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Abstract. The multiscale (wavelet) decomposition of the solution is
proposed for the analysis of the Poisson problem. The approximate so-
lution is computed with respect to a finite dimensional wavelet space
[4, 5, 7, 8, 16, 15] by using the Galerkin method. A fundamental role
is played by the connection coefficients [2, 7, 11, 9, 14, 17, 18], expressed
by some hypergeometric series. The solution of the Poisson problem is
compared with the approach based on Daubechies wavelets [18].
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1 Introduction

The wavelet solution of Poisson problem was obtained in [17, 18] by using the
Daubechies wavelets [13] The main problem was to fulfill the boundary conditions of
the Poisson problem and was solved by using compactly supported wavelets with some
constraints on the boundaries. The solution was obtained by the Galerkin method and
the computation of the connection coefficients [9, 10, 11, 12, 14]. This coefficients con-
sist in the projection of the derivatives of the wavelet basis into a suitable wavelet
space. Latto proposed [14] to take into account the refinement equations for their
computation. More in general, there exists many different families of wavelets and it
is quite difficult to choose, for a given problem, the most suitable family. There follows
that even for the simplest Poisson’s problem the Daubechies wavelets implies some
cumbersome computations. In the following the same problem will be solved by using
the harmonic wavelets [4, 15, 16]. With this choice the solution is the trivial one.

Wavelets are ∞2 functions ψn
k (x) which depend on two parameters: n and k, the

scale and localization (translation) parameter respectively. These functions fulfill the
fundamental axioms of multiresolution analysis [13] so that by a suitable choice of
the scale and translation parameter one is able to easily and quickly approximate
any function (even tabular) with decay to infinity. One of the major drawback of the
wavelet theory is the arbitrariness of their choice and the existence of many families
of wavelets which satify the multiresolution axioms. Among the many families of
wavelets, harmonic wavelets [4, 5, 7, 8, 16, 15] are the most expedient tool for studying
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processes which are localized in Fourier domain, as it happens, e.g. in dispersive wave
propagation [2, 3, 6].

Comparing with Daubechies wavelets, the harmonic wavelets are analytically de-
fined, infinitely differentiable, and band limited [16, 2, 3] thus enabling us to easily
study, their differentiable properties. The corresponding connection coefficients (also
called refinable integrals [11, 9]) can be explicitly (and finitely) computed at any or-
der [4], while in the available literature were given only for a few order of derivatives
[15], or like in the case of the Daubechies wavelets, by some approximate formulas
[14, 18, 17].

By using the Frobenius method and the connection coefficients the Poisson prob-
lem can be transformed into an infinite dimensional algebraic system, which can be
solved by fixing a finite scale of approximation.

2 Harmonic wavelet space structure

The harmonic scaling function [16] and wavelets are the complex function (see e.g.
[2])

(2.1)





ϕn
k (x) ≡ 2n/2 e2πi (2nx−k) − 1

2πi(2nx− k)

ψn
k (x) ≡ 2n/2 e4πi(2nx−k) − e2πi(2nx−k)

2πi(2nx− k)

,

with n, k ∈ Z. The dilated and translated instances of the corresponding Fourier
transform of (2.1), (see e.g. [4]) are

(2.2)





ϕ̂n
k (ω) =

2−n/2

2π
e−iωk/2n

χ(2π + ω/2n)

ψ̂n
k (ω) =

2−n/2

2π
e−iωk/2n

χ(ω/2n)

,

where χ(ω) is the characteristic function

(2.3) χ(ω) def=
{

1 , 2π ≤ ω ≤ 4π ,
0 , elsewhere .

Both the scaling and wavelet functions are very well localized functions in the fre-
quency domain, despite the slow decay in the space variable.

From the definition of the inner (or scalar or dot) product, of two functions
f (x) , g (x), and taking into account the Parseval equality

(2.4) 〈f, g〉 ≡
∞∫

−∞
f (x) g (x)dx = 2π

∞∫

−∞
f̂ (ω) ĝ (ω)dω = 2π

〈
f̂ , ĝ

〉
,

it can be shown that
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(2.5)



〈ϕn
k (x) , ϕm

h (x)〉 = δnmδkh , 〈ϕn
k (x) , ϕm

h (x)〉 = δnmδkh , 〈ϕn
k (x) , ϕm

h (x)〉 = 0 ,

〈ψn
k (x) , ψm

h (x)〉 = δnmδhk ,
〈
ψn

k (x) , ψm
h (x)

〉
= δnmδkh ,

〈
ψn

k (x) , ψm
h (x)

〉
= 0 ,

〈
ϕn

k (x) , ψm
h (x)

〉
= 0 , 〈ϕn

k (x) , ψm
h (x)〉 = 0 .

where δnm (δhk) is the Kronecker symbol.

3 Wavelet reconstruction of functions

Let us consider the class of (real or complex) functions f(x), such that the following
integrals

(3.1)





αk = 〈f(x), ϕ0
k(x)〉 =

∫ ∞

−∞
f(x)ϕ0

k(x)dx

α∗k = 〈f(x), ϕ0
k(x)〉 =

∫ ∞

−∞
f(x)ϕ0

k(x)dx

βn
k = 〈f(x), ψn

k (x)〉 =
∫ ∞

−∞
f(x)ψn

k (x)dx

β∗n
k = 〈f(x), ψ

n

k (x)〉 =
∫ ∞

−∞
f(x)ψn

k (x)dx

exist and are finite.
From the orthogonality conditions (2.5), the function f(x) can be reconstructed

in terms of harmonic wavelets as (see e.g. [16])
(3.2)

f(x) =

[ ∞∑

k=−∞
αkϕ0

k(x) +

∞∑
n=0

∞∑

k=−∞
βn

k ψn
k (x)

]
+

[ ∞∑

k=−∞
α∗kϕ0

k(x) +

∞∑
n=0

∞∑

k=−∞
β∗n

kψn
k (x)

]

which involve the basis and (for a complex function) its conjugate basis. For a real
function (f(x) = f(x)) it is α∗k(x) = αk(x) , β∗n

k (x) = βn
k (x) .

The approximation of (3.2) up to the scale N ≤ ∞ and to a finite translation
M ≤ ∞ is

(3.3)

f(x) ∼= ΠN,Mf(x) =

[
M∑

k=0

αkϕ0
k(x) +

N∑
n=0

M∑

k=−M

βn
k ψn

k (x)

]

+

[
∑M

k=0 α∗kϕ0
k(x) +

N∑
n=0

M∑

k=−M

β∗n
kψn

k (x)

]
.

According to (2.2),(2.4), in the Fourier domain, it is
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(3.4)





αk = 2π〈f̂(x), ϕ̂0
k(x)〉 =

∫ ∞

−∞
f̂(ω)ϕ̂0

k(ω)dω =
∫ 2π

0

f̂(ω)eiωkdω

α∗k = 2π〈f̂(x), ϕ̂0
k(x)〉 = . . . =

∫ 2π

0

f̂(ω)e−iωkdω

βn
k = 2π〈f̂(x), ψ̂n

k (x)〉 = . . . = 2−n/2

∫ 2n+2π

2n+1π

f̂(ω)eiωk/2n

dω

β∗n
k = 〈f̂(x), ψ̂

n

k (x)〉 = . . . = 2−n/2

∫ 2n+2π

2n+1π

f̂(ω)e−iωk/2n

dω ,

being f̂(x) = f̂(−ω) .
Since wavelets are localized, they can capture with few terms the main features of

functions defined in a short range interval. It should be noticed, however, that, for a
non trivial function f(x) 6= 0 the corresponding wavelet coefficients (3.4), in general,
vanish when either

f̂(ω) = 0 , ∀k or f̂(ω) = Cnst. , k 6= 0 .

In particular, it can be seen that the wavelet coefficients (3.4) trivially vanish when

(3.5)





f(x) = sin(2kπx) , k ∈ Z

f(x) = cos(2kπx) , k ∈ Z (k 6= 0)

For instance from (3.1)1, for cos(2kπx) it is

αk =
∫ ∞

−∞
cos(2kπx)ϕ0

k(x)dx =
1
2

∫ ∞

−∞

(
e−2ihπx + e2ihπx

)
ϕ0

k(x)dx

=
1
2

[∫ ∞

−∞
e−2ihπxϕ0

k(x)dx +
∫ ∞

−∞
e2ihπxϕ0

k(x)dx

]

from where by the change of variable 2πx = ξ there follows

αk =
1
2

[
ϕ̂0

k(x) + ϕ̂0
k(x)

]
x=2πh

.

According to (2.2) and to

(3.6) eπin =





1, n = 2k , k ∈ Z

−1, n = 2k + 1 , k ∈ Z

it is
ϕ̂0

k(2πh) =
1
2
e−i2πhkχ(2π + 2πh) =

1
2
χ(2π + 2πh)

and, because of (2.3)
χ(2π + 2πh) = 1 , 0 < h < 1
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so that
ϕ̂0

k(2πh) = 0 , ∀h 6= 0 .

There follows that αh = 0, as well as the remaining wavelet coefficients of cos(2kπx)
(with k ∈ Z and k 6= 0). Analogously, it can be shown that all wavelet coefficients of
sin(2kπx) ( ∀k ∈ Z) are zero.

As a consequence, a given function f(x), for which the coefficients (3.1) are defined,
admits the same wavelet coefficients of

(3.7) f(x) +
∞∑

h=0

[Ah sin(2hπx) + Bh cos(2hπx)]−B0 ,

or (by a simple tranformation) in terms of complex exponentials,

(3.8) f(x)− C0 +
∞∑

h=−∞
Che2ihπx ,

so that the wavelet coefficients of f(x) are defined unless an additional trigonometric
series (the coefficients Ah , Bh , Ch being constant) as in (3.7).

4 Differential structure and connection coefficients

Equation (2.4) describes the basic structure of the functional space defined on the basis
functions (2.1). The investigation of the differential properties of the basis leads us
to the computation of their derivatives. Moreover, in the application of the Frobenius
method, it is assumed that a certain unknown functions (with its derivatives) can be
expressed in terms of a basis (and its derivatives). For this reason, as a first step, we
need the computation of the derivatives of the wavelet basis (see e.g. [4, 5, 6, 11, 12,
14, 15, 17]), through the connection coefficients [4, 5, 9, 10, 14, 17, 18].

The differential properties of wavelets are based on the knowledge of the following
inner products:

(4.1)





λ(`)
kh ≡

〈
d`

dx`
ϕ0

k (x) , ϕ0
h (x)

〉
, Λ(`)m

kh ≡
〈

d`

dx`
ϕ0

k (x) , ψm
h (x)

〉

γ(`)nm
kh ≡

〈
d`

dx`
ψn

k (x) , ψm
h (x)

〉
, ζ(`)n

kh ≡
〈

d`

dx`
ψn

k (x) , ϕ0
h (x)

〉
.

and the corresponding inner products with conjugate functions.

(4.2)





λ(`)
kh ≡

〈
d`

dx`
ϕ0

k (x) , ϕ0
h (x)

〉
, Λ(`)m

kh ≡
〈

d`

dx`
ϕ0

k (x) , ψm
h (x)

〉

γ(`)nm
kh ≡

〈
d`

dx`
ψn

k (x) , ψm
h (x)

〉
, ζ(`)n

kh ≡
〈

d`

dx`
ψn

k (x) , ϕ0
h (x)

〉
.
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The coefficients (4.1) can be easily computed in the Fourier domain(see for a proof
[4]) (for the first and second order connection coefficients of periodic harmonic wavelets
see also [2, 3, 15]), while the mixed connection coefficients (4.1)2,4 are trivially zero:

(4.3) Λ(`)m
kh = 0 , ζ(`)n

kh = 0 , Λ(`)m
kh = 0 , ζ(`)n

kh = 0 .

These coefficients enable us to characterize any order derivative of the basis. In
fact, according to (4.1) it is

(4.4)
d`ϕ0

k(x)
dx`

=
∞∑

m=0

∞∑

h=−∞
λ(`)m

kh ϕm
h (x) .

A good approximation is obtained by a finite value of M

(4.5)
d`ϕ0

k(x)
dx`

∼=
M∑

h=0

λ(`)
khϕ0

h(x)

Analogously we have,

(4.6)
d`ψn

k (x)
dx`

=
∞∑

m=0

∞∑

k,h=−∞
γ(`)nm

kh ψm
h (x)

and a good approximation, which depends only on the dilation N and translational
parameter M , is

(4.7)
d`ψn

k (x)
dx`

∼=
N∑

m=0

M∑

h=−M

γ(`)nm
kh ψm

h (x)

with N ≤ n. Of course, since the harmonic wavelets are oscillating functions the
approximation improves by increasing the translational parameters, however the ap-
proximation can be considered sufficiently good for a very low value of M .

For the corresponding conjugate functions we have

(4.8)
d`ϕ0

k(x)
dx`

=
∞∑

m=0

∞∑

h=−∞
−λ(`)m

kh ϕm
h (x) ,

d`ϕ0
k(x)

dx`
∼=

M∑

h=0

λ(`)
khϕ0

h(x)

and
(4.9)

d`ψn
k (x)

dx`
=

∞∑
m=0

∞∑

k,h=−∞
−γ(`)nm

kh ψm
h (x) ,

d`ψn
k (x)

dx`
∼=

N∑
m=0

M∑

h=−M

γ(`)nm
kh ψm

h (x) .

Thanks to Eqs. (4.4),(4.6), and to the orthonormality conditions (2.5), the remain-
ing mixed coefficients are trivially null.
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5 Wavelet solution of the Poisson problem

Let us consider the Poisson problem

(5.1)





d2u

dx2
+ µ2u = f(x)

u(0) = A , u(1) = B .

By using the Frobenius method, the solution is searched in the form of harmonic
wavelet series up to a finite scale of approximation (3.3), so that the projection into
a finite dimensional wavelet space is:

(5.2)



〈
ΠN,M d2

∂x2
u(x), ϕ0

k

〉
+

〈
ΠN,Mu(x), ϕ0

k

〉
=

〈
ΠN,Mf(x), ϕ0

k

〉
,

〈
ΠN,M d2

∂x2
u(x), ϕ0

k

〉
+

〈
ΠN,Mu(x), ϕ0

k

〉
=

〈
ΠN,Mf(x), ϕ0

k

〉
,

〈
ΠN,M d2

∂x2
u(x), ψn

k (x)
〉

+
〈
ΠN,Mu(x), ψn

k (x)
〉

=
〈
ΠN,Mu(x), ψn

k (x)
〉

,

〈
ΠN,M d2

∂x2
u(x), ψn

k (x)
〉

+
〈
ΠN,Mu(x), ψn

k (x)
〉

=
〈
ΠN,Mu(x), ψn

k (x)
〉

,

k = 0, 1, . . . , M ; n = 0, . . . , N ,

where we assume that u(x) is in the form:

(5.3)

u(x) ∼= ΠN,Mu(x) =

[
M∑

k=0

αkϕ0
k(x) +

N∑
n=0

M∑

k=−M

βn
k ψn

k (x)

]

+

[
M∑

k=0

α∗kϕ0
k(x) +

N∑
n=0

M∑

k=−M

β∗n
kψn

k (x)

]

− B0 +
∞∑

k=0

Ak sin 2kπx + Bk cos 2kπx .

The second derivative, on account of (4.5),(4.7),(4.1),(4.2),(4.3), is
(5.4)

d2u

dx2
∼=

[
M∑

k=0

αk

M∑

h=0

λ(`)
khϕ0

h(x) +
N∑

n=0

M∑

k=−M

βn
k

N∑
m=0

M∑

h=−M

γ(`)nm
kh ψm

h (x)

]

+

[
∑M

k=0 α∗k
∑M

h=0 λ(`)
hkϕ0

h(x) +
N∑

n=0

M∑

k=−M

β∗n
k

N∑
m=0

M∑

h=−M

γ(`)nm
hk ψm

h (x)

]

−
∞∑

k=0

4k2π2 (Ak sin 2kπx + Bk cos 2kπx) .
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On the given function f(x) it is assumed that it can be represented in the form
(5.3), that is
(5.5)

f(x) ∼=
[

M∑

k=0

akϕ0
k(x) +

N∑
n=0

M∑

k=−M

bn
kψn

k (x)

]
+

[
M∑

k=0

a∗kϕ0
k(x) +

N∑
n=0

M∑

k=−M

b∗n
kψn

k (x)

]

− d0 +

∞∑

k=0

ck sin 2kπx + dk cos 2kπx .

By putting (5.3),(5.4),(5.5) into (5.1) and by the scalar product with the basis func-
tions ϕ0

i , ϕ0
i , ψr

i (x), ψr
i (x) we obtain the algebraic system:

(5.6)





M∑

k=0

αkλ(2)
ki + µ2αi = ai , (i = 0, . . . ,M)

M∑

k=0

α∗kλ(2)
ik + µ2α∗i = a∗i , (i = 0, . . . , M)

N∑
n=0

M∑

k=−M

βn
k γ(2)nr

ki + µ2βr
i = br

i , (r = 0, . . . , N ; i = −M, . . . , M)

N∑
n=0

M∑

k=−M

β∗n
kγ(2)nr

ki + µ2β∗r
i = br

i , (r = 0, . . . , N ; i = −M, . . . , M)

−4k2π2Ak + µ2Ak = ck , (k = 0, . . . ,∞)

−4k2π2Bk + µ2Bk = dk , (k = 1, . . . ,∞) .

Once the wavelet coefficients are know the more general wavelet solution U(x) of
(5.1) it is defined unless an arbitrary function F (x) to be specified on account of the
boundary conditions:

(5.7) U(x) = ΠN,Mu(x) + F (x)

where F (x) is an eigenfunction such that

d2F

dx2
+ µ2F (x) = 0 .

The boundary conditions (5.1)2,3 give two additional equations. Taking into ac-
count the definitions (2.1) it is

(5.8)





ϕ0
k(0) = ϕ0

k(0) =
{

1 , k = 0
0 , k 6= 0 , ϕ0

k(1) = ϕ0
k(1) =

{
1 , k = 1
0 , k 6= 1

ψn
k (0) = ψn

k (1) =
{

2n/2 , k = 0
0 , k 6= 0

, ψn
k (1) = ψn

k (1) = 0 ,∀k , ∀n

so that, from (5.3),(5.7),(5.1)2,3 the two additional equations reduce to
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(5.9)





α0 +
N∑

n=0

2n/2βn
0 + α∗0 +

N∑
n=0

2n/2β∗n
0 +

∞∑

k=1

Bk + F (0) = A

α1 + α∗1 +
∞∑

k=1

Bk + F (1) = B

Test problem 1. Let us consider the following

(5.10)





d2u

dx2
= f(x)

u(0) = 1 , u(1) = 2

which is obtained by (5.1) when

µ = 0 , f(x) = −4π2 sin 2πx

and as initial conditions
A = 1 , B = 2.

This problem was considered in [18] to show the application of this method, which
was based in that paper on Daubechies wavelets. Due to the choice of the basis
(Daubechies wavelets) the computation was obtained only after the computation of
the connection coefficients. Indeed this problem in the harmonic basis is a trivial
problem (and trivially can be solved). In fact, the given function f(x) is not localized
in space, and therefore it should expected that the solution U(x) too will not be
localized. Thus making unuseless the wavelet approach. In fact, system (5.6) gives

αk = 0 , α∗k = 0 , βn
k = 0 , β∗n

k = 0 , A1 = 1 , (k = 1) , Bk = 0

so that, according to (5.7),(5.3)

U(x) = sin 2πx + F (x) .

The eigenfunction is
F (x) = νx + ρ

and equations (5.9), give
ρ = 1 , ν = 1

there follows,
U(x) = sin 2πx + x + 1 .

Test problem 2, As a second example let us consider

(5.11)





d2u

dx2
+ µ2u = 0

u(0) = 0 , u(1) = 1 ,

which is obtained from (5.1) with,
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µ = D > 0 , f(x) = 0

and initial conditions
A = 0 , B = 1 .

System (5.6) gives

αk = 0 , α∗k = 0 , βn
k = 0 , β∗n

k = 0 , Bk = 0 , k = µ/(2π)

so that the solution, according to (5.3),(5.6), is

u(x) = A sin µx .

The constant A is determined by imposing the boundary conditions

0 = F (0) , 1 = A sin µ + F (1) .

An eigenfunction is F (x) = 0 so that F (1) = 0 thus we have

u(x) =
sinµx

sin µ
.

In any case, the wavelet solution is a trivial solution which doesn’t show the presence
of the localized functions. Even in this problem 2, the solution is a trivial case for the
harmonic wavelets.

Conclusions

It has been given a method for the wavelet solution of ordinary differential equations.
In particular it has been shown that by using the harmonic wavelets the Poisson
problem can be trivially solved.
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