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Abstract. A class of manifolds which admit an f-structure with s-
dimensional parallelizable kernel is introduced and studied. Such mani-
folds are called almost Kenmotsu f.pk-manifolds. If s = 1, one obtains
almost Kenmotsu manifolds and, if s = 2, they carry a locally conformal
almost Kéhler structure. Several foliations canonically associated with an
almost Kenmotsu f.pk-manifold are studied. Locally conformal almost
Kenmotsu f.pk-manifolds are characterized. If s > 2, they set up a class
which is disjoint from that of locally conformal almost C-manifolds.
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Introduction

An f-structure on a C*° m-dimensional manifold M is defined by a non-vanishing
tensor field ¢ of type (1,1) which satisfies p® + ¢ = 0 and has constant rank 7. It
is known that, in this case, r is even, r = 2n. Moreover, T M splits into two com-
plementary subbundles I'm ¢ and Ker ¢ and the restriction of ¢ to I'm ¢ determines
a complex structure on such subbundle. It is also known that the existence of an
f-structure on M is equivalent to a reduction of the structure group to U(n) x O(s),
where s = m — 2n ([2]). An interesting case occurs when the subbundle Ker ¢ is
parallelizable, for which the reduced structure group is U(n) x {Is}, and we have
an f-structure with parallelizable kernel, briefly denoted by f.pk-structure, the re-
spective manifold being called an f.pk-manifold or a globally framed manifold ([8]).
Then, there exists a global frame {¢;} for the subbundle Ker ¢ with dual 1-forms
n', 1 <i < s, satisfying ¢ = —I+ Y ;_, ' ®&;. It follows that ¢& =0, niop =0.
From now on we will omit the sum symbol for repeated indexes varying in {1,...,s}. It
is well known that one can consider compatible Riemannian metrics g on M such that
for any tangent vector fields X, Y, one has g(X,Y) = g(¢X, ¢Y) + n*(X)n*(Y) and,
fixed a compatible metric g, (¢, &, 7', g) is called a metric f.pk-structure. Therefore,
T (M) splits as complementary orthogonal sum of its subbundles I'm ¢ and Ker .
We denote their respective differentiable distributions by D and D+.

Batkan Journal of Geometry and Its Applications, Vol.12, No.1, 2007, pp. 32-43.
(© Balkan Society of Geometers, Geometry Balkan Press 2007.



Almost Kenmotsu f-manifolds 33

A wide class of f.pk-structures was introduced in [2] by D. Blair according to the
following definition. A metric f.pk-structure is said a K-structure if the fundamental 2-
form @, defined usually as ®(X,Y) = g(X, ¢Y), is closed and the normality condition
holds, i.e. N = [, ] + 2dn' @ & = 0, where [p, ¢] denotes the Nijenhuis torsion of
. Several subclasses have been studied from different points of view ([2, 3, 4]), also
dropping the normality condition and, in this case, the term almost precedes the name
of the considered structures or manifolds. If dn' = ... = dn®* = @, the (almost) K-
structure is said an (almost) S-structure and M an (almost) S-manifold. If dn® = 0
for all 4 € {1,..., s}, then the (almost) K-structure is called an (almost) C-structure
and M is said an (almost) C-manifold.

In [6], we studied normal metric f.pk-structures and then f.pk-manifolds (called
Kenmotsu f.pk-manifolds), for which the 2-form ® verifies the condition d® = 2n* A®,
for some i € {1,..., s}, also proving that such an index is unique and choosing ¢ = 1.

This paper deals with almost Kenmotsu f.pk-manifolds. Firstly, we state general
properties involving the coderivative of the n*’s with respect to the Levi-Civita con-
nection. Several foliations can be described. In particular, each leaf of the distribution
Im p has an almost Kahler structure and we give conditions which are equivalent to
the request that Im ¢ has Kéhler or, possibly, totally umbilical leaves. Then, we ex-
plain a procedure to construct almost Kenmotsu f.pk-manifolds, starting from almost
Kahler manifolds. Furthermore, we prove that if the leaves of I'm ¢ in an almost Ken-
motsu f.pk-manifold M2 +$ are totally umbilical, then M?2?"+* is locally a warped
product of an almost Kéhler manifold and R®, with warping function depending on a
Euclidean coordinate, only.

In section 3, we study (2n + s)-dimensional metric f.pk-manifolds admitting a
structure which is locally conformal to an almost Kenmotsu one and prove that, if
s > 2, each of the considered conformal changes is global. We also characterize locally
conformal almost C-manifolds and prove that an almost Kenmotsu manifold 27+,
s > 2, cannot be a locally conformal almost C-manifold. Note that, when s = 1,
almost Kenmotsu manifolds set up a subclass of locally conformal almost cosymplec-
tic manifolds ([13]), whereas almost C-manifolds coincide with almost cosymplectic
manifolds.

We recall that the Levi-Civita connection V of a metric f.pk-manifold satisfies the
following formula ([2],[5]):

20((Vx@)Y,Z) = 3d®(X,pY,¢Z) - 3dd(X,Y, Z)
+g(N(Y, Z),0X) + N(Y, Z)9 (X)
+2dn’ (Y, X)n? (Z) — 2di’ (9 Z, X)P (Y).

Each tensor field N]@) is defined by NJ(Z) (X,Y) = (Loxn?)(Y) = (Loyn?)(X), and
can be rewritten as NJ@) (X,Y) =2dn’ (pX,Y) — 2dn? (pY, X).

1 Almost Kenmotsu f.pk-manifolds

In [6], a metric f.pk-manifold M of dimension 2n + s, s > 1, with f.pk-structure
(0, &,n%, g), is said to be a Kenmotsu f.pk-manifold if it is normal, the 1-forms 7° are
closed and d® = 2n' A ®.
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Definition 1.1 A metric f.pk-manifold M of dimension 2n+s, s > 1, with f.pk-
structure (g, &;,1°, g), is said to be an almost Kenmotsu f.pk-manifold if the 1-forms
n' are closed and d® = 2n' A ®.

Obviously, a normal almost Kenmotsu f.pk-manifold is a Kenmotsu f.pk-manifold.

Let (M?2"%5 . &, 0%, g) be an almost Kenmotsu f.pk-manifold. Since the distrib-
ution D is integrable, we have L¢,n/ = 0, [¢;,&;] € D and [X,&;] € D for any X € D.
Then, the Levi-Civita connection is given by:

(1.1) 29((Vxo)(Y), Z) =2g(g(X,Y )1 — ' (Y)p(X), Z)
' +9(N(Y, Z),9X),

for any X,Y,Z € X(M?"*%). Putting X = & we obtain V¢, = 0 which implies
Ve, & € DF and then Vi &, = Ve, & since [§;,&5] = 0.
For each i € {1,...,s} we put A; = —V¢; and h; = £ L¢, .

Proposition 1.1 For any i € {1,...,s} the tensor field A; is a symmetric ope-
rator such that:

1) Ai(&) =0, for any j € {1,...,s};
2) Aiop+pod;=-24p.

Proof. g(A; X,Y) — g(X, A;Y) = —2dn'(X,Y) = 0 implies that A; is symmetric.
For any i,j,k € {1,...,s} deriving g(&,&;) = 0;; with respect to &, using V¢, & =
Ve, &, we get 29(&, Ai(&5)) = 0. Since Ve, & € D+, we conclude 4;(€;) = 0. To prove
2), we notice that for any Z € X(M?""*) we have (N (&, Z)) = (Le¢,¢)(Z) and, on
the other hand, since V¢, ¢ = 0,

Lep=Aj0p—poA,.
Applying (1.1) with Y = &;, we have

29(pAiX, Z) = =20 (&)9(#(X), Z) — g(p(N (&, Z)), X),
which implies 2). O

Proposition 1.2 For any i € {1,...,s} the tensor field h; is a symmetric opera-
tor and:

1) hi(§;) =0, for any j € {1,...,s};
2) hjop+woh; =0.

Proof. Equation 1) is obvious. Suppose ¢ > 2. Then, from Proposition 1.1 we
get hy = A;jop = —po A; and for any tangent vector fields XY, g(h;(X),Y) =
g(pX, A;Y) = —g(X,pAY) = g(X,h;(Y)). Now, we consider ¢ = 1 and apply-
ing Proposition 1.1 we get hy = Ajop+ ¢ = —po Ay — ¢, then g(h(X),Y) =
9(pX, A1(Y)) + g(¢X,Y) = g(X,h1(Y)). Finally, for i > 2, hjopo+ poh; =
Ajop? —¢?0A; =0and

hiop=—podiop—¢°, pohi=poAiop+’
so hyop+pohy =0. ]
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Proposition 1.3 Let M2?"5 be an almost Kenmotsu f.pk-manifold with structure
(0, &,n%, g). For any X € X(M?*""%), we have:

1) Vx& = —ph X for anyie€ {2,...,s},

2) Vx& = —¢*(X) —ph X,

3) V' =go(pxh;) and 6n' =0 for anyi € {2,...,s},

4) Vit =g—n*@n* +go(p x hy), dn' = —2n and M>"*+* cannot be compact.

Proof. For i > 2, since h; = —po A;, we get (Vx&;) = h;(X) and applying ¢, we
obtain 1). Now, let i = 1. Then hy = —p o A; — p gives p(Vx&) = pX + hi(X) and
applying ¢ we get 2). Finally, an easy computation gives 3) and 4). O

We obtain immediately the following result.

Corollary 1.1 All the operators h; vanish if and only if V& = —¢? and V& =0
fori e {2,...,s}. In such a case &, . .., & are Killing vector fields and n?,. .., n° are
harmonic 1-forms.

Proposition 1.4 Let M?"3 be an almost Kenmotsu f.pk-manifold with structure
(0,&i,m%,9). Then for any X,Y € X(M?"**), we have:

1) o(N(X,Y)) + N(eX,Y) = 2n*(X)h(Y),
2) (Vx@)Y + (Vox@)(@Y) = —n'(Y)eX — 29(X, 0Y )1 — n* (V) hp(X) .

Proof. The first relation follows by direct computation, using dn* = 0 and the
definition of the h;’s. In particular, we get

(1.2) g(N(pX,Y),&) =0, N(Y,&)=20hi(Y).

The second relation follows by (1.1) and 1). O

Finally, we consider (2n + 2)-dimensional almost Kenmotsu f.pk-manifolds and
compare them with locally conformal almost Kéhler manifolds with parallel anti-Lee
form, considered by Kashiwada in [9]. We recall that an almost Hermitian manifold
(M, J,g) is locally conformal almost Kahler if and only if there exists a closed 1-form
w such that the Kahler 2-form (2 satisfies d©2 = 2w A Q). w is the Lee form, v = —wo J
the anti-Lee form and B, JB are the Lee and the anti-Lee vector fields.

We need a result essentially due to Goldberg and Yano ([7, 8]).

Theorem 1.1 Let M be a (2n + s)-dimensional f.pk-manifold with structure
(p,&,n%), and s even, s = 2p. The tensor field J defined by:

P
(1.3) J = <P+Z(772i71 ® &ai — NP @ Egi1)

i=1

is an almost complex structure on M and, if g is a p-compatible metric, (M, J,g) is
an almost Hermitian manifold with Kdhler 2-form
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p
(1.4) Q=02 ¥t An.

i=1
The previous theorem and Proposition 1.3 easily imply the following result.

Theorem 1.2 Let M?"t2 be an almost Kenmotsu f.pk-manifold with structure
(0, &1,€2,n1,m%, g) and let J be the tensor field defined by:

J=p+n' @& -1*®&.

Then, (M?"*2 ] g) is a locally conformal almost Kdihler manifold with Lee 1-form
n'. The anti-Lee 1-form n? = —n' o J is parallel if and only if hy = 0.

Theorem 1.3 Let (M?"*2,J,g) be a locally conformal almost Kdihler manifold
with unit Lee vector field B, anti-Lee vector field J(B), Lee 1-form w and parallel
anti-Lee 1-form w. Let ¢ be the tensor field defined by:

p=J-w®JB+w®B.

Then (M?"*2 p, B, JB,w,®,g) is an almost Kenmotsu f.pk-manifold and the opera-
tor ho vanishes.

Proof. Theorem 1.1 ensures that ¢g is a compatible metric for the f.pk-structure
(p, B, JB,w,®). Note that w, @ are both closed and the fundamental form is given by
d =04 2wAw, so that d® = d) = 2w AQ = 2w A ®. Finally, since Vo = 0, we have
ho = 0. |

2 Distributions

We describe some distributions on an almost Kenmotsu f.pk-manifold of dimension
2n + s, s > 1, with structure (¢, &;, 7", g).

Proposition 2.1 Let M?"** be an almost Kenmotsu f.pk-manifold with struc-
ture (p,&:,n, g). The integral manifolds of D are almost Kdhler manifolds with mean
curvature vector field H = —&,. They are totally umbilical submanifolds of M?"+* if
and only if all the operators h;’s vanish.

Proof. Let M’ be an integral manifold of D. The tensor fields ¢ and ¢ induce
an almost complex structure J and a Hermitian metric ¢’ on M’. Then, for any
X, Y € X(M'), we have V(X,Y) = ¢'(X,JY) = g(X,pY) = &(X,Y) and d¥ =
(d®)p = 0, s0 M" is an almost Kéhler manifold. Computing the second fundamental
form, since the A;’s are the Weingarten operators in the directions &;, we get, via
Proposition 1.3,

a(X,Y) =320 9(AX, Y
= g(*(X) + oh1(X),Y)E1 + 2275 g(ehi(X), V)&

= _g(Xv Y)gl + Zf:l g(‘phi(X)7 Y)fz .
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Fixed a local orthonormal frame (e, ..., ey, pe1,...,pe,) in TM', applying Propo-
sition 1.1, we obtain trA; = 0 for ¢ > 2, while trA; = —2n. Hence we get
1 S
i=1
Finally, M’ is totally umbilical if and only if h; = 0 for each i € {1,...,s}. a

Proposition 2.2 In an almost Kenmotsu f.pk-manifold (M*""5 ¢, &1, g) the
distribution D has Kdhler leaves if and only if, for any X,Y € X (M?"+$),

S

(2.1) (Vxe)(Y) =Y (7' (V)pAi(X) — g(0Ai(X),Y)&) -

i=1

Proof. Let M’ be an integral manifold of D with the corresponding almost Kahler
structure. By the Gauss equation VxY = Vi Y + 37 | g(4;(X),Y)&, we have

(2:2) (Vi)Y = (Vxp)Y Zg ), Y )&,
so each integral manifold M’ is Kéahler if and only if

(Vxo)V Zg ), Y&,

for any X,Y € D. Therefore, if D has Kihler leaves, given X,Y € X (M?""¢), the
vector fields X —n?(X)&; and Y — 17 (Y)¢; belong to D and using V¢, = 0, we obtain

(Vxp)Y = nk(Y)(szo)(&c) + 300 9(A(X), eY)&
=" V)e(Vx&) + i1 9(Ai(X), oY )&
=3 (YV)eAi(X) — g(pAi(X), Y)&) .

Vice versa (2.1) and (2.2) imply V’yJ = 0 on each integral manifold i.e. the Kéhler
condition. g

Proposition 2.3 Let M2?"5 be an almost Kenmotsu f.pk-manifold with structure
(0, &,n% g) such that the integral manifolds of D are Kdihler. Then M*"5 is a Ken-
motsu f.pk-manifold if and only if V& = —p? and V& =0 for each i € {2,...,s}.

Proof. Assuming that the structure is normal, we have L¢, ¢ = 0 for each i > 1,
which implies A; o p = p o A;. Combining with Proposition 1.1 we get A; = 0 and
then V& = 0 for i > 2, while A; o = —¢, so that V& = —A; = —¢?. Vice versa, we
notice that for i > 2, V&; = 0 implies L¢, o = 0 and from V& = —¢? we get 4; =
and L¢, ¢ =245 09+ 2¢p = 0. Hence, for any i € {1,...,s} and Z € X(M) we obtain
©(N(&,7)) =0 and N(&,Z) € DY Thus N(&;, Z) = 0, since g(N(&;, Z), &) = 0 for
each k € {1,...,s}. Finally, N(;,&;) = 0 is trivial and for X,Y € D, N(X,Y) =0
since N(X,Y) = N;(X,Y) = 0, the leaves of D being Kéhler manifolds. O

Proposition 2.4 An almost Kenmotsu f.pk-manifold M*** such that V& =
—p? and V& =0 fori > 2 is a Kenmotsu f.pk-manifold.
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Proof. When n = 1, the integral manifolds of the distribution D are almost Kéahler
of dimension two and then they are Kéhler. So we apply the previous proposition. [

Proposition 2.5 The distribution D+ =< &1,...,&, > is integrable, with totally
geodesic flat leaves.

Proof. Just note that [§;,&;] = 0 and V¢,§; = 0. O

When s > 2, we can consider other distributions.

Proposition 2.6 The distribution D' = D& < & > is integrable. Its leaves are
minimal almost Kenmotsu manifolds.

Proof. Since D' = {X € X(M) | g(X,&) = 0,i > 2}, and dn’ = 0, the distribution
is clearly involutive with (2n+1)-dimensional integral manifolds. Let M’ be an integral
manifold, V' its Levi-Civita connection and ¢’ the tensor field defined by ¢'(X) =
o(X) for any X € X (M'). It is easy to verify that 0% = —T+n'®& and d®’ = 2n' AP/
so M’ is an almost Kenmotsu manifold. Now, for any X,Y € X(M'), (V¢ )(Y) =
(Vxp)(Y) — a(X,¢Y), a being the second fundamental form. Then, since for any
1 > 2 the Weingarten operators are A; = —p o h;, the mean curvature vector field is
given by

S

- 2n1+ 1 > (Z(g(wem hier) + g(@’ex, hiver)) + g(pi, hzfl)) & =0.
i=2 \k=1

|
Proposition 2.7 For any i € {1,...,s}, let D; = Kern'. Then:

1) for each i # 1, the distribution D; = D® < 51,...,&,...55 >, where &; is
omitted, is integrable and the integral manifolds are minimal almost Kenmotsu
f-pk-hypersurfaces;

2) the distribution D1 = D® < &a,...,&s > is integrable and its leaves are almost
C-manifolds with mean curvature H = —#fl.

Proof. The integrability of the described distributions follows from the condition
dn® =0, for eachi € {1,...,s}. Assume i # 1 and let M’ be an integral manifold of D;.
Then, the unique Weingarten operator is A¢, = A;, the second fundamental form is
given by a(X,Y) = g(4;X,Y)&; and its trace vanishes since A; anticommutes with ¢
and A;(§;) = 0 for ¢ # i. So M’ is minimal. By restriction, the structure on M deter-
mines an almost Kenmotsu f.pk-structure (¢, &1, ... ,éh TN LY LAY L
on M'. Now, suppose i = 1. The induced structure on each leaf of D; has closed
fundamental form and since dn* = 0 for > 2, we obtain an almost C-manifold. The
unique Weingarten operator A; verifies A1(X) = ¢*(X) + ¢hy(X) for any X € D;.
Hence a(X,Y) = —g(¢X, Y )& — g(h X, Y )& and H = 7%3_%51. O

Example 1 Let (N?",J,3), n > 2, be a strictly almost Kihler manifold and
consider R®* x N?" with coordinates t!,...,t* on R®. For any i € {1,...,s}, we put
& = 225, n' = dt' and define the tensor field ¢ on R® x N2" such that X = JX, if
X is a vector field on N?" and pX = 0 if X is tangent to R®.
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Furthermore, we consider the metric g = go + ce?t’ g, where gg denotes the Euclidean

metric on R* and ¢ € R¥ . Then, the warped product R* x j2 N?", f? = ce?t" | with the
structure (p,&;,n", g), is a strictly almost Kenmotsu f.pk-manifold. Namely, it is easy
to verify that the 1-forms 1"’s are dual of the &;’s with respect to g, p? = —I+n' ®§&;
and g is a compatible metric. Furthermore, we get ® = ce2t! pg(fl), where ps is the
projection on N?" and Q1 is the fundamental form of N2". Then, since d{) = 0,
d® = 2ce2 dt' A p3(Q) = 2dt* A ® = 27 A ®. Finally, since the torsion N; does not
vanish, N?" being strictly almost Kahler, we obtain that the f.pk-structure is not
normal.

Remark 1 In [14], Oguro and Sekigawa describe a strictly almost Kéhler struc-
ture on the Riemannian product H? x R. Thus the warped product R® x #2 (H? x R),

2= ce?t is a (4 + s)-dimensional strictly almost Kenmotsu f.pk-manifold.

Theorem 2.1 Let (M?"F . &, g) be an almost Kenmotsu f.pk-manifold. As-
sume that h; = 0 for any i € {1,...,s}. Then, M>"* is locally a warped product
B® X2 N2 where N?™ is an almost Kdhler manifold, B® is a flat manifold with

2¢t

coordinates (t',... %) and f* = ce® | ¢ a positive constant.

Proof. We know that T(M?"*%) = Ker ¢ @ Im ¢ and the corresponding distribu-
tions < £1,...,&s > and D are both integrable. Their integral manifolds are totally
geodesic flat manifolds and totally umbilical almost Kéhler manifolds with second

fundamental form a = —g ® &, mean curvature H = —£;, respectively. Thus, as a
manifold, M?"%# is locally a product Bx F with T(B) =< &;,...,& > and F is almost
Kihler. We can choose a neighborhood with coordinates (t!,...,t% z1,... 2?") such

that 7, (&) = %, 7 denoting the projection onto B. Then # : B X F — B is
a C*-submersion with vertical distribution V = T'(F) and horizontal distribution
H = T(B). Moreover, the splitting V @ H is orthogonal with respect to the metric g
and, since, for any p € B x F, g,(£:,&5) = 0ij = gr(p)(7:&i, M&j), T is a Riemannian
submersion. The horizontal distribution is integrable, so the O’Neill tensor A vanishes.
Moreover N = 2nH = —2n&; is a basic vector field. Now, computing the trace-free
part T of the O’Neill tensor T, for any U, V vertical vector fields, we get:

TV =h(VuV) = 3.9V, V)N = a(U,V) + g(U, V)éx = 0;
TH& =Tu& + 5-9(N, &)U =v(Vy&) — g(&,6)U =U — U = 0;

Thus T° = 0 and B x F, and then M?"*¢ is locally a warped product and N = —2n¢;
is m-related to fz%gradgof, go being the flat metric on B ([1], 9.104). It follows that

%gradf = 8%1 which implies f = ket and f2 = ce?', with ¢ a positive constant.
Finally, the warped metric is locally given by > 7, dt'®dt'4ce?"1 §, g being an almost

Kéahler metric. O

3 Conformal changes

Let M be an f.pk-manifold of dimension 2n + s with structure (¢, &;,1%, g). A local
conformal change of the structure is given by a family (Uy, 04 )aca wWhere (Uy)aca is
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an open covering of M and, for any a € A, o, € F(U,). Putting

o —204

(3.1) Pa = P|Uy>» & eg(’fz‘waa nf; = 6_”“77i|ua, Ja =€ 91U,

(Uas @ar, €211, go) is an f.pk-manifold. Note that for s = 1 this is the concept of
conformal change of an almost contact metric structure.

Definition 3.1 An f.pk-manifold (M?""5 ¢, &, 1 g) is said to be a locally
conformal almost Kenmotsu f.pk-manifold if there exists a local conformal change
(Uay0a)aca such that for each a € A, (Uy, Pa, £ 1%, go) is an almost Kenmotsu
f.pk-manifold.

It follows that for any o € A we have dn{, = 0 so that there exists a unique
k € {1,...,s}, which a priori depends on «, such that d®, = 2n% A ®,, where ®, is
defined by @,(X,Y) = go(X,9aY) = e 272g(X, pY), for any vector fields X,Y on
U,. Moreover, on each U, we easily obtain

(32) 2h? = E{f‘@a =2e%*h; — (dO’a o SDa) (24 gl .

Definition 3.2 An f.pk-manifold (M?"F5 o & 7' g) is said to be a globally
conformal almost Kenmotsu f.pk-manifold if there exists a smooth function ¢ on
M?n+s guch that, putting

—0, 0 = 20

¢:w7éi:€o-€i7ﬁi:e 7779:‘9_ 9,

(M?2nts, @,&,ﬁi,g) is an almost Kenmotsu f.pk-manifold.

Theorem 3.1 Let (M?"F5 0, & 0% g) be a locally conformal almost Kenmotsu
f.pk-manifold and s > 2. Then, up to a rearrangement of the &’s, there exists a
function o € F(M?>"*%) such that

(3.3) d® = 2(do —|—4e_‘77_71) AND,
dnt =doAn', i€{l,...,s}.

Proof. Firstly we prove that there exists a closed 1-form w such that dn’ = w A 5’
for each ¢ > 1. Namely, considering o € A, since !, = e*"an’wa, dn!, = 0 implies
dni|UQ =do, /\ni|U&. Thus, for «, 8 € A such that U,NUg # 0, for any ¢ € {1,...,s}
we get dog An* = dog An' and so (do, — dog) An" = 0. Therefore, for any vector
field X and any j € {1,..., s} we obtain

(doa — dog)(X)n' (&) = (doa — dog)(&;)n'(X)

and choosing X € D and j =i we get (do, — dog)(X) = 0. Furthermore, since s > 2,
we can choose X = &, with k # j obtaining (do, — dog)(&;) = 0. Hence, the local
1-forms do, give rise to the required global 1-form w.

Now, for any o € A, we have d®,, = 2n!, A ®,, and, denoting by V the Levi-Civita
connection on (Uy, ga), we have V¥EX = —6tp? — p o h®. Let 8 € A such that
UoNUg # 0. Then, d®g = 277§ A ®g and, in the intersection, V*¢* = vﬁgf implies
8l 4+ oo h® = 65p? + o hl. Now, assuming ¢ # k, choosing i = ¢ and then i = k,
we get
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P’ +pohf =pohl,  poh=¢ +poh],

which easily imply ¢? = 0, so obtaining a contradiction. Thus we have t = k and we
can suppose that, up to a rearrangement, d®, = 2n. A ®,, for each o € A. Finally,
differentiating ®, = e=272®, we get d® = 2(e~72n' +do,) AP, in U, and, comparing
with the analogous expression in Ug, 0, and og coincide in U, N Ug. Hence there
exists a function o € F(M?"+%) such that w = do and d® = 2(e 7n! +do) A ®. [

Proposition 3.1 Let (M?"*5 ¢ & 1%, g), s > 2, be an f.pk-manifold which ad-
mits a function o € F(M?*F%) such that (3.3) holds. Then, M?"* is a globally
conformal almost Kenmotsu f.pk-manifold, with function o.

Proof. We put ¢ = ¢, éz =e%, i =en', §=e 27g. Then one easily verifies
that (M>"**,$,&;,7,9) is an f.pk-manifold with fundamental form ® = ¢~27® and
d® =27t A ®, dij = 0, for each i € {1,...,s}. O

Remark 2 The previous two results allow to state that an f.pk-manifold M?2"+5,
with s > 2, is locally conformal almost Kenmotsu if and only if it is globally conformal
almost Kenmotsu or, equivalently, if and only if there exists a function o € F(M?"+#)
such that (3.3) holds. Moreover, assuming that M?"** is connected, the function o is
a constant if and only if M?"*¢ is homothetic to an almost Kenmotsu f.pk-manifold.
Furthermore, since the normality condition is not involved in the previous discussion,
the same equivalences hold for locally (globally) conformal Kenmotsu f.pk-manifolds.

We remark that the hypothesis s > 2 is essential in the above results. Namely,
when s = 1, Olszak proved that an almost contact metric manifold (M?"*1 p, &1, g)
is locally conformal almost cosymplectic if and only if there exists a closed 1-form w
such that d® = 2w A ® and dn = w A 5. Furthermore, M?"*! is almost a-Kenmotsu
if and only if it is locally conformal almost cosymplectic with w = an, a being a
non-vanishing constant. This means that when s = 1 the almost a-Kenmotsu mani-
folds, with « constant, set up a subclass of the locally conformal almost cosymplectic
manifolds. Now, we investigate the case s > 2 from this point of view.

We need the following characterization of locally conformal almost C-manifolds.

Proposition 3.2 Let (M*""5 ¢ &.n' 9), s > 2, be an f.pk-manifold. Then,
M?"*$ s a locally conformal almost C-manifold if and only if there exists a 1-form w
such that

(3.4) dw =0, dd=2wA®, dy' =wAn', foreachic{l,...,s}.

Proof. Assuming that M?"*$ is a locally conformal almost C-manifold, we apply
the same technique as at the beginning of the proof of Theorem 3.1 and determine
a closed 1-form w such that dn' = w A n® for each i € {1,...,s}. The condition
d® = 2w A ® is achieved since an almost C-manifold has closed fundamental form.
Vice versa, w being locally exact, we consider an open covering (Uy)aca such that,
for any a € A, wyy, = do,. Then, putting

—204

« O i =0t —
Pa = P|U, » G =e §i|Uaa No =€ MUys Ja=¢€ qu, »

it is easy to check that (Us, P, £, 0%, ga) is an almost C-manifold. O
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Proposition 3.3 The class of the almost Kenmotsu f.pk-manifolds of dimension
2n+s, s > 2, is disjoint from the class of the locally conformal almost C-manifolds.

Proof. Let (M*"F3 ¢,&,1m',9), s > 2, be an f.pk-manifold which is almost Ken-
motsu and locally conformal almost C-manifold. Then there exists a 1-form w such that
d® =2wA®, dnt =wAn for each i € {1,...,s}. Furthermore, one has d® = 2n' A ®
and dn’ = 0. This implies w A ° = 0 and then, since s > 2, we get w = 0 and
n* A ® = 0. Choosing X € D, || X| = 1 and computing (n' A ®)(&1, X, 9X) we get
n*(¢1) = 0 which is a contradiction. O

Remark 3 It is also easy to verify that in dimension 2n + s, s > 2, the locally
conformal almost C-manifolds set up a class which is disjoint from the class of locally
conformal almost Kenmotsu f.pk-manifolds.
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