and only if the base curve is

(1) λ = 0: geodesic, Riemannian circle or a Riemannian clothoid,

(2) λ > 0: κ̄(s) = a cos(
√

λs) + b sin(
√

λs),

(3) λ < 0: κ̄(s) = a cosh(
√−λs) + b sinh(

√−λs).

Add in Proof:

(1) A simply connected Sasakian 3-space form M3(c) is isomorphic to one of the
following model spaces:

• the special unitary group SU(2) if c > 1 or −3 < c < 1,

• the unit 3-sphere S3 if c = 1,

• the Heisenberg group Nil if c = −3,

• the universal covering group S̃L2R of the special linear group SL2R if c <
−3.

Theorem 5.4 for Nil and S̃L2R is obtained independently by Loubeau and Mon-
taldo [15].

(2) In Example 4.1, we showed that the only biharmonic Legendre curves in Sol are
Legendre geodesics.

Y.-L. Ou and Z.-P. Wang studied biharmonic curves in Sol. In particular, they
showed the nonexistence of proper biharmonic helices in Sol [17]. More generally,
Caddeo, Montalod, Oniciuc and Piu [6] showed the non-existenece of proper
biharmonic curves in Sol parametrised by arclength.

(3) T. Sasahara [20] classified biminimal Legendre surfaces in 5-dimensional Sasakian
space forms.
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