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Abstract. We obtain a characterization for a compact Hopf hypersurface
in the nearly Kaehler sphere S6 using a pinching on the scalar curvature
of the hypersurface. It has been also observed that the totally geodesic
sphere S5 in S6 has induced Sasakian structure as a hypersurface of the
nearly Kaehler sphere S6.
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1 Introduction

It is known that the 6-dimensional unit sphere S6 has a nearly Kaehler structure
(J, g), where J is an almost complex structure defined on S6 using the vector cross
product of purely imaginary Cayley numbers R7 and g is the induced metric on S6

as a hypersurface of R7. Also S6 can be expressed as S6 = G2/SU(3) a homogeneous
almost Hermitian manifold, where G2 is the compact Lie group of all automorphisms
of the Cayley division algebra R8. Regarding the submanifolds of the nearly Kaehler
S6, Gray [13] proved that it does not have any complex hypersurface. However, there
are 4-dimensional CR-submanifolds in S6 and have been studied by Sekigawa and
otheres [15], [17]. Moreover, 2- and 3-dimensional totally real submanifolds of S6 also
have been extensively studied [9], [11], [12]. Recently, Berndt et. al [1] have shown that
the geometry of almost complex curves (2-dimensional almost complex submanifolds)
in S6 is related to Hopf hypersurfaces (Real hypersurfaces with the 1-dimensional
foliation induced by the distribution which is obtained by applying almost complex
structure J to the normal bundle of the hypersurface is totally geodesic) of S6. This
relationship between the almost complex curves and Hopf hypersurfaces in S6 makes
the study of Hopf hypersurfaces in S6 more interesting. In [1], the authors proved
that a connected Hopf hypersurface of the nearly Kaehler S6 is an open part of either
a geodesic hypersphere of S6 or a tube around an almost complex curve in S6. It
is therefore interesting question to obtain characterizations of the Hopf hypersurface
which is totally geodesic hypersphere in S6 and the one which is tube around almost
complex curve. In this paper we obtain a characterization for the Hopf hypersurface
which is totally geodesic hypersphere.
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Let M be an orientable real hypersurface of S6 with unit normal vector field N
and ξ = −JN be the characteristic vector field on M . If A is the shape operator of
the hypersurface we define f : M → R by f = g(Aξ, ξ), where g is the induced metric
on M . Let α = 1

5 trA be the mean curvature and S be the scalar curvature of the
hypersurface M . In this paper our main result is the following

Theorem 1.1. Let M be an orientable compact and connected real hypersurface of
the nearly Kaehler S6. If the scalar curvature S of M satisfies

S ≥ 20 + 5α(5α− f),

then M is a Hopf hypersurface, the totally geodesic hypersphere S5.

We also show that this Hopf hypersurface (totally geodesic hypersphere) has natu-
rally induced Sasakian structure (cf. Theorem 3.1). It will be an interesting question as
to know whether the other class of Hopf hypersurface (tubes around almost complex
curves) in S6 too carries an induced Sasakian structure.

2 Preliminaries

Let S6 be the nearly Kaehler 6-sphere with nearly Kaehler structure (J, g), where J
is the almost complex structure and g is the induced metric on S6. Then we have

(2.1)
(∇XJ

)
(X) = 0, g (JX, JY ) = g (X,Y ) , X, Y ∈ X(S6),

where ∇ is the Riemannian connection with respect to the almost Hermitian metric
g and X(S6) is the Lie algebra of smooth vector fields on S6. The tensor field G of
type (2, 1) defined by G(X, Y ) =

(∇XJ
)
(Y ), X, Y ∈ X(S6) has the properties as

described in the following

Lemma 2.1. ([12]) (a) G(X, JY ) = −JG(X, Y ), (b) G(X, Y ) = −G(Y, X),
(c)

(∇XG
)
(Y,Z) = g(Y, JZ)X + g(X, Z)JY − g(X, Y )JZ, X, Y, Z ∈ X(S6).

Let M be an orientable real hypersurface of S6, ∇ be the Riemannian connection
with respect to the induced metric g on M and N be the unit normal vector field.
Then we have

(2.2) ∇XY = ∇XY + g(AX, Y )N, ∇XN = −AX, X, Y ∈ X(M),

where A is the shape operator of the hypersurface M . The Guass and Codazzi equa-
tions for the hypersurface are

(2.3) R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(AY, Z)AX − g(AX,Z)AY

(2.4) (∇A) (X, Y ) = (∇A) (Y, X),

for X, Y, Z ∈ X(M), where (∇A) (X, Y ) = ∇XAY − A(∇XY ). The Ricci tensor Ric
and the scalar curvature S of the hypersurface are given by
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(2.5) Ric(X,Y ) = 4g(X, Y ) + 5αg(AX, Y )− g(AX, AY )

(2.6) S = 20 + 25α2 − ‖A‖2 ,

where α = 1
5 trA is the mean curvature and ‖A‖2 = trA2 is the square of the length

of the shape operator of the hypersurface.

Using the almost complex structure J of S6, we define a unit vector field ξ ∈
X(M) by ξ = −JN , with dual 1-form η(X) = g(X, ξ). For a X ∈ X(M), we set
JX = φ(X) + η(X)N , where φ(X) is the tangential component of JX. Then it
follows that φ is a (1, 1) tensor field on M . Using J2 = −I, it is easy to see that
(φ, ξ, η, g) defines an almost contact metric structure on M , that is

(2.7) φ2 = −I + η ⊗ ξ, η (ξ) = 1, η ◦ φ = 0, φ (ξ) = 0,

and g(φX, φY ) = g(X, Y )− η (X) η (Y ), X, Y ∈ X(M). Using the fact G(X, X) = 0,
X ∈ X(M), we immediately obtain the following

Lemma 2.2. Let M be an orientable real hypersurface of S6. Then the structure
(φ, ξ, η, g) on M satisfies

(i) (∇Xφ) (X) = η(X)AX − g(AX, X)ξ,

(ii) g(∇Xξ,X) = g(φAX,X).

Note that φ is skewsymmetric and for a unit vector field e1 orthogonal to ξ,
{e1, φe1} is an orthonormal set of vector fields and that if e2 is a unit vector field
orthogonal to e1, φe1 and ξ, then {e1, φe1, e2, φe2, ξ} forms a local orthonormal frame
on the hypersurface M , called an adapted frame. Using an adapted frame together
with Lemma 2.2 one immediately concludes the following

Corollary 2.1. Let M be an orientable real hypersurface of S6. Then divξ = 0.

Corollary 2.2. Let M be an orientable real hypersurface of S6 with almost contact
structure (φ, ξ, η, g). Then ‖£ξg‖ = ‖φA−Aφ‖2.

Proof. We have using on Lemma 2.2 for X, Y ∈ X(M)

(£ξg) (X, Y ) = g (∇Xξ, Y ) + g (∇Y ξ,X)
= g (∇X+Y ξ,X + Y )− g (∇Xξ, X)− g (∇Y ξ, Y )
= g (φA (X + Y ) , X + Y )− g(φAX, X)− g(φAY, Y )
= g ((φA−Aφ)(X), Y ) .

Note that φA − Aφ is a symmetric operator and consequently we get ‖£ξg‖ =
‖φA−Aφ‖2. 2

Lemma 2.3. Let M be an orientable real hypersurface of S6 with almost contact
structure (φ, ξ, η, g). Then

∇Xξ = φAX −G(X, N), X ∈ X(M).
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Proof. We have

G(X, ξ) = ∇XN − J (∇Xξ + g(AX, ξ)N)
= −AX − J∇Xξ + g(AX, ξ)ξ.

Operating J on this equation and using Lemma 2.1 we get the result. 2

On an orientable hypersurface M of S6 we let D = Kerη = {X ∈ X(M) : η(X) = 0}.
Then D is a 4-dimensional smooth distribution on M , and that for each X ∈ D,
JX ∈ D, that is D is invariant under the almost complex structure J .

Lemma 2.4. Let M be an orientable real hypersurface of S6 with almost contact
structure (φ, ξ, η, g). Then for a unit vector field X ∈ D

G (X, G(X, ξ)) = −ξ.

Proof. Using the properties of the tensor G in Lemma 2.1, it is easy to see that
for X ∈ D, G(X, ξ) ∈ D as G(X, ξ) ⊥ ξ and N . We have

G (X, G(X, ξ)) =
(∇XG

)
G(X, ξ) = −∇XG(X, N)− J∇XG(X, ξ)

= − [(∇XG
)
(X,N) + G(∇XX, N)−G(X, AX)

]

− J
[(∇XG

)
(X, ξ) + G(∇XX, ξ) + G(X,∇Xξ)

]
.

Using Lemma 2.1 and JN = −ξ we arrive at G (X, G(X, ξ)) = −2ξ −G (X,G(X, ξ))
and this proves the Lemma. 2

Lemma 2.5. Let M be an orientable real hypersurface of S6 and e ∈ D be the unit
vector field. Then

‖G(e, ξ)‖2 = 1.

Proof. It is an easy consequence of the definition of G to check that g(G(X,Y ), Z) =
−g (Y,G(X,Z)) , X, Y, Z ∈ X(M). Consequently the Lemma 2.4 yields g(G(e, ξ), G(e, ξ)) =
−g (ξ, G(e, G(e, ξ))) = 1. 2

Lemma 2.6. Let M be an orientable real hypersurface of S6. Then for each unit
vector field X ∈ D, the set {X, JX,G(X, ξ), JG(X, ξ), ξ} is a local orthonormal frame
on M , and if it is denoted by {e1, e2, e3, e4, ξ}, it satisfies

G(e1, e2) = 0, G(e1,e3) = −ξ, G(e1, e4) = N, G(e1, ξ) = e3, G(e1, N) = −e4

G(e2,e3) = −N, G(e2, e4) = ξ, G(e2, ξ) = −e4, G(e2, N) = −e3, G(e3, e4) = 0

G(e3, ξ) = −e1, G(e3, N) = e2, G(e4, ξ) = e2, G(e4, N) = e1.

Proof. The proof directly follows from Lemma 2.1 and Lemma 2.4. 2
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Lemma 2.7. Let M be an orientable compact real hypersurface of S6. Then
∫

M

{
Ric(ξ, ξ)− 4 + tr(φA)2

}
dv = 0.

Proof. Define u ∈ X(M) by u = ∇ξξ. Then using Lemma 2.3 we compute

∇Xu = R(X, ξ)ξ +∇ξ (φAX −G(X, N)) + φA [X, ξ]−G([X, ξ], N).

Consequently,

divu = Ric(ξ, ξ) +
5∑

i=1

[ξg(φAei, ei)− ξg(G(ei, N), ei)

− g(A[ei, ξ], φei)− g(G([ei, ξ], N), ei)],(2.8)

where we have used a pointwise constant local orthonormal frame {e1, ..., e5} on M .
Note that

(2.9) g (G(ei, N), ei) = −g(N,G(ei, ei)) = 0,

and for an adapted frame

(2.10)
5∑

i=1

g(φAei, ei) = 0,

and that
∑5

i=1 g(φAei, ei) remains same for any local orthonormal frame. Thus equa-
tion (2.8) reduces to

(2.11) divu = Ric(ξ, ξ)−
5∑

i=1

[g (A∇eiξ, φei) + g (G (∇eiξ,N) , ei)] .

Also we have

g (A(∇eiξ), φei) = g (φAei −G(ei, N), Aφei)
= −g

(
(φA)2(ei), ei

)− g (G(ei, N), φAei) ,

which gives

(2.12)
5∑

i=1

g((A(∇eiξ), φei) = −tr (φA)2 −
5∑

i=1

g (G(ei, N), φAei) .

Now we use the local orthonormal frame in Lemma 2.6 to show

(2.13)
5∑

i=1

g (G(ei, N), φAei) = 0,

as the trace of the linear forms is invariant with respect to the local orthonormal
frames. Finally we observe that

∑5
i=1 g (G(∇eiξ, N), ei) =

∑5
i=1 g (∇eiξ, G(N, ei)).

Using Lemmas 2.3, 2.5 and equation (2.13) we conclude
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(2.14)
5∑

i=1

g (G(∇eiξ,N), ei) = 4.

Thus using equations (2.12), (2.13) and (2.14) in equation (2.11), we arrive at
divu = Ric(ξ, ξ)− 4 + tr (φA)2, which on integration yields the Lemma. 2

3 Hopf Hypersurfaces

A real hypersurface of S6 is said to be a Hopf hypersurface if the integral curves of the
characteristic vector field ξ = −JN are geodesics. The geometry of Hopf hypersur-
faces in S6 is related to the geometry of 2-dimensional almost complex submanifolds
of S6 (cf. [1]). A Hopf hypersurface in S6 is known to be orientable and that the
characteristic vector field is an eigen vector of the shape operator A that is Aξ = λξ
and it is also known that λ is a constant ([1]). Now we proceed to prove our main
Theorem

Proof of the Main Theorem. Let M be an orientable compact hypersurface of S6

satisfying the hypothesis of the Theorem. Define a smooth function f : M → R by
f = g(Aξ, ξ). Then equation (2.6) gives

(3.1) Ric(ξ, ξ) = 4 + 5αf − ‖Aξ‖2 .

Since tr(φA)2 = tr(Aφ)2 and that φA − Aφ is a symmetric operator, using an
adapted local orthonormal frame we arrive at

(3.2)
1
2
‖φA−Aφ‖2 = tr(φA)2 + ‖A‖2 − ‖Aξ‖2 .

Thus using equations (3.1), (3.2) and (2.6) in Lemma 2.7, we arrive at

(3.3)
∫

M

{
1
2
‖φA−Aφ‖2 + S − 20− 5α(5α− f)

}
dv = 0.

This together with the condition in the hypothesis of the Theorem yields φA = Aφ
which gives φAξ = 0 and consequently Aξ = fξ. Thus by Lemma 2.3 we get that M
is a Hopf hypersurface and that f is a constant. Now, we proceed to show that this
Hopf hypersurface is the totally geodesic hypersphere.

From the equation (3.3) we conclude that

(3.4) S = 20 + 25α2 − 5αf, φA = Aφ.

Note that the second equation in (3.4) implies that if AX = λX, then AφX =
λφX, X ∈ X(M), that is, the shape operator A is diagonalized in an adapted local
orthonormal frame {e1, ..., e4, ξ} = {e1, φe1, e2, φe2, ξ}, with Aei = λ1ei, i = 1, 2 and
Aej = λ2ej , j = 3, 4, Aξ = fξ, where λ1, λ2 are smooth functions and f is a constant.
Also from equations (2.6) and (3.4), we have ‖A‖2 = 5αf , which gives

(3.5) λ2
1 + λ2

2 = (λ1 + λ2)f.
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For the connected Hopf hypersurface M , we discuss the two cases λ1 +λ2 = 0 and
λ1 + λ2 6= 0.

Case (i). If λ1 + λ2 = 0, then by equation (3.5) we get λ1 = λ2 = 0. Thus we
conclude that A(X) = 0, X ∈ D. Using Codazzi equation (2.4) for X, Y ∈ D, we get
A ([X, Y ]) = 0, which on taking inner product with ξ yields fg ([X, Y ], ξ) = 0. Thus
either the constant f = 0 or else [X, Y ] ∈ D. However [X, Y ] ∈ D implies that D is
integrable and as JD = D, the leaves of the distribution are 4-dimensional almost
complex submanifolds of S6 which do not exist (cf. [13]). Hence f = 0 which implies,
as f is a constant, that M is totally geodesic sphere S5.

Case (ii). If λ1 + λ2 6= 0, then on the open subset where it happens, we choose
an adapted local orthonormal frame that diagonalizes A and use Lemmas 2.3 and 2.6
to write the following structure equations

∇e1ξ = λ1e2 + e4, ∇e2ξ = − λ1e2 + e3, ∇e3ξ = λ2e4 − e2,

∇e4ξ = − λ3e2 − e1,∇ξe1 = ae2 + be3 + µe4,

∇ξe2 = − ae1 + xe3 + ye4, ∇ξe3 = − be1 − xe2 + ze4,

∇ξe4 = − µe1 − ye2 − ze3,(3.6)

where a, b, µ, x, y, z are smooth functions. Using the definition of the curvature tensor
field

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X(M),

and equations in (3.6), we compute

R(e1, ξ)ξ = (λ2
1 + 1)e1 + (−ξ(λ1) + y − b)e2

+ (−λ1x− λ2µ + z − λ1 + λ2 + a)e3 + (−λ1y + bλ2)e4(3.7)

However, by Gauss equation (2.3), we have R(e1, ξ)ξ = (1 + λ1f)e1, consequently
equation (3.7) yields

λ2
1 = λ1f, ξ(λ1) = y − b, λ1y = bλ2

λ1x + λ2µ = z − λ1 + λ2 + a.(3.8)

Repeating the same proceedure for R(e3, ξ)ξ, we arrive at

λ2
2 = λ2f, ξ(λ2) = y − b, λ2y = bλ1

λ1x + λ2µ = z + λ1 − λ2 + a.(3.9)

Using last equations in (3.8) and (3.9), we get λ1 = λ2, and consequently together
with the assumpsion λ1 + λ2 6= 0, we get both λ1 6= 0, λ2 6= 0 and this together with
equation (3.5) gives λ1 = λ2 = f , that is, in this case M is totally umbilical.

Since M is connected, we have either M is totally geodesic hypersphere S5 or else
M is totally umbilical hypersurface. Using Theorem 3 in [1], we get that M is not
a tube around almost complex curve. This completes the proof of our Theorem (cf.
Theorem 2 in [1]). 2
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As an application of integral formula (3.3) we have following :

Corollary 3.1. Let M be an orientable compact minimal hypersurface of the nearly
Kaehler sphere S6 with commuting operators A and φ, then M is totally geodesic.

Proof. Since for a minimal hypersurface S − 20 = −‖A‖2, the integral formula
(3.3) gives ‖A‖2 = 0, that is M is totally geodesic. 2

It is well known that S5, as totally umbilic hypersurface of complex space C3, is
a Sasakian space form ([3]). However, it also has an induced Sasakian structure as a
totally geodesic hypersurface of the nearly Kaehler S6 as seen in the following

Theorem 3.1. The totally geodesic sphere S5 has induced Sasakian structure as a
hypersurface of the nearly Kaehler S6 and it is a Sasakian space form.

Proof. For the hypersurface S5 the Lemma 2.3 gives

(3.10) ∇Xξ = −G(X, N), X ∈ X(S5).

Define ψ : X(S5) → X(S5) by ψ(X) = G(X, N), then it follows that ψ(ξ) = 0
and that ψ(X) ∈ D for X ∈ X(S5). Also as S5 is totally geodesic, by Corollary 2.2,
£ξg = 0, that is ξ is a Killing vector field. Using Lemma 2.1, equation (3.10) and the
fact that ∇XY = ∇XY , X,Y ∈ X(S5), we compute

G (G (X,N) , N) = −∇NJG(X, N) + J∇NG(X, N)
= − (∇NG

)
(X, ξ)−G

(∇NX, ξ
)−G

(
X,∇Nξ

)

+ J
[(∇NG

)
(X,N) + G

(∇NX, N
)

+ G
(
X,∇NN

)]

= η(X)ξ −X.

Consequently, ψ2(X) = −X + η(X)ξ holds. Also we have

g(ψ(X), ψ(Y )) = g (G(X, N), G(Y,N)) = g (X, G((N,G(Y, N))))
= g (X,Y − η(Y )ξ) = g(X,Y )− η(X)η(Y ).

This implies that (ψ, ξ, η, g) is an almost contact metric structure on S5. Moreover
using equation (3.10), we have

(∇Xψ) (Y ) = ∇Xψ(Y )− ψ(∇XY ) = ∇XG(Y, N)−G(∇XY, N)
=

(∇XG
)
(Y, N) = g(X, Y )ξ − η(Y )X,

where we used Lemma 2.1 and the fact that ∇XN = 0. The last equation proves
that (ψ, ξ, η, g) is a Sasakian structure on S5 (cf. [3]). Also for each unit X ∈ D, the
holomorphic sectional curvature H(X) = 1 and hence S5 is a Sasakian space form
with respect to this induced Sasakian structure. 2
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