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Abstract. In this paper, we characterize the n-dimensional (n ≥ 3) com-
plete hypersurfaces Mn in a hyperbolic space Hn+1 with constant scalar
curvature and with two distinct principal curvatures. We show that if the
multiplicities of such principal curvatures are greater than 1, then Mn is
isometric to Sk(r)×Hn−k(−1/(r2+1)). On the other hand, let Mn be the
complete hypersurfaces in Hn+1 with constant scalar curvature n(n−1)R
and nonnegative sectional curvature, if R + 1 ≥ 0, then Mn is totally
umbilical, or is isometric to Sn−1(r)×H1(−1/(r2 + 1)).
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Introduction

Let Rn+1(c) be an (n+1)-dimensional connected Riemannian manifold with constant
sectional curvature c. According to c > 0, c = 0 and c < 0, it is called sphere space,
Euclidean space or hyperbolic space, respectively, and it is denoted by Sn+1(c), Rn+1

or Hn+1(c). As it is well known that there are many rigidity results for hypersurfaces
with constant mean curvature or with constant scalar curvature in Sn+1(c) or Rn+1,
for example, see[1], [2], [3], [4], [6] and [10] etc., but less are obtained for hypersurfaces
immersed into a hyperbolic space. S.Y.Cheng and Yau[2] proved that an n-dimensional
(n ≥ 2) complete hypersurface Mn with constant scalar curvature in Rn+1 is isometric
to a sphere, a hyperplane or a generalized cylinder Sk(c)×Rn−k, 1 ≤ k ≤ n−1, if the
sectional curvature of Mn is nonnegative. They also proved that an n-dimensional
compact hypersurface Mn with constant scalar curvature n(n− 1)R satisfying R ≥ 1
in the unit sphere Sn+1(1) is isometric to a sphere, or a Riemannian product Sk(c1)×
Sn−k(c2), 1 ≤ k ≤ n − 1, if the sectional curvature of Mn is nonnegative. In [6], Li
extended the results due to S.Y.Cheng and Yau[2] in terms of the squared norm of
the second fundamental form of Mn. Cheng [3] and [4] characterized the hypersurface
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Sk(c)×Rn−k in a Euclidean space Rn+1 and the hypersurface Sk(c1)× Sn−k(c2) in
a unit sphere Sn+1(1), respectively.

On the other hand, Morvan-Wu[9], Wu[13] proved some rigidity theorems for com-
plete hypersurfaces Mn in a hyperbolic space Hn+1(c) under the assumption that the
mean curvature is constant and the Ricci curvature is non-negative. To our best knowl-
edge, there are almost no intrinsic rigidity results for the hypersurfaces with constant
scalar curvature in a hyperbolic space until Liu and Su[8] obtained the following :

Theorem 1.1 ([8]) Let Mn be an n-dimensional (n > 2) complete hypersurface with
constant scalar curvature n(n− 1)R in Hn+1. If R = R + 1 ≥ 0 and the norm square
|h|2 of the second fundamental form of Mn satisfies

nR ≤ sup |h|2 ≤ n

(n− 2)(nR− 2)
[n(n− 1)R

2 − 4(n− 1)R + n],

then either sup |h|2 = nR and Mn is a totally umbilical hypersurface; or sup |h|2 =
n

(n−2)(nR−2)
[n(n−1)R

2−4(n−1)R+n], and Mn is isometric to Sn−1(r)×H1(−1/(r2+
1)), for some r > 0.

In this paper, we shall firstly investigate the complete hypersurfaces of constant
scalar curvature with two distinct principal curvatures whose multiplicities are greater
than 1, and obtain a characteristic Theorem, see Theorem 3.1. Secondly, we study
the complete hypersurfaces of constant scalar curvature with nonnegative sectional
curvature and obtain another characteristic Theorem, see Theorem 3.2.

2 Preliminaries

We simply denote Hn+1(−1) by Hn+1. Let Mn be an n-dimensional hypersur-
face in Hn+1. We choose a local orthonormal frame e1, · · · , en+1 in Hn+1 such that
e1, · · · , en are tangent to Mn. Let ω1, · · · , ωn+1 be the dual coframe. We use the
following convention on the range of indices:

1 ≤ A, B,C, · · · ≤ n + 1; 1 ≤ i, j, k, · · · ≤ n.

The structure equations of Hn+1 are given by

(2.1) dωA =
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,

(2.2) dωAB =
∑

C

ωAC ∧ ωCB + ΩAB ,

where

(2.3) ΩAB = −1
2

∑

C,D

KABCDωC ∧ ωD,
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(2.4) KABCD = −(δACδBD − δADδBC).

Restricting to Mn,

(2.5) ωn+1 = 0.

(2.6) ωn+1i =
∑

j

hijωj , hij = hji.

The structure equations of Mn are

(2.7) dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,

(2.8) dωij =
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl,

(2.9) Rijkl = −(δikδjl − δilδjk) + (hikhjl − hilhjk),

(2.10) Rij = −(n− 1)δij + nHhij −
∑

k

hikhkj ,

(2.11) n(n− 1)(R + 1) = n2H2 − |h|2,

where n(n − 1)R is the scalar curvature, H is the mean curvature and |h|2 is the
squared norm of the second fundamental form of Mn.
The Codazzi equation and the Ricci identity are

(2.12) hijk = hikj ,

(2.13) hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl,

where hijk and hijkl denote the first and the second covariant derivatives of hij .
In order to represent our theorems, we need some notations, for details see Lawson

[7], Ryan[12] or Liu[8]. First we give a description of the real hyperbolic space Hn+1(c)
of constant curvature c(< 0).

For any two vectors x and y in Rn+2, we set

g(x, y) = x1y1 + · · ·+ xn+1yn+1 − xn+2yn+2,

(Rn+2, g) is the so-called Minkowski space-time. Denote ρ =
√
−1/c. We define

Hn+1(c) = {x ∈ Rn+2|g(x, x) = −ρ2, xn+2 > 0}.
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Then Hn+1(c) is a simply-connected hypersurface of Rn+2. Hence, we obtain a model
of a real hyperbolic space.
We define

M1 = {x ∈ Hn+1(c)|x1 = 0},
M2 = {x ∈ Hn+1(c)|x1 = r > 0},
M3 = {x ∈ Hn+1(c)|xn+2 = xn+1 + ρ},
M4 = {x ∈ Hn+1(c)|x2

1 + · · ·+ x2
n+1 = r2 > 0},

M5 = {x ∈ Hn+1(c)|x2
1 + · · ·+ x2

k+1 = r2 > 0, x2
k+2 + · · ·+ x2

n+1 − x2
n+2 = −ρ2 − r2}.

M1, · · · ,M5 are often called the standard examples of complete hypersurfaces in
Hn+1(c) with at most two distinct constant principal curvatures. It is obvious that
M1, · · · ,M4 are totally umbilical. In the sense of Chen[5], they are called the hyper-
spheres of Hn+1(c).M3 is called the horosphere and M4 the geodesic distance sphere
of Hn+1(c). Ryan[12] obtained the following:

Lemma 2.1([12]) Let Mn be a complete hypersurface in Hn+1(c). Suppose that,
under a suitable choice of a local orthonormal tangent frame field of TMn, the shape
operator over TMn is expressed as a matrix A. If Mn has at most two distinct constant
principal curvatures, then it is congruent to one of the following:

(1) M1. In this case, A = 0, and M1 is totally geodesic. Hence M1 is isometric to
Hn(c);

(2) M2. In this case, A = 1/ρ2√
1/ρ2+1/r2

In, where In denotes the identity matrix of

degree n, and M2 is isometric to Hn(−1/(r2 + ρ2));
(3) M3. In this case, A = 1

ρIn, and M3 is isometric to a Euclidean space Rn;
(4) M4. In this case, A =

√
1/r2 + 1/ρ2In, M4 is isometric to a round sphere

Sn(r) of radius r;
(5) M5. In this case, A = λIk ⊕ µIn−k, where λ =

√
1/ρ2 + 1/r2, and µ =

1/ρ2√
1/r2+1/ρ2

,M5 is isometric to Sk(r)×Hn−k(−1/(r2 + ρ2)).

3 Theorems and Their Proofs

In this section, we consider the hypersurface with constant scalar curvature and
with two distinct principal curvatures in Hn+1. We firstly have the following Propo-
sition 3.1 due to Otsuki[10].

Proposition 3.1(Otsuki[10]). Let Mn be a hypersurface in a hyperbolic space Hn+1

such that the multiplicities of the principal curvatures are constant. Then the distri-
bution of the space of the principal vectors corresponding to each principal curvature
is completely integrable. In particular, if the multiplicity of a principal curvature is
greater than 1, then this principal curvature is constant on each integral submanifold
of the corresponding distribution of the space of the principal vectors.

We may prove the following:

Theorem 3.1 Let Mn be an n-dimensional complete hypersurface in Hn+1 with
constant scalar curvature n(n− 1)R and with two distinct principal curvatures. If the
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multiplicities of these two distinct principal curvatures are greater than 1, then Mn

is isometric to the Riemannian product Sk(r)×Hn−k(−1/(r2 + 1)), for some r > 0.

Proof. Let λ, µ be the principal curvatures of multiplicities k and n− k respec-
tively, where 1 < k < n− 1. By (2.11) we have

(3.1) n(n− 1)(R + 1) = k(k − 1)λ2 + 2k(n− k)λµ + (n− k)(n− k − 1)µ2.

Denote by Dλ and Dµ the integral submanifolds of the corresponding distribution
of the space of principal vectors corresponding to the principal curvature λ and µ,
respectively. From Proposition 3.1, we know that λ is constant on Dλ. Since the
scalar curvature is constant, (3.1) implies that µ is constant on Dλ. Making use
of Proposition 3.1 again, we have µ is constant on Dµ. Therefore, we know that
µ is constant on Mn. By the same assertion we know that λ is constant on Mn.
Therefore Mn is isoparametric. By Lemma 2.1, we know that Mn is isometric to
Sk(r) ×Hn−k(−1/(r2 + 1))), for some r > 0. This completes the proof of Theorem
3.1.

From now on, we consider the complete hypersurfaces with constant scalar curva-
ture and nonnegative sectional curvature. We obtain the following:

Theorem 3.2 Let Mn be an n-dimensional complete hypersurface with constant
scalar curvature n(n−1)R in a hyperbolic space Hn+1. If R+1 ≥ 0 and the sectional
curvature of Mn is nonnegative, then Mn is a totally umbilical hypersurface; or Mn

is isometric to Sn−1(r)×H1(−1/(r2 + 1)), for some r > 0.

In order to prove Theorem 3.2, we introduce an operator 2 due to Cheng-Yau[2]
by

(3.2) 2f =
∑

i,j

(nHδij − hij)fij ,

where f is a C2-function on Mn, the gradient and Hessian (fij) are defined by

(3.3) df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji.

The Laplacian of f is defined by ∆f =
∑
i

fii.

We choose a local frame field e1, · · · , en at each point of Mn, such that hij = λiδij .
From (3.2) and (2.11), we have

(3.4)

2(nH) = nH∆(nH)−∑
i

λi(nH)ii

= 1
2∆(nH)2 −∑

i

(nH)2i −
∑
i

λi(nH)ii

= 1
2∆|h|2 − n2| 5H|2 −∑

i

λi(nH)ii.

From (2.12) and (2.13), by a standard and direct calculation, we have

(3.5)
1
2
∆|h|2 =

∑

i,j,k

h2
ijk +

∑

i

λi(nH)ii +
1
2

∑

i,j

Rijij(λi − λj)2,
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where Rijij = −1+λiλj(i 6= j) denotes the sectional curvature of the section spanned
by {ei, ej}. From (3.4) and (3.5), we get

(3.6) 2(nH) = | 5 h|2 − n2| 5H|2 +
1
2

∑

i,j

(−1 + λiλj)(λi − λj)2.

The following Lemma 3.1 due to [8] is useful in our proof.

Lemma 3.1([8]) Let Mn be an n-dimensional hypersurface in Hn+1. Suppose that
the scalar curvature n(n− 1)R is constant and R + 1 ≥ 0. Then | 5 h|2 ≥ n2| 5H|2.

From Lemma 3.1 and (3.6) we get

(3.7) 2(nH) ≥ 1
2

∑

i,j

(−1 + λiλj)(λi − λj)2.

On the other hand,

(3.8)

2(nH) =
∑
i,j

(nHδij − hij)(nH)ij

=
∑
i

(nH − hii)(nH)ii = n
∑
i

H(nH)ii −
∑
i

λi(nH)ii

≤ (n|H|max − C)∆(nH),

where |H|max is the maximum of the mean curvature H and C is the minimum of the
principal curvatures {λi}n

i=1 of Mn.
Proof of the Theorem 3.2. We need the Generalized Maximum principle due

to Omori [11] and Yau[14].

Lemma 3.2([11][14]) Let Mn be complete Riemannian manifold whose Ricci cur-
vature is bounded from below. If F is a C2- function bounded from above on Mn, then
for any ε > 0, there is a point x ∈ Mn such that

(3.9) sup F − ε < F (x), ‖gradF‖(x) < ε, ∆F (x) < ε.

We consider the following smooth function on Mn defined by F = −(f2 + a)−1/2,
where a(> 0) is a real number, f is a nonnegative C2-function on Mn. Since Mn has
nonnegative sectional curvature, this implies the Ricci curvature of Mn is bounded
from below by zero. Obviously, F is bounded from above, so we can apply Lemma
3.2 to F . For any ε > 0, there is a point x ∈ Mn, such that at which F satisfies the
properties (3.9) in Lemma 3.2. By a simple and direct calculation, we have

(3.10) F 4 F = 3‖dF‖2 − 1
2
F 4∆f2.

From (3.9) and (3.10)

(3.11)
1
2
F 4(x)∆f2(x) = 3‖dF‖2(x)− F (x)∆F (x) < 3ε2 − εF (x).

Therefore, for any convergent {εm}, with εm > 0 and lim
m→∞

εm = 0, there exists a

point sequence {xm} such that the sequence {F (xm)} converges to F (we can take a
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subsequence if necessary) and satisfies (3.9). Thus lim
m→∞

εm[3εm − F (xm)] = 0. From

the definition of supremum and (3.9), we have lim
m→∞

F (xm) = F0 = sup F and hence

the definition of F give rise to lim
m→∞

f(xm) = f0 = sup f .

Now we set f =
√

nH. So lim
m→∞

(nH)(xm) = sup(nH), thus, by (2.11) lim
m→∞

|h(xm)|2 =

sup |h|2. Since |h|2 =
∑
i

λ2
i is bounded, any principal curvature λi is bounded and

hence so is any sequence {λi(xm)}. Then there exists a subsequence {xm′} of {xm}
such that for some λi0 and any i

(3.12) lim
m′→∞

λi(xm′) = λi0.

In fact, since a sequence {λ1(xm)} is bounded, it converges to some λ10 by taking a
subsequence {xm1} if necessary. For the point sequence {xm1}, a sequence {λ2(xm1)}
is also bounded and hence there is a subsequence {xm2} of {xm1} such that {λ2(xm2)}
converges to some λ20 as m2 tends to infinity. Thus we can inductively show that there
exists a point sequence {xm′} of {xm} such that the property (3.12) holds. Hence for
the subsequence {xm′} of {xm}, by (3.7), (3.8) and (3.11) we have

(3.13)

0 ≤ 1
4F 4(xm′)

∑
i,j

[−1 + λi(xm′)λj(xm′)][λi(xm′)− λj(xm′)]2

≤ 1
2F 4(xm′)2[nH(xm′)] ≤ (n|H|max − C) 1

2F 4(xm′)∆(nH)(xm′)
≤ (n|H|max − C)[3ε2

m′ − εm′F (xm′)].

Let m′ tends to infinity in (3.13), we have

(3.14) (−1 + λi0λj0)(λi0 − λj0)2 = 0,

for any distinct indices i and j. By a simple algebraic calculation it is easily seen that
the number of distinct limits in {λi0} is at most two.

Case(i). If all limits λi0 coincide with each other, we set λi0 = λ0 for all i. Because
|h|2 − nH2 =

∑
i

λ2
i − 1

n (
∑
i

λi)2 = 1
n

∑
i<j

(λi − λj)2, then lim
m′→0

(|h|2 − nH2)(xm′) = 0.

On the other hand, by (2.11) we have

(3.15) |h|2 − nH2 =
n− 1

n
[|h|2 − n(R + 1)],

Hence, 0 = lim
m′→0

(|h|2 − nH2)(xm′) = n−1
n [sup |h|2 − n(R + 1)], we get sup |h|2 =

n(R + 1). From (3.15) we have sup(|h|2 − nH2) = n−1
n [sup |h|2 − n(R + 1)] = 0 i.e.

|h|2 = nH2, M is a totally umbilical hypersurface.
Case(ii) If {λi0} has exactly two distinct elements, without loss of the generality,

we may suppose that

λ10 = · · · = λl0 = λ, λl+10 = · · · = λn0 = µ, λ 6= µ,

for some l = 1, 2, · · · , n− 1. From (3.14) we have

(3.16) λµ = 1.

If l ≥ 2, n− l ≥ 2. From Rijij(xm′) = (−1 + λiλj)(xm′) ≥ 0, we have
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(3.17) −1 + λ2 ≥ 0, −1 + µ2 ≥ 0.

By (3.16), (3.17) we get 1 = λ2µ2 ≥ µ2 and 1 = λ2µ2 ≥ λ2. Hence, from (3.17) again
we have λ2 = µ2 = 1. Since λ 6= µ, we have λ = −µ. Taking this into (3.16), we know
that −µ2 = 1, this is a contradiction. Therefore, we must have l = 1, or n− l = 1. If
l = 1, by (2.11) we have

(3.18)

n(n− 1)(R + 1) = lim
m′→∞

[n2H2(xm′)− |h|2(xm′)]

= lim
m′→∞

{[∑
i

λi(xm′)]2 −∑
i

λ2
i (xm′)}

= [λ + (n− 1)µ]2 − [λ2 + (n− 1)µ2]
= 2(n− 1)λµ + (n− 1)(n− 2)µ2.

From (3.16), (3.18) we have µ2 = n(R+1)−2
n−2 , λ2 = n−2

n(R+1)−2 . Hence

(3.19)
sup |h|2 = lim

m′→∞
|h|2 = lim

m′→∞
[
∑
i

λ2
i (xm′)] = λ2 + (n− 1)µ2

= n−2
n(R+1)−2 + (n− 1)n(R+1)−2

n−2 .

We set R̄ = R + 1. Then

(3.20) sup |h|2 =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n].

If n − l = 1, by making use of the similar methods above, we know that (3.20)
holds. Therefore, by the result due to Liu and Su[8], we have Mn is isometric to
Sn−1(r)×H1(−1/(r2 +1)), for some r > 0. This completes the proof of Theorem 3.2.
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