Hopf hypersurfaces in nearly Kaehler 6-sphere
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Abstract. We obtain a characterization for a compact Hopf hypersurface
in the nearly Kaehler sphere S using a pinching on the scalar curvature
of the hypersurface. It has been also observed that the totally geodesic
sphere S® in S% has induced Sasakian structure as a hypersurface of the
nearly Kaehler sphere S°.
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1 Introduction

It is known that the 6-dimensional unit sphere S% has a nearly Kaehler structure
(J,9), where J is an almost complex structure defined on S® using the vector cross
product of purely imaginary Cayley numbers R7 and g is the induced metric on S%
as a hypersurface of R”. Also S% can be expressed as S5 = G/SU(3) a homogeneous
almost Hermitian manifold, where G5 is the compact Lie group of all automorphisms
of the Cayley division algebra R®. Regarding the submanifolds of the nearly Kaehler
S6. Gray [13] proved that it does not have any complex hypersurface. However, there
are 4-dimensional C R-submanifolds in S® and have been studied by Sekigawa and
otheres [15], [17]. Moreover, 2- and 3-dimensional totally real submanifolds of S¢ also
have been extensively studied [9], [11], [12]. Recently, Berndt et. al [1] have shown that
the geometry of almost complex curves (2-dimensional almost complex submanifolds)
in S% is related to Hopf hypersurfaces (Real hypersurfaces with the 1-dimensional
foliation induced by the distribution which is obtained by applying almost complex
structure J to the normal bundle of the hypersurface is totally geodesic) of S°. This
relationship between the almost complex curves and Hopf hypersurfaces in S® makes
the study of Hopf hypersurfaces in S more interesting. In [1], the authors proved
that a connected Hopf hypersurface of the nearly Kaehler S° is an open part of either
a geodesic hypersphere of S® or a tube around an almost complex curve in S6. It
is therefore interesting question to obtain characterizations of the Hopf hypersurface
which is totally geodesic hypersphere in S and the one which is tube around almost
complex curve. In this paper we obtain a characterization for the Hopf hypersurface
which is totally geodesic hypersphere.
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Let M be an orientable real hypersurface of S with unit normal vector field N
and £ = —JN be the characteristic vector field on M. If A is the shape operator of
the hypersurface we define f : M — R by f = g(A¢, €), where g is the induced metric
on M. Let a = %trA be the mean curvature and S be the scalar curvature of the
hypersurface M. In this paper our main result is the following

Theorem 1.1. Let M be an orientable compact and connected real hypersurface of
the nearly Kaehler S®. If the scalar curvature S of M satisfies

S > 20 + 5a(5a — f),

then M is a Hopf hypersurface, the totally geodesic hypersphere S°.

We also show that this Hopf hypersurface (totally geodesic hypersphere) has natu-
rally induced Sasakian structure (cf. Theorem 3.1). It will be an interesting question as
to know whether the other class of Hopf hypersurface (tubes around almost complex
curves) in S® too carries an induced Sasakian structure.

2 Preliminaries

Let S% be the nearly Kaehler 6-sphere with nearly Kaehler structure (.J,g), where .J
is the almost complex structure and g is the induced metric on S®. Then we have

(2.1) (VxJ)(X)=0, g(JX,JY)=79(X,Y), X,Y €Xx(5°,

where V is the Riemannian connection with respect to the almost Hermitian metric
g and X(S%) is the Lie algebra of smooth vector fields on S¢. The tensor field G of
type (2,1) defined by G(X,Y) = (VxJ) (Y), X,Y € X(S%) has the properties as
described in the following

Lemma 2.1. (/12]) (a) G(X,JY) = —JG(X,Y), (b) G(X,Y) = -G, X),
(c) (VxG) (Y, Z)=3q(Y,JZ)X +§(X,Z)JY —g(X,Y)JZ, X,Y,Z € X(5%).

Let M be an orientable real hypersurface of S, V be the Riemannian connection
with respect to the induced metric ¢ on M and N be the unit normal vector field.
Then we have

(2.2) VxY =VxY +g(AX,Y)N, VxN=-AX, X,Y € X(M),

where A is the shape operator of the hypersurface M. The Guass and Codazzi equa-
tions for the hypersurface are

(23) R(X,Y)Z=g(Y,2)X — g(X,Z)Y + g(AY,Z2)AX — g(AX, Z)AY

(2.4) (VA) (X, Y) = (VA) (Y, X),

for X,Y,Z € X(M), where (VA) (X,Y) = VxAY — A(VxY). The Ricci tensor Ric
and the scalar curvature S of the hypersurface are given by
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(2.5) Ric(X,Y) =49(X,Y) 4+ 5ag(AX,Y) — g(AX, AY)

(2.6) S =20+ 2502 — ||A|?,

where o = 1trA is the mean curvature and ||A||2 = trA? is the square of the length
of the shape operator of the hypersurface.

Using the almost complex structure J of S%, we define a unit vector field ¢ €
X(M) by & = —JN, with dual 1-form n(X) = ¢g(X,¢). For a X € X(M), we set
JX = ¢(X) + n(X)N, where ¢(X) is the tangential component of JX. Then it
follows that ¢ is a (1,1) tensor field on M. Using J? = —1I, it is easy to see that
(¢,€,7m,9) defines an almost contact metric structure on M, that is

(2.7) ¢*=—I+ne¢ nE)=1 nop=0, ¢ =0,
and g(¢X,0Y) = g(X,Y) —n(X)n(Y), X,Y € X(M). Using the fact G(X, X) =0,
X € X(M), we immediately obtain the following
Lemma 2.2. Let M be an orientable real hypersurface of S6. Then the structure
(¢,€,m,9) on M satisfies

(i) (Vx¢) (X) =n(X)AX — g(AX, X)§,

(1) 9(Vx& X) = g(dAX, X).

Note that ¢ is skewsymmetric and for a unit vector field e; orthogonal to &,
{e1,de1} is an orthonormal set of vector fields and that if ey is a unit vector field
orthogonal to ey, ge; and &, then {e;, ey, ea, des, £} forms a local orthonormal frame
on the hypersurface M, called an adapted frame. Using an adapted frame together
with Lemma 2.2 one immediately concludes the following

Corollary 2.1. Let M be an orientable real hypersurface of S¢. Then divé = 0.

Corollary 2.2. Let M be an orientable real hypersurface of S® with almost contact
2
structure (6,€,n, ). Then || £egll = |64 — A"

Proof. We have using on Lemma 2.2 for X,Y € X(M)

= g(Vxv& X +Y) —g(Vx&X) — g (Vg Y)

= g(@A(X+Y),X+Y)—g(pAX,X) —g(¢AY,Y)
= g((pA - A9)(X),Y).

Note that ¢A — A¢ is a symmetric operator and consequently we get ||£Leg| =
2
[0A — Ag|”. O

(£e9) (X,Y)

Lemma 2.3. Let M be an orientable real hypersurface of S® with almost contact
structure (¢,€,1,9). Then

Vxé=¢AX — G(X,N), X € X(M).
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Proof. We have

—AX — JVx&+ g(AX, €)E.

Operating J on this equation and using Lemma 2.1 we get the result. O

On an orientable hypersurface M of S¢ welet D = Kern = {X € X(M) : n(X) = 0}.
Then D is a 4-dimensional smooth distribution on M, and that for each X € D,
JX € D, that is D is invariant under the almost complex structure J.

Lemma 2.4. Let M be an orientable real hypersurface of S® with almost contact
structure (¢,€,1,9). Then for a unit vector field X € D

G(XvG(X7§)) =—¢.

Proof. Using the properties of the tensor G in Lemma 2.1, it is easy to see that
for X € D, G(X,§) € D as G(X,¢) L £ and N. We have

G (X’ G(X7 f)) = (WXG) G(X7 f) = _ﬁXG(X’ N) - JﬁXG(Xv f)
= —[(VxG)(X,N)+G(VxX,N) - G(X,AX)]
— J[(VxG) (X,8) + G(VxX,£) + G(X,Vx¢)].

Using Lemma 2.1 and JN = —¢ we arrive at G (X, G(X,§)) = —2( — G (X,G(X,¢))
and this proves the Lemma. O

Lemma 2.5. Let M be an orientable real hypersurface of S® and e € D be the unit
vector field. Then
1G(e, &)|I* = 1.

Proof. Tt is an easy consequence of the definition of G to check that g(G(X,Y), Z) =
-9(Y,G(X,2)), X,Y,Z € X(M). Consequently the Lemma 2.4 yields g(G(e, £), G(e, §)) =
—g (va(eaG((;ﬂg))) =1 O

Lemma 2.6. Let M be an orientable real hypersurface of S®. Then for each unit
vector field X € D, the set {X,JX,G(X, &), JG(X,§),&} is a local orthonormal frame
on M, and if it is denoted by {e1, ea, €3, €4,&}, it satisfies

G(61762) =0, G(€1,63) = -, G(61,€4) =N, G(Gly 5) = €3, G(el,N) = —€4

G(eze3) = =N, Glez,eq) =&, Glea,§) = —ey, Glea, N) = —e3, G(es,eq) =0
G(es, &) = —e1, Gles, N) = ea, G(eq,§) = ez, G(es, N) = e1.

Proof. The proof directly follows from Lemma 2.1 and Lemma 2.4. O
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Lemma 2.7. Let M be an orientable compact real hypersurface of S¢. Then
/M {Ric(¢,6) — 4+ tr(pA)?} dv = 0.
Proof. Define u € X(M) by u = V¢£. Then using Lemma 2.3 we compute
Vxu=R(X,§)¢§ + Ve (9AX — G(X, N)) + pA[X,{] — G([X, ], N).
Consequently,

5
divu = Ric(§,6)+ > [Sg(dpAei ;) — £g(Glei, N), e;)

i=1

(2'8) - g(A[eiaf]a¢ei) _Q(G([eiaf]’N)’ei)L

where we have used a pointwise constant local orthonormal frame {eq,...,e5} on M.
Note that

(2.9) g(G(ei, N),e;) = —g(N,G(ei,ei)) =0,
and for an adapted frame
5
(2.10) Zg((bAei, e;) =0,
i=1

and that Z?Zl g(dAe;, e;) remains same for any local orthonormal frame. Thus equa-
tion (2.8) reduces to

5
(2.11) divu = Ric(€,€) =Y [g(AVe, & dei) + g (G (Ve &, N) €]

i=1
Also we have

9(A(Ve6),0e) = g(dAe; — Gle;, N), Age;)
—-g ((¢A)2(ei)’ ei) —9(G(ei, N), pAei),

which gives

5 5
(2.12) D 9(A(Ve,8), pes) = —tr (9A)* = > g(G(ei, N), pAe;) .
i=1 i=1
Now we use the local orthonormal frame in Lemma 2.6 to show

5

(2.13) > 9(Glei, N), ¢pAe;) =0,

=1

as the trace of the linear forms is invariant with respect to the local orthonormal
frames. Finally we observe that Z?Zl g (G(Ve,&,N)yei) = Zleg(veif,G(N, €i)).
Using Lemmas 2.3, 2.5 and equation (2.13) we conclude
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5

(2.14) S g(G(VeEN)e) = 4.

i=1

Thus using equations (2.12), (2.13) and (2.14) in equation (2.11), we arrive at
divu = Ric(€,€) — 4+ tr (pA)?, which on integration yields the Lemma. O

3 Hopf Hypersurfaces

A real hypersurface of S is said to be a Hopf hypersurface if the integral curves of the
characteristic vector field £ = —JN are geodesics. The geometry of Hopf hypersur-
faces in S% is related to the geometry of 2-dimensional almost complex submanifolds
of S® (cf. [1]). A Hopf hypersurface in S° is known to be orientable and that the
characteristic vector field is an eigen vector of the shape operator A that is A = A
and it is also known that A is a constant ([1]). Now we proceed to prove our main
Theorem

Proof of the Main Theorem. Let M be an orientable compact hypersurface of S°
satisfying the hypothesis of the Theorem. Define a smooth function f : M — R by
f=g(AE,£). Then equation (2.6) gives

(3.1) Ric(&,€) = 4+ 5af — || A¢]*.
Since tr(¢A)? = tr(A¢)? and that ¢pA — A¢ is a symmetric operator, using an
adapted local orthonormal frame we arrive at

(32) oA — Al = tr(6A)? + | Al — |1 4€]*.

Thus using equations (3.1), (3.2) and (2.6) in Lemma 2.7, we arrive at

(3.3) / {;|¢A—A¢||2+S—2O—5a(5a—f)}dv:O.
M

This together with the condition in the hypothesis of the Theorem yields pA = A¢
which gives pA¢ = 0 and consequently A¢ = f€. Thus by Lemma 2.3 we get that M
is a Hopf hypersurface and that f is a constant. Now, we proceed to show that this
Hopf hypersurface is the totally geodesic hypersphere.

From the equation (3.3) we conclude that

(3.4) S =20+ 250% — 5af, ¢A= Ad.

Note that the second equation in (3.4) implies that if AX = AX, then A¢pX =
ApX, X € X(M), that is, the shape operator A is diagonalized in an adapted local
orthonormal frame {ey, ...,eq,&} = {e1, Peq, ea, pes, £}, with Ae; = Aje;, i = 1,2 and
Ae; = haej, j = 3,4, AL = f€, where A\q, Ay are smooth functions and f is a constant.
Also from equations (2.6) and (3.4), we have ||A||* = 5a.f, which gives

(3.5) M=+ X)f
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For the connected Hopf hypersurface M, we discuss the two cases A1 + Ao = 0 and
A1+ A2 # 0.

Case (i). If Ay + Ag = 0, then by equation (3.5) we get Ay = Ay = 0. Thus we
conclude that A(X) =0, X € D. Using Codazzi equation (2.4) for X,Y € D, we get
A([X,Y]) = 0, which on taking inner product with £ yields fg ([X,Y],£) = 0. Thus
either the constant f = 0 or else [X,Y] € D. However [X,Y] € D implies that D is
integrable and as JD = D, the leaves of the distribution are 4-dimensional almost
complex submanifolds of S which do not exist (cf. [13]). Hence f = 0 which implies,
as f is a constant, that M is totally geodesic sphere S°.

Case (ii). If A\; + Ay # 0, then on the open subset where it happens, we choose
an adapted local orthonormal frame that diagonalizes A and use Lemmas 2.3 and 2.6
to write the following structure equations

Ve, & = Meateq, Ve,§ = —Aea+e3, Ve, § = Aaeq — e,
Ve, & = —Aseg —e1,Veer = aeg + bes + pey,
Vees = —ae; +xes3+yes, Vees = —bey —zes + zey,

(3.6) Veeqs = — per —yea — zes,

where a, b, u, x, y, z are smooth functions. Using the definition of the curvature tensor
field
R(X,Y)ZZvayZ—Vvaz—V[X}y]Z, X,Y,ZE%(M),

and equations in (3.6), we compute

R(er,6)¢ = (A +Der+ (=€(M) +y —blex
(3.7) + (“Mz—dop+z—A+A+ta)es+ (—\y+ b>\2)64
However, by Gauss equation (2.3), we have R(e1,£)¢ = (1 4+ A1 f)e1, consequently
equation (3.7) yields

A= Mf, €)= y—b, Ay = by
(38) )\1£C+>\2[L = Z*Al +)\2+(1.

Repeating the same proceedure for R(es, )&, we arrive at

A3 = Xof, E2) =y—b, Xy = b\
(3.9) MT+ dop = 2+ A1 — A2 +a.

Using last equations in (3.8) and (3.9), we get A\ = A2, and consequently together
with the assumpsion A1 + Ay # 0, we get both Ay £ 0, Ay # 0 and this together with
equation (3.5) gives A\; = A2 = f, that is, in this case M is totally umbilical.

Since M is connected, we have either M is totally geodesic hypersphere S° or else
M is totally umbilical hypersurface. Using Theorem 3 in [1], we get that M is not
a tube around almost complex curve. This completes the proof of our Theorem (cf.
Theorem 2 in [1]). O
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As an application of integral formula (3.3) we have following :

Corollary 3.1. Let M be an orientable compact minimal hypersurface of the nearly
Kaehler sphere S® with commuting operators A and ¢, then M is totally geodesic.

Proof. Since for a minimal hypersurface S — 20 = —||A||*, the integral formula
(3.3) gives ||A||> = 0, that is M is totally geodesic. O

It is well known that S°, as totally umbilic hypersurface of complex space C?, is
a Sasakian space form ([3]). However, it also has an induced Sasakian structure as a
totally geodesic hypersurface of the nearly Kaehler S® as seen in the following

Theorem 3.1. The totally geodesic sphere S® has induced Sasakian structure as a
hypersurface of the nearly Kaehler S and it is a Sasakian space form.

Proof. For the hypersurface S° the Lemma 2.3 gives
(3.10) Vxé=-G(X,N), X eXx(S%.

Define v : X(S%) — X(S%) by ¢(X) = G(X, N), then it follows that (&) = 0
and that ¢¥(X) € D for X € X(S%). Also as S® is totally geodesic, by Corollary 2.2,

Leg =0, that is £ is a Killing vector field. Using Lemma 2.1, equation (3.10) and the
fact that VxY = VyxY, X,Y € X(S%), we compute

G (G(X,N),N) ~VNJG(X,N) + JVNG(X,N)
—(VNG) (X,8) — G (VN X,§) — G (X, V)
+ J[(VNG)(X,N)+G(VNX,N)+G(X,VyN)]

= nX)E-X.

Consequently, ¢?(X) = —X + n(X)¢ holds. Also we have

9(W(X),9(Y)) = ¢g(G(X,N),G(Y,N)) =g (X,G((N,G(Y,N))))
= 9g(XY =n(Y)§) = g(X,Y) = n(X)n(Y).

This implies that (¢, £,7, g) is an almost contact metric structure on S°. Moreover
using equation (3.10), we have

(Vx¥)(Y) = Vxu(Y)—¢(VxY)=VxG(Y,N)-G(VxY,N)
= (VxG) (Y,N) = g(X,Y)¢ - n(Y)X,

where we used Lemma 2.1 and the fact that VxN = 0. The last equation proves
that (1, €,m,9) is a Sasakian structure on S® (cf. [3]). Also for each unit X € D, the
holomorphic sectional curvature H(X) = 1 and hence S° is a Sasakian space form
with respect to this induced Sasakian structure. O
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