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Abstract. In this paper we are interested in the asymptotic behavior
of the trajectories of the famous steepest descent evolution equation on
Riemannian manifolds. It writes

ẋ (t) + gradφ (x (t)) = 0.

It is shown how the convexity of the objective function φ helps in estab-
lishing the convergence as time goes to infinity of the trajectories towards
points that minimize φ. Some numerical illustrations are given for the
Rosenbrock’s function.
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1 Introduction

Let (M, 〈., .〉) be a manifold endowed with a Riemannian metric. Reference on this
field are Do Carmo [8] or [10]. The associated length of a curve is denoted ` (.), and
the distance ρ (., .). Let φ : M → R be a differentiable function, we denote gradφ (x)
the gradient with respect to the Riemannian inner product 〈., .〉x, which means that
for any u ∈ TxM , the tangent space to the manifold at point x, the following holds

dφ (x) u = 〈gradφ (x) , u〉x.

We will consider in this paper the following evolution equation

ẋ (t) + gradφ (x (t)) = 0(1.1)

under the assumptions

(H1)





(M,ρ) is complete,
φ ∈ C1 with a locally Lipschitz continuous gradient
φ bounded from below
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with the following definition, which appears in [2]

Definition 1. A vector field X is L-Lipschitz continuous on a subset U ⊂ M if for
all geodesic curve γ : [0, 1] → M with endpoints in U

|Pγ,1,0X (γ (1))−X (γ (0)) |γ(0) ≤ L` (γ) .

Here Pγ,1,0 is the parallel transport from time 1 to time 0 along γ (see [8]).

Equation (1.1) generalizes to a Riemannian setting the continuous version of the
famous steepest descent equation.This dynamical system is intemely linked with the
problem of minimizing φ, see [4, 5]. The framework of manifolds is interesting, for
instance in order to deal with non-linear equality constraints. Indeed, the following
problems

min
x∈R

n
,f(x)=0

φ (x)

and
min
x∈M

φ (x)

are equivalent, if we denote M = f−1 (0) ⊂ R
n. If the function f is regular, the set

M can be endowed with the Riemannian structure of submanifold of R
n.

This evolution equation has already been studied by Udrişte in [15] chap.7 §1. under
the name ”minus gradient line”. Theorems 1 and 2 are proved under slightly stronger
assumptions, but our other results are new (up to our knowledge). The case of a
Morse-Bott objective function φ is studied in [11]. In the case of an open subset of
R

n, links between trajectories of (1.1) and central paths are made in [12] (see also
[3, 11] and references therein). For a submanifold of R

n which is the intersection
of an open convex set with an affine subspace can be found in [1]. The Riemannian
structure there comes from the Hessian of a Legendre barrier function. Some discrete
versions of (1.1) appear in [15, 6, 7, 9, 14].

2 Existence and first results

All the results that appear in this section are true under the assumptions (H1). They
are similar to results that exist in Hilbert spaces.

Theorem 1. Assume (H1) hold. For any starting point x0 ∈ M , the Cauchy problem
{

ẋ (t) + gradφ (x (t)) = 0
x (0) = x0

has a unique solution x (.) defined on [0,+∞). This solution is continuously differen-
tiable.

Proof. Local existence and uniqueness comes when writing (1.1) in a local chart. It
becomes a system of n ODEs and we can apply Cauchy results. This provides a
maximal solution defined on an interval of type [0, T ). Assume by contradiction that
T < +∞. As
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d

dt
φ (x (t)) = 〈gradφ (x (t)) , ẋ (t)〉x(t) = −|ẋ (t) |2x(t)(2.1)

we see that ∫ T

0

|ẋ (t) |x(t)dt ≤
√

T
(
φ (x0)− inf

M
φ
)
.

Thus ẋ (t) is integrable, and x (.) has a limit when t tends to T , because of complete-
ness of M . We can then extend this solution, which contradicts the maximality.

Theorem 2. Let x (.) be a solution of (1.1). Under assumptions (H1), it satisfies

(i) φ (x (.)) decreases and converges,

(ii) |ẋ (.) |x(.) ∈ L2 (0,+∞).

Proof. It comes from (2.1). As φ is bounded from below, φ (x (t)) has a limit, say φ∞,
when t goes to +∞.

Theorem 3. Assume (H1) hold. Let x (.) be a solution of (1.1) assumed bounded. It
satisfies

lim
t→+∞

|gradφ (x (t)) |x(t) = 0.

Proof. Let L be the Lipschitz constant for gradφ on the bounded set {x (t) , t ∈
[0,+∞)}. Denote, for s ≤ t, by γ : [0, 1] → M a minimizing geodesic such that
γ (0) = x (s) and γ (1) = x (t). Since Pγ,1,0 is an isometry, we have the following

∣∣∣∣|ẋ (t) |x(t) − |ẋ (s) |x(s)

∣∣∣∣ ≤ |Pγ,1,0ẋ (t)− ẋ (s) |x(s)

≤ L` (γ)

≤ L

∫ t

s

|ẋ (τ) |x(τ)dτ

≤
(

L

∫ +∞

0

|ẋ (τ) |2x(τ)dτ

)√
t− s

Thus |ẋ (.) |x(.) is uniformly continuous and square integrable, and necessarily
limt→+∞ |ẋ (t) |x(t) = 0. This achieves the proof.

3 Convex case

In this section, assumptions (H1) still hold, and we assume moreover that

(H2)
{

φ convex on M ,
argminφ 6= f¡ .

We recall here the definition of a convex function. It comes from [15]. A subset
A ⊂ M is called totally convex if for all geodesic curve γ, we have (γ (0) , γ (1)) ∈
A×A ⇒ ∀t ∈ [0, 1], γ (t) ∈ A.
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Definition 2. f : A → R is said convex on A, a totally convex set, if for all geodesic
curve γ with (γ (0) , γ (1)) ∈ A×A and for all t ∈ [0, 1] we have

f (γ (t)) ≤ (1− t) f (γ (0)) + tf (γ (1)) .

We will remark at the end of the section that this definition can be weakened, in
what concerns this work.

Denote for some y in M and for every t, u (t) a vector of Tx(t)M such that

expx(t) (u (t)) = y

ρ (x (t) , y) = |u (t) |x(t)
(3.1)

Such a vector always exists if M is complete. It may not be unique, but this is not
a problem. The curve [0, 1] 3 s 7→ expx(t) (su (t)) is thus a minimizing geodesic that
joins x (t) and y.

Proposition 1. Under assumptions (H1), if moreover φ is convex on M and y belong
to the set L = {y ∈ M, φ (y) ≤ φ∞}, the function t 7→ ρ (x (t) , y) decreases, and thus
converges.

Proof. For fixed t and h, in order to simplify the notations, x, g, u and xh will
respectively denote x (t), gradφ (x (t)), u (t) and x (t + h). Consider the geodesic
γ (s) = expx (su). We have γ (0) = x, γ̇ (0) = u and γ (1) = y. Since φ ◦ γ is convex,
we get

〈g, u〉x ≤ φ (y)− φ (x) .

The latter is nonpositive, and is null iff φ (x) = φ (y) ≤ φ∞ ≤ φ (x). Thus φ (x (.))
would be constant on [t,+∞), which means with (1.1) and (2.1) that g = 0. In this
case, the trajectory is stationary, and the proposition is easy. We can restrict to the
case when 〈g, u〉x < 0.
Since the opposite of u belongs to the normal cone at the point x of the set {z ∈
M, ρ (y, z) ≤ ρ (y, x)}, this suffices to show the desired decreasingness. We give in the
following a geometrical idea of this fact. As both paths h 7→ xh and h 7→ expx (−hg)
are C1, and have the same initial condition of order 0 and 1, we have

ρ (xh, expx (−hg)) = o (h) .(3.2)

An argument of same type gives

ρ (expx (−hg) , expx (hλu)) = | − hg − hλu|x + o (h) .(3.3)

Choose λ such that 〈−g − λu,−g〉x = 0 (that is λ = |g|2x
−〈u,g〉x > 0). It gives | − hg −

hλu|x = h
(
(λ|u|x)2 − |g|2

) 1
2
. Finally

ρ (expx (hλu) , y) = (1− hλ) |u|x.(3.4)

Combining (3.2), (3.3) and (3.4), we are now able to construct a continuous and
piecewise differentiable curve α (in bold in the figure below) that joins xh to y of
length
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` (α) = |u|x − h[λ|u|x −
(
(λ|u|x)2 − |g|2

) 1
2
] + o (h) .

The bracket just above is positive. Indeed (λ|u|x)2 > (λ|u|x)2 − |g|2 ≥ 0. Thus, for h
small enough, we have

ρ (xh, y) ≤ ` (α) ≤ |u|x = ρ (x, y) .

According to this result, we can state the following theorem. Such a result was
proved in [5] in the case of a Hilbert space.

Theorem 4. Under the complete assumptions (H1)- (H2), every solution x (.) of
(1.1) has a limit x̄ which belongs to argminφ

Proof. Under the assumptions, the set L is non-empty. Then x (.) is bounded in
M . According to Hopf-Rinow Theorem, there exists a sequence tj such that x (tj)
converges to some x̄. But x̄ belongs to L, and then ρ (x (.) , x̄) converges. The limit
has to be 0 (consider the sequence tj), that is to say x (t) converges to x̄.
Consider now some y ∈ argminφ. As previously, the convexity of φ implies that

0 ≤ φ (x (t))− φ (y) ≤ 〈−gradφ (x (t)) , u (t)〉x(t)

≤ |gradφ (x (t)) |x(t)ρ (x (t) , y)

One part tends to 0 (Theorem 3) and the other one is bounded in the latter, which
shows that

φ (x̄) = lim
t→+∞

φ (x (t)) = φ (y) = inf
M

φ.

The two following remarks allow to weaken the assumptions of this result.

Remark 1. To ask φ to be convex on the whole manifold is strong, it suffices for φ
to be convex on the set {z ∈ M,φ (z) ≤ φ (x (0))}.
Remark 2. Another assumption here is too strong. The convexity definition is mean-
ingless on compact manifolds. Indeed there is no non-constant convex function on such
a manifold. So a better definition would have been

φ : A → R is convex on A, a totally minimizing geodesic set, if the restriction to any
minimizing geodesic is convex.

The proof of the preceding result remains true in that framework.
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4 Example: Rosenbrock’s function

This example comes from [15]. The function present a narrow valley with a ”U” form
(actually a parabola). It is plotted in the left hand side of figure 4 and is defined by

φ : R
2 → R

(x1, x2) 7→ 100
(
x2 − x2

1

)2
+ (1− x1)

2
.
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Figure 1: Rosenbrock’s function and its the levelsets.

As we can see on the picture of the levelsets of φ, it is not convex when R
2 is endowed

with the Euclidean structure. But in the Riemannian manifold
(

R
2
, 〈., .〉

)
with 〈u, v〉x = uTA (x) v where A (x) =

(
4x2

1 + 1 −2x1

−2x1 1

)

it becomes convex.

Let us present some numerical computations made on this example. We construct
the sequence of points obtained by an explicit discretization of equation (1.1)

xk+1 = xk + λkvk.(4.1)

The starting point x0 is given.
We discuss first about the choice of the stepsize λk. On one hand, it is chosen in the
following manner

Algorithm 1. Stepsize choice:
1. λ = 1, compute y = xk + λvk and z = xk + λ

2 vk.
2. While φ (y) > φ (z) do
λ = λ

2 ,
y = z,
z = xk + λ

2 vk.
3. Finally λk = λ and xk+1 = y.
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This is a type of optimal line search, reduced to the interval [0, 1]. Indeed, it
approaches the theoretical choice

λk ∈ argmin{φ (xk + λvk) , λ ∈ [0, 1]}.
On the other hand, we compute the sequence obtained by (4.1) with a stepsize still
given by a optimal line search, reduced to the interval [0, 0.1]. It suffices to change
λ = 1 by λ = 0.1 in the previous algorithm.
The descent direction vk is chosen first as the opposite of the Riemannian gradient

vk = −gradφ (xk)(4.2)

which provides the lines in figure 2, and secondly as the opposite of the Euclidean
gradient

vk = −∇φ (xk)(4.3)

which provides the dotted trajectories.
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Figure 2: Trajectories obtained with a line search in [0, 1] (left) and in [0, 0.1] (right).

As expected, the experiments we made, with starting points randomly chosen in
[−5, 5] × [−5, 5], show that both sequences seem to converge to the minimum (1, 1)
(except cases were numerical instability occurs which will be discussed later). Indeed,
(4.1) with (4.2) is a discretization of (1.1), whose trajectories converge to the min-
imum: φ is convex, apply then theorem 4. On the other hand, (4.1) with (4.3) is a
discretization of

ẋ (t) +∇φ (x (t)) = 0.

This (Euclidean) steepest descent is known to provide convergent trajectories, under
analyticity assumptions on φ (see ÃLojasiewicz [13]). We wanted here to compare the
two methods. Figure 3 presents the convergence curves obtained related to the ex-
periments presented in figure 2: the value φ (xi) is plotted versus the number i of the
iterate.
For both stepsize choices, the Riemannian steepest descent (lines) is more efficient
than the Euclidean one (dots).
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Figure 3: Convergence curves obtained with a line search in [0, 1] (left) and in [0, 0.1]
(right).

The line search in [0, 0.1] seems to stabilize the method while the points are not in
the bottom of the valley, that means while the gradients are huge. Moreover, we can
imagine that it reduces the number of computations done in algorithm 1 providing
the ”optimal” stepsize. But it appears that once the point is in the bottom of the
valley, steps of size 1 or at least between 0.1 and 1 speed up the convergence. Actually
this is true for the Riemannian version, and after around thirty points we reach the
limit of precision of the computer, whereas it can produce instability for the Euclidean
version: in some cases, the sequence seem to skip from on side of the ”U” of the valley
to the other.

Remark 3. A more accurate discretization of a continuous dynamical system on a
Riemannian manifold should involve the geodesics or the exponential mapping, as
in [6, 7, 2]. Here, we clearly make use of the vector space properties of R

2, such
structure provide a trivial retraction. It has the advantage of eluding the complicated
computations of the exponential.
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