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Abstract. A class of manifolds which admit an f -structure with s-
dimensional parallelizable kernel is introduced and studied. Such mani-
folds are called almost Kenmotsu f.pk-manifolds. If s = 1, one obtains
almost Kenmotsu manifolds and, if s = 2, they carry a locally conformal
almost Kähler structure. Several foliations canonically associated with an
almost Kenmotsu f.pk-manifold are studied. Locally conformal almost
Kenmotsu f.pk-manifolds are characterized. If s ≥ 2, they set up a class
which is disjoint from that of locally conformal almost C-manifolds.
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Introduction

An f -structure on a C∞ m-dimensional manifold M is defined by a non-vanishing
tensor field ϕ of type (1,1) which satisfies ϕ3 + ϕ = 0 and has constant rank r. It
is known that, in this case, r is even, r = 2n. Moreover, TM splits into two com-
plementary subbundles Imϕ and Ker ϕ and the restriction of ϕ to Imϕ determines
a complex structure on such subbundle. It is also known that the existence of an
f -structure on M is equivalent to a reduction of the structure group to U(n)×O(s),
where s = m − 2n ([2]). An interesting case occurs when the subbundle Ker ϕ is
parallelizable, for which the reduced structure group is U(n) × {Is}, and we have
an f -structure with parallelizable kernel, briefly denoted by f.pk-structure, the re-
spective manifold being called an f.pk-manifold or a globally framed manifold ([8]).
Then, there exists a global frame {ξi} for the subbundle Ker ϕ with dual 1-forms
ηi, 1 ≤ i ≤ s, satisfying ϕ2 = −I +

∑s
i=1 ηi⊗ ξi. It follows that ϕξi = 0, ηi ◦ϕ = 0.

From now on we will omit the sum symbol for repeated indexes varying in {1, . . . , s}. It
is well known that one can consider compatible Riemannian metrics g on M such that
for any tangent vector fields X, Y , one has g(X,Y ) = g(ϕX, ϕY ) + ηi(X)ηi(Y ) and,
fixed a compatible metric g, (ϕ, ξi, η

i, g) is called a metric f.pk-structure. Therefore,
T (M) splits as complementary orthogonal sum of its subbundles Im ϕ and Ker ϕ.
We denote their respective differentiable distributions by D and D⊥.
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A wide class of f.pk-structures was introduced in [2] by D. Blair according to the
following definition. A metric f.pk-structure is said a K-structure if the fundamental 2-
form Φ, defined usually as Φ(X, Y ) = g(X,ϕY ), is closed and the normality condition
holds, i.e. N = [ϕ,ϕ] + 2dηi ⊗ ξi = 0, where [ϕ,ϕ] denotes the Nijenhuis torsion of
ϕ. Several subclasses have been studied from different points of view ([2, 3, 4]), also
dropping the normality condition and, in this case, the term almost precedes the name
of the considered structures or manifolds. If dη1 = . . . = dηs = Φ, the (almost) K-
structure is said an (almost) S-structure and M an (almost) S-manifold. If dηi = 0
for all i ∈ {1, . . . , s}, then the (almost) K-structure is called an (almost) C-structure
and M is said an (almost) C-manifold.

In [6], we studied normal metric f.pk-structures and then f.pk-manifolds (called
Kenmotsu f.pk-manifolds), for which the 2-form Φ verifies the condition dΦ = 2ηi∧Φ,
for some i ∈ {1, . . . , s}, also proving that such an index is unique and choosing i = 1.

This paper deals with almost Kenmotsu f.pk-manifolds. Firstly, we state general
properties involving the coderivative of the ηi’s with respect to the Levi-Civita con-
nection. Several foliations can be described. In particular, each leaf of the distribution
Im ϕ has an almost Kähler structure and we give conditions which are equivalent to
the request that Imϕ has Kähler or, possibly, totally umbilical leaves. Then, we ex-
plain a procedure to construct almost Kenmotsu f.pk-manifolds, starting from almost
Kähler manifolds. Furthermore, we prove that if the leaves of Imϕ in an almost Ken-
motsu f.pk-manifold M2n+s are totally umbilical, then M2n+s is locally a warped
product of an almost Kähler manifold and Rs, with warping function depending on a
Euclidean coordinate, only.

In section 3, we study (2n + s)-dimensional metric f.pk-manifolds admitting a
structure which is locally conformal to an almost Kenmotsu one and prove that, if
s ≥ 2, each of the considered conformal changes is global. We also characterize locally
conformal almost C-manifolds and prove that an almost Kenmotsu manifold M2n+s,
s ≥ 2, cannot be a locally conformal almost C-manifold. Note that, when s = 1,
almost Kenmotsu manifolds set up a subclass of locally conformal almost cosymplec-
tic manifolds ([13]), whereas almost C-manifolds coincide with almost cosymplectic
manifolds.

We recall that the Levi-Civita connection ∇ of a metric f.pk-manifold satisfies the
following formula ([2],[5]):

2g((∇Xϕ)Y, Z) = 3 dΦ(X,ϕY, ϕZ)− 3dΦ(X,Y, Z)
+g(N(Y, Z), ϕX) + N

(2)
j (Y,Z)ηj(X)

+2dηj(ϕY,X)ηj(Z) − 2dηj(ϕZ, X)ηj(Y ).

Each tensor field N
(2)
j is defined by N

(2)
j (X, Y ) = (LϕXηj)(Y ) − (LϕY ηj)(X), and

can be rewritten as N
(2)
j (X,Y ) = 2dηj(ϕX, Y )− 2dηj(ϕY,X).

1 Almost Kenmotsu f.pk-manifolds

In [6], a metric f.pk-manifold M of dimension 2n + s, s ≥ 1, with f.pk-structure
(ϕ, ξi, η

i, g), is said to be a Kenmotsu f.pk-manifold if it is normal, the 1-forms ηi are
closed and dΦ = 2η1 ∧ Φ.



34 Maria Falcitelli and Anna Maria Pastore

Definition 1.1 A metric f.pk-manifold M of dimension 2n+s, s ≥ 1, with f.pk-
structure (ϕ, ξi, η

i, g), is said to be an almost Kenmotsu f.pk-manifold if the 1-forms
ηi are closed and dΦ = 2η1 ∧ Φ.

Obviously, a normal almost Kenmotsu f.pk-manifold is a Kenmotsu f.pk-manifold.
Let (M2n+s, ϕ, ξi, η

i, g) be an almost Kenmotsu f.pk-manifold. Since the distrib-
ution D is integrable, we have Lξi

ηj = 0, [ξi, ξj ] ∈ D and [X, ξi] ∈ D for any X ∈ D.
Then, the Levi-Civita connection is given by:

2g((∇Xϕ)(Y ), Z) = 2g(g(ϕX, Y )ξ1 − η1(Y )ϕ(X), Z)
+g(N(Y, Z), ϕX) ,

(1.1)

for any X, Y, Z ∈ X (M2n+s). Putting X = ξi we obtain ∇ξi
ϕ = 0 which implies

∇ξiξj ∈ D⊥ and then ∇ξiξj = ∇ξj ξi since [ξi, ξj ] = 0.

For each i ∈ {1, . . . , s} we put Ai = −∇ξi and hi = 1
2Lξiϕ.

Proposition 1.1 For any i ∈ {1, . . . , s} the tensor field Ai is a symmetric ope-
rator such that:

1) Ai(ξj) = 0, for any j ∈ {1, . . . , s};
2) Ai ◦ ϕ + ϕ ◦Ai = −2δ1

i ϕ.

Proof. g(AiX, Y ) − g(X, AiY ) = −2dηi(X, Y ) = 0 implies that Ai is symmetric.
For any i, j, k ∈ {1, . . . , s} deriving g(ξi, ξj) = δij with respect to ξk, using ∇ξk

ξi =
∇ξiξk, we get 2g(ξk, Ai(ξj)) = 0. Since ∇ξj ξi ∈ D⊥, we conclude Ai(ξj) = 0. To prove
2), we notice that for any Z ∈ X (M2n+s) we have ϕ(N(ξi, Z)) = (Lξiϕ)(Z) and, on
the other hand, since ∇ξiϕ = 0,

Lξiϕ = Ai ◦ ϕ− ϕ ◦Ai.

Applying (1.1) with Y = ξi, we have

2g(ϕAiX,Z) = −2η1(ξi)g(ϕ(X), Z)− g(ϕ(N(ξi, Z)), X),

which implies 2). ¤
Proposition 1.2 For any i ∈ {1, . . . , s} the tensor field hi is a symmetric opera-

tor and:

1) hi(ξj) = 0, for any j ∈ {1, . . . , s};
2) hi ◦ ϕ + ϕ ◦ hi = 0 .

Proof. Equation 1) is obvious. Suppose i ≥ 2. Then, from Proposition 1.1 we
get hi = Ai ◦ ϕ = −ϕ ◦ Ai and for any tangent vector fields X, Y , g(hi(X), Y ) =
g(ϕX, AiY ) = −g(X, ϕAiY ) = g(X, hi(Y )). Now, we consider i = 1 and apply-
ing Proposition 1.1 we get h1 = A1 ◦ ϕ + ϕ = −ϕ ◦ A1 − ϕ, then g(h1(X), Y ) =
g(ϕX, A1(Y )) + g(ϕX, Y ) = g(X,h1(Y )). Finally, for i ≥ 2, hi ◦ ϕ + ϕ ◦ hi =
Ai ◦ ϕ2 − ϕ2 ◦Ai = 0 and

h1 ◦ ϕ = −ϕ ◦A1 ◦ ϕ− ϕ2 , ϕ ◦ h1 = ϕ ◦A1 ◦ ϕ + ϕ2

so h1 ◦ ϕ + ϕ ◦ h1 = 0. ¤
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Proposition 1.3 Let M2n+s be an almost Kenmotsu f.pk-manifold with structure
(ϕ, ξi, η

i, g). For any X ∈ X (M2n+s), we have:

1) ∇Xξi = −ϕhiX for any i ∈ {2, . . . , s} ,

2) ∇Xξ1 = −ϕ2(X)− ϕh1X ,

3) ∇ηi = g ◦ (ϕ× hi) and δηi = 0 for any i ∈ {2, . . . , s} ,

4) ∇η1 = g − ηk ⊗ ηk + g ◦ (ϕ× h1), δη1 = −2n and M2n+s cannot be compact.

Proof. For i ≥ 2, since hi = −ϕ ◦Ai, we get ϕ(∇Xξi) = hi(X) and applying ϕ, we
obtain 1). Now, let i = 1. Then h1 = −ϕ ◦A1 −ϕ gives ϕ(∇Xξ1) = ϕX + h1(X) and
applying ϕ we get 2). Finally, an easy computation gives 3) and 4). ¤

We obtain immediately the following result.

Corollary 1.1 All the operators hi vanish if and only if ∇ξ1 = −ϕ2 and ∇ξi = 0
for i ∈ {2, . . . , s}. In such a case ξ2, . . . , ξs are Killing vector fields and η2, . . . , ηs are
harmonic 1-forms.

Proposition 1.4 Let M2n+s be an almost Kenmotsu f.pk-manifold with structure
(ϕ, ξi, η

i, g). Then for any X, Y ∈ X (M2n+s), we have:

1) ϕ(N(X, Y )) + N(ϕX, Y ) = 2ηk(X)hk(Y ) ,

2) (∇Xϕ)Y + (∇ϕXϕ)(ϕY ) = −η1(Y )ϕX − 2g(X,ϕY )ξ1 − ηk(Y )hk(X) .

Proof. The first relation follows by direct computation, using dηi = 0 and the
definition of the hi’s. In particular, we get

g(N(ϕX, Y ), ξi) = 0 , N(Y, ξi) = 2ϕhi(Y ) .(1.2)

The second relation follows by (1.1) and 1). ¤

Finally, we consider (2n + 2)-dimensional almost Kenmotsu f.pk-manifolds and
compare them with locally conformal almost Kähler manifolds with parallel anti-Lee
form, considered by Kashiwada in [9]. We recall that an almost Hermitian manifold
(M, J, g) is locally conformal almost Kähler if and only if there exists a closed 1-form
ω such that the Kähler 2-form Ω satisfies dΩ = 2ω∧Ω. ω is the Lee form, ω̄ = −ω ◦J
the anti-Lee form and B, JB are the Lee and the anti-Lee vector fields.

We need a result essentially due to Goldberg and Yano ([7, 8]).

Theorem 1.1 Let M be a (2n + s)-dimensional f.pk-manifold with structure
(ϕ, ξi, η

i), and s even, s = 2p. The tensor field J defined by:

J = ϕ +
p∑

i=1

(η2i−1 ⊗ ξ2i − η2i ⊗ ξ2i−1)(1.3)

is an almost complex structure on M and, if g is a ϕ-compatible metric, (M, J, g) is
an almost Hermitian manifold with Kähler 2-form
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Ω = Φ− 2
p∑

i=1

η2i−1 ∧ η2i .(1.4)

The previous theorem and Proposition 1.3 easily imply the following result.

Theorem 1.2 Let M2n+2 be an almost Kenmotsu f.pk-manifold with structure
(ϕ, ξ1, ξ2, η

1, η2, g) and let J be the tensor field defined by:

J = ϕ + η1 ⊗ ξ2 − η2 ⊗ ξ1 .

Then, (M2n+2, J, g) is a locally conformal almost Kähler manifold with Lee 1-form
η1. The anti-Lee 1-form η2 = −η1 ◦ J is parallel if and only if h2 = 0.

Theorem 1.3 Let (M2n+2, J, g) be a locally conformal almost Kähler manifold
with unit Lee vector field B, anti-Lee vector field J(B), Lee 1-form ω and parallel
anti-Lee 1-form ω̄. Let ϕ be the tensor field defined by:

ϕ = J − ω ⊗ JB + ω̄ ⊗B .

Then (M2n+2, ϕ, B, JB, ω, ω̄, g) is an almost Kenmotsu f.pk-manifold and the opera-
tor h2 vanishes.

Proof. Theorem 1.1 ensures that g is a compatible metric for the f.pk-structure
(ϕ,B, JB, ω, ω̄). Note that ω, ω̄ are both closed and the fundamental form is given by
Φ = Ω + 2ω ∧ ω̄, so that dΦ = dΩ = 2ω ∧Ω = 2ω ∧Φ. Finally, since ∇ω̄ = 0, we have
h2 = 0. ¤

2 Distributions

We describe some distributions on an almost Kenmotsu f.pk-manifold of dimension
2n + s, s ≥ 1, with structure (ϕ, ξi, η

i, g).

Proposition 2.1 Let M2n+s be an almost Kenmotsu f.pk-manifold with struc-
ture (ϕ, ξi, η

i, g). The integral manifolds of D are almost Kähler manifolds with mean
curvature vector field H = −ξ1. They are totally umbilical submanifolds of M2n+s if
and only if all the operators hi’s vanish.

Proof. Let M ′ be an integral manifold of D. The tensor fields ϕ and g induce
an almost complex structure J and a Hermitian metric g′ on M ′. Then, for any
X, Y ∈ X (M ′), we have Ω′(X, Y ) = g′(X,JY ) = g(X, ϕY ) = Φ(X,Y ) and dΩ′ =
(dΦ)|M ′ = 0, so M ′ is an almost Kähler manifold. Computing the second fundamental
form, since the Ai’s are the Weingarten operators in the directions ξi, we get, via
Proposition 1.3,

α(X,Y ) =
∑s

i=1 g(AiX,Y )ξi

= g(ϕ2(X) + ϕh1(X), Y )ξ1 +
∑s

i=2 g(ϕhi(X), Y )ξi

= −g(X, Y )ξ1 +
∑s

i=1 g(ϕhi(X), Y )ξi .
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Fixed a local orthonormal frame (e1, . . . , en, ϕe1, . . . , ϕen) in TM ′, applying Propo-
sition 1.1, we obtain trAi = 0 for i ≥ 2, while trA1 = −2n. Hence we get

H =
1
2n

s∑

i=1

(trAi)ξi = −ξ1.

Finally, M ′ is totally umbilical if and only if hi = 0 for each i ∈ {1, . . . , s}. ¤

Proposition 2.2 In an almost Kenmotsu f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) the

distribution D has Kähler leaves if and only if, for any X, Y ∈ X (M2n+s),

(∇Xϕ)(Y ) =
s∑

i=1

(
ηi(Y )ϕAi(X)− g(ϕAi(X), Y )ξi

)
.(2.1)

Proof. Let M ′ be an integral manifold of D with the corresponding almost Kähler
structure. By the Gauss equation ∇XY = ∇′XY +

∑s
i=1 g(Ai(X), Y )ξi, we have

(∇′XJ)Y = (∇Xϕ)Y −
s∑

i=1

g(Ai(X), ϕY )ξi ,(2.2)

so each integral manifold M ′ is Kähler if and only if

(∇Xϕ)Y =
s∑

i=1

g(Ai(X), ϕY )ξi ,

for any X, Y ∈ D. Therefore, if D has Kähler leaves, given X, Y ∈ X (M2n+s), the
vector fields X−ηj(X)ξj and Y −ηj(Y )ξj belong to D and using ∇ξiϕ = 0, we obtain

(∇Xϕ)Y = ηk(Y )(∇Xϕ)(ξk) +
∑s

i=1 g(Ai(X), ϕY )ξi

= −ηk(Y )ϕ(∇Xξk) +
∑s

i=1 g(Ai(X), ϕY )ξi

=
∑s

i=1(η
i(Y )ϕAi(X)− g(ϕAi(X), Y )ξi) .

Vice versa (2.1) and (2.2) imply ∇′XJ = 0 on each integral manifold i.e. the Kähler
condition. ¤

Proposition 2.3 Let M2n+s be an almost Kenmotsu f.pk-manifold with structure
(ϕ, ξi, η

i, g) such that the integral manifolds of D are Kähler. Then M2n+s is a Ken-
motsu f.pk-manifold if and only if ∇ξ1 = −ϕ2 and ∇ξi = 0 for each i ∈ {2, . . . , s}.

Proof. Assuming that the structure is normal, we have Lξiϕ = 0 for each i ≥ 1,
which implies Ai ◦ ϕ = ϕ ◦ Ai. Combining with Proposition 1.1 we get Ai = 0 and
then ∇ξi = 0 for i ≥ 2, while A1 ◦ϕ = −ϕ, so that ∇ξ1 = −A1 = −ϕ2. Vice versa, we
notice that for i ≥ 2, ∇ξi = 0 implies Lξiϕ = 0 and from ∇ξ1 = −ϕ2 we get A1 = ϕ2

and Lξ1ϕ = 2A1 ◦ϕ+2ϕ = 0. Hence, for any i ∈ {1, . . . , s} and Z ∈ X (M) we obtain
ϕ(N(ξi, Z)) = 0 and N(ξi, Z) ∈ D⊥. Thus N(ξi, Z) = 0, since g(N(ξi, Z), ξk) = 0 for
each k ∈ {1, . . . , s}. Finally, N(ξi, ξj) = 0 is trivial and for X,Y ∈ D, N(X, Y ) = 0
since N(X,Y ) = NJ(X, Y ) = 0, the leaves of D being Kähler manifolds. ¤

Proposition 2.4 An almost Kenmotsu f.pk-manifold M2+s such that ∇ξ1 =
−ϕ2 and ∇ξi = 0 for i ≥ 2 is a Kenmotsu f.pk-manifold.
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Proof. When n = 1, the integral manifolds of the distribution D are almost Kähler
of dimension two and then they are Kähler. So we apply the previous proposition. ¤

Proposition 2.5 The distribution D⊥ =< ξ1, . . . , ξs > is integrable, with totally
geodesic flat leaves.

Proof. Just note that [ξi, ξj ] = 0 and ∇ξiξj = 0. ¤

When s ≥ 2, we can consider other distributions.

Proposition 2.6 The distribution D′ = D⊕ < ξ1 > is integrable. Its leaves are
minimal almost Kenmotsu manifolds.

Proof. Since D′ = {X ∈ X (M) | g(X, ξi) = 0, i ≥ 2}, and dηi = 0, the distribution
is clearly involutive with (2n+1)-dimensional integral manifolds. Let M ′ be an integral
manifold, ∇′ its Levi-Civita connection and ϕ′ the tensor field defined by ϕ′(X) =
ϕ(X) for any X ∈ X (M ′). It is easy to verify that ϕ′2 = −I+η1⊗ξ1 and dΦ′ = 2η1∧Φ′

so M ′ is an almost Kenmotsu manifold. Now, for any X,Y ∈ X (M ′), (∇′Xϕ′)(Y ) =
(∇Xϕ)(Y ) − α(X, ϕY ), α being the second fundamental form. Then, since for any
i ≥ 2 the Weingarten operators are Ai = −ϕ ◦ hi, the mean curvature vector field is
given by

H =
1

2n + 1

s∑

i=2

(
n∑

k=1

(g(ϕek, hiek) + g(ϕ2ek, hiϕek)) + g(ϕξ1, hiξ1)

)
ξi = 0.

¤

Proposition 2.7 For any i ∈ {1, . . . , s}, let Di = Ker ηi. Then:

1) for each i 6= 1, the distribution Di = D⊕ < ξ1, . . . , ξ̂i, . . . ξs >, where ξi is
omitted, is integrable and the integral manifolds are minimal almost Kenmotsu
f.pk-hypersurfaces;

2) the distribution D1 = D⊕ < ξ2, . . . , ξs > is integrable and its leaves are almost
C-manifolds with mean curvature H = − 2n

2n+s−1ξ1.

Proof. The integrability of the described distributions follows from the condition
dηi = 0, for each i ∈ {1, . . . , s}. Assume i 6= 1 and let M ′ be an integral manifold of Di.
Then, the unique Weingarten operator is Aξi = Ai, the second fundamental form is
given by α(X,Y ) = g(AiX,Y )ξi and its trace vanishes since Ai anticommutes with ϕ
and Ai(ξq) = 0 for q 6= i. So M ′ is minimal. By restriction, the structure on M deter-
mines an almost Kenmotsu f.pk-structure (ϕ′, ξ1, . . . , ξ̂i, . . . ξs, η

1, . . . , η̂i, . . . , ηs, g′)
on M ′. Now, suppose i = 1. The induced structure on each leaf of D1 has closed
fundamental form and since dηi = 0 for i ≥ 2, we obtain an almost C-manifold. The
unique Weingarten operator A1 verifies A1(X) = ϕ2(X) + ϕh1(X) for any X ∈ D1.
Hence α(X,Y ) = −g(ϕX, ϕY )ξ1 − g(h1X, ϕY )ξ1 and H = − 2n

2n+s−1ξ1. ¤

Example 1 Let (N2n, J, g̃), n ≥ 2, be a strictly almost Kähler manifold and
consider Rs ×N2n, with coordinates t1, . . . , ts on Rs. For any i ∈ {1, . . . , s}, we put
ξi = ∂

∂ti , ηi = dti and define the tensor field ϕ on Rs ×N2n such that ϕX = JX, if
X is a vector field on N2n and ϕX = 0 if X is tangent to Rs.
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Furthermore, we consider the metric g = g0 + c e2t1 g̃, where g0 denotes the Euclidean
metric on Rs and c ∈ R∗+. Then, the warped product Rs×f2 N2n, f2 = ce2t1 , with the
structure (ϕ, ξi, η

i, g), is a strictly almost Kenmotsu f.pk-manifold. Namely, it is easy
to verify that the 1-forms ηi’s are dual of the ξi’s with respect to g, ϕ2 = −I + ηi⊗ ξi

and g is a compatible metric. Furthermore, we get Φ = ce2t1p∗2(Ω̃), where p2 is the
projection on N2n and Ω̃ is the fundamental form of N2n. Then, since dΩ̃ = 0,
dΦ = 2ce2t1dt1 ∧ p∗2(Ω̃) = 2dt1 ∧ Φ = 2η1 ∧ Φ. Finally, since the torsion NJ does not
vanish, N2n being strictly almost Kähler, we obtain that the f.pk-structure is not
normal.

Remark 1 In [14], Oguro and Sekigawa describe a strictly almost Kähler struc-
ture on the Riemannian product H3 ×R. Thus the warped product Rs ×f2 (H3 ×R),
f2 = ce2t1 is a (4 + s)-dimensional strictly almost Kenmotsu f.pk-manifold.

Theorem 2.1 Let (M2n+s, ϕ, ξi, η
i, g) be an almost Kenmotsu f.pk-manifold. As-

sume that hi = 0 for any i ∈ {1, . . . , s}. Then, M2n+s is locally a warped product
Bs ×f2 N2n where N2n is an almost Kähler manifold, Bs is a flat manifold with
coordinates (t1, . . . , ts) and f2 = ce2t1 , c a positive constant.

Proof. We know that T (M2n+s) = Ker ϕ⊕ Im ϕ and the corresponding distribu-
tions < ξ1, . . . , ξs > and D are both integrable. Their integral manifolds are totally
geodesic flat manifolds and totally umbilical almost Kähler manifolds with second
fundamental form α = −g ⊗ ξ1, mean curvature H = −ξ1, respectively. Thus, as a
manifold, M2n+s is locally a product B×F with T (B) =< ξ1, . . . , ξs > and F is almost
Kähler. We can choose a neighborhood with coordinates (t1, . . . , ts, x1, . . . , x2n) such
that π∗(ξi) = ∂

∂ti , π denoting the projection onto B. Then π : B × F → B is
a C∞-submersion with vertical distribution V = T (F ) and horizontal distribution
H = T (B). Moreover, the splitting V ⊕H is orthogonal with respect to the metric g
and, since, for any p ∈ B × F , gp(ξi, ξj) = δij = gπ(p)(π∗ξi, π∗ξj), π is a Riemannian
submersion. The horizontal distribution is integrable, so the O’Neill tensor A vanishes.
Moreover N = 2nH = −2nξ1 is a basic vector field. Now, computing the trace-free
part T 0 of the O’Neill tensor T , for any U, V vertical vector fields, we get:

T 0
UV = h(∇UV )− 1

2ng(U, V )N = α(U, V ) + g(U, V )ξ1 = 0 ;

T 0
Uξ1 = TUξ1 + 1

2ng(N, ξ1)U = v(∇Uξ1)− g(ξ1, ξ1)U = U − U = 0 ;

T 0
Uξi = v(∇Uξi)− g(ξ1, ξi)U = 0 , i ≥ 2 .

Thus T 0 = 0 and B×F , and then M2n+s, is locally a warped product and N = −2nξ1

is π-related to − 2n
f gradg0f , g0 being the flat metric on B ([1], 9.104). It follows that

1
f grad f = ∂

∂t1 which implies f = ket1 and f2 = ce2t1 , with c a positive constant.
Finally, the warped metric is locally given by

∑s
i=1 dti⊗dti+ce2t1 g̃, g̃ being an almost

Kähler metric. ¤

3 Conformal changes

Let M be an f.pk-manifold of dimension 2n + s with structure (ϕ, ξi, η
i, g). A local

conformal change of the structure is given by a family (Uα, σα)α∈A where (Uα)α∈A is
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an open covering of M and, for any α ∈ A, σα ∈ F(Uα). Putting

ϕα = ϕ|Uα
, ξα

i = eσαξi|Uα
, ηi

α = e−σαηi
|Uα

, gα = e−2σαg|Uα
,(3.1)

(Uα, ϕα, ξα
i , ηi

α, gα) is an f.pk-manifold. Note that for s = 1 this is the concept of
conformal change of an almost contact metric structure.

Definition 3.1 An f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) is said to be a locally

conformal almost Kenmotsu f.pk-manifold if there exists a local conformal change
(Uα, σα)α∈A such that for each α ∈ A, (Uα, ϕα, ξα

i , ηi
α, gα) is an almost Kenmotsu

f.pk-manifold.

It follows that for any α ∈ A we have dηi
α = 0 so that there exists a unique

k ∈ {1, . . . , s}, which a priori depends on α, such that dΦα = 2ηk
α ∧ Φα, where Φα is

defined by Φα(X,Y ) = gα(X, ϕαY ) = e−2σαg(X,ϕY ), for any vector fields X,Y on
Uα. Moreover, on each Uα we easily obtain

2hα
i = Lξα

i
ϕα = 2eσαhi − (dσα ◦ ϕα)⊗ ξi .(3.2)

Definition 3.2 An f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) is said to be a globally

conformal almost Kenmotsu f.pk-manifold if there exists a smooth function σ on
M2n+s such that, putting

ϕ̃ = ϕ, ξ̃i = eσξi, η̃
i = e−σηi, g̃ = e−2σg,

(M2n+s, ϕ̃, ξ̃i, η̃
i, g̃) is an almost Kenmotsu f.pk-manifold.

Theorem 3.1 Let (M2n+s, ϕ, ξi, η
i, g) be a locally conformal almost Kenmotsu

f.pk-manifold and s ≥ 2. Then, up to a rearrangement of the ξi’s, there exists a
function σ ∈ F(M2n+s) such that

dΦ = 2(dσ + e−ση1) ∧ Φ,
dηi = dσ ∧ ηi , i ∈ {1, . . . , s} .

(3.3)

Proof. Firstly we prove that there exists a closed 1-form ω such that dηi = ω ∧ ηi

for each i ≥ 1. Namely, considering α ∈ A, since ηi
α = e−σαηi

|Uα
, dηi

α = 0 implies
dηi

|Uα
= dσα∧ηi

|Uα
. Thus, for α, β ∈ A such that Uα∩Uβ 6= ∅, for any i ∈ {1, . . . , s}

we get dσα ∧ ηi = dσβ ∧ ηi and so (dσα − dσβ) ∧ ηi = 0. Therefore, for any vector
field X and any j ∈ {1, . . . , s} we obtain

(dσα − dσβ)(X)ηi(ξj) = (dσα − dσβ)(ξj)ηi(X)

and choosing X ∈ D and j = i we get (dσα− dσβ)(X) = 0. Furthermore, since s ≥ 2,
we can choose X = ξk with k 6= j obtaining (dσα − dσβ)(ξk) = 0. Hence, the local
1-forms dσα give rise to the required global 1-form ω.
Now, for any α ∈ A, we have dΦα = 2ηt

α ∧ Φα, and, denoting by ∇α the Levi-Civita
connection on (Uα, gα), we have ∇αξα

i = −δt
iϕ

2 − ϕ ◦ hα
i . Let β ∈ A such that

Uα ∩ Uβ 6= ∅. Then, dΦβ = 2ηk
β ∧ Φβ and, in the intersection, ∇αξα

i = ∇βξβ
i implies

δt
iϕ

2 + ϕ ◦ hα
i = δk

i ϕ2 + ϕ ◦ hβ
i . Now, assuming t 6= k, choosing i = t and then i = k,

we get
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ϕ2 + ϕ ◦ hα
i = ϕ ◦ hβ

i , ϕ ◦ hα
i = ϕ2 + ϕ ◦ hβ

i ,

which easily imply ϕ2 = 0, so obtaining a contradiction. Thus we have t = k and we
can suppose that, up to a rearrangement, dΦα = 2η1

α ∧ Φα, for each α ∈ A. Finally,
differentiating Φα = e−2σαΦ, we get dΦ = 2(e−σαη1 +dσα)∧Φ, in Uα and, comparing
with the analogous expression in Uβ , σα and σβ coincide in Uα ∩ Uβ . Hence there
exists a function σ ∈ F(M2n+s) such that ω = dσ and dΦ = 2(e−ση1 + dσ) ∧ Φ. ¤

Proposition 3.1 Let (M2n+s, ϕ, ξi, η
i, g), s ≥ 2, be an f.pk-manifold which ad-

mits a function σ ∈ F(M2n+s) such that (3.3) holds. Then, M2n+s is a globally
conformal almost Kenmotsu f.pk-manifold, with function σ.

Proof. We put ϕ̃ = ϕ, ξ̃i = eσξi, η̃i = e−σηi, g̃ = e−2σg. Then one easily verifies
that (M2n+s, ϕ̃, ξ̃i, η̃ , g̃) is an f.pk-manifold with fundamental form Φ̃ = e−2σΦ and
dΦ̃ = 2η̃1 ∧ Φ̃, dη̃i = 0, for each i ∈ {1, . . . , s}. ¤

Remark 2 The previous two results allow to state that an f.pk-manifold M2n+s,
with s ≥ 2, is locally conformal almost Kenmotsu if and only if it is globally conformal
almost Kenmotsu or, equivalently, if and only if there exists a function σ ∈ F(M2n+s)
such that (3.3) holds. Moreover, assuming that M2n+s is connected, the function σ is
a constant if and only if M2n+s is homothetic to an almost Kenmotsu f.pk-manifold.
Furthermore, since the normality condition is not involved in the previous discussion,
the same equivalences hold for locally (globally) conformal Kenmotsu f.pk-manifolds.

We remark that the hypothesis s ≥ 2 is essential in the above results. Namely,
when s = 1, Olszak proved that an almost contact metric manifold (M2n+1, ϕ, ξ, η, g)
is locally conformal almost cosymplectic if and only if there exists a closed 1-form ω
such that dΦ = 2ω ∧ Φ and dη = ω ∧ η. Furthermore, M2n+1 is almost α-Kenmotsu
if and only if it is locally conformal almost cosymplectic with ω = αη, α being a
non-vanishing constant. This means that when s = 1 the almost α-Kenmotsu mani-
folds, with α constant, set up a subclass of the locally conformal almost cosymplectic
manifolds. Now, we investigate the case s ≥ 2 from this point of view.

We need the following characterization of locally conformal almost C-manifolds.

Proposition 3.2 Let (M2n+s, ϕ, ξi, η
i, g), s ≥ 2, be an f.pk-manifold. Then,

M2n+s is a locally conformal almost C-manifold if and only if there exists a 1-form ω
such that

dω = 0, dΦ = 2ω ∧ Φ, dηi = ω ∧ ηi, for each i ∈ {1, . . . , s} .(3.4)

Proof. Assuming that M2n+s is a locally conformal almost C-manifold, we apply
the same technique as at the beginning of the proof of Theorem 3.1 and determine
a closed 1-form ω such that dηi = ω ∧ ηi for each i ∈ {1, . . . , s}. The condition
dΦ = 2ω ∧ Φ is achieved since an almost C-manifold has closed fundamental form.
Vice versa, ω being locally exact, we consider an open covering (Uα)α∈A such that,
for any α ∈ A, ω|Uα

= dσα. Then, putting

ϕα = ϕ|Uα
, ξα

i = eσαξi|Uα
, ηi

α = e−σαηi
|Uα

, gα = e−2σαg|Uα
,

it is easy to check that (Uα, ϕα, ξα
i , ηi

α, gα) is an almost C-manifold. ¤
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Proposition 3.3 The class of the almost Kenmotsu f.pk-manifolds of dimension
2n + s, s ≥ 2, is disjoint from the class of the locally conformal almost C-manifolds.

Proof. Let (M2n+s, ϕ, ξi, η
i, g), s ≥ 2, be an f.pk-manifold which is almost Ken-

motsu and locally conformal almost C-manifold. Then there exists a 1-form ω such that
dΦ = 2ω∧Φ, dηi = ω∧ ηi for each i ∈ {1, . . . , s}. Furthermore, one has dΦ = 2η1 ∧Φ
and dηi = 0. This implies ω ∧ ηi = 0 and then, since s ≥ 2, we get ω = 0 and
η1 ∧ Φ = 0. Choosing X ∈ D, ‖X‖ = 1 and computing (η1 ∧ Φ)(ξ1, X, ϕX) we get
η1(ξ1) = 0 which is a contradiction. ¤

Remark 3 It is also easy to verify that in dimension 2n + s, s ≥ 2, the locally
conformal almost C-manifolds set up a class which is disjoint from the class of locally
conformal almost Kenmotsu f.pk-manifolds.
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