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Abstract. A tangent manifold is a pair (M,J) with J a tangent structure
(J2 = 0, kerJ =imJ) on the manifold M . One denotes by HM any com-
plement of imJ := TV . Using the projections h and v on the two terms
in the decomposition TM = HM ⊕ TV one defines the almost product
structure P = h− v on M . Adding to the pair (M, J) a Riemannian met-
ric g in the bundle TV one obtains what we call a GL−tangent manifold.
One assumes that the GL−tangent manifold (M, J, g) is of bundle-type,
that is M posses a globally defined Euler or Liouville vector field. This
data allow us to deform P to a framed f(3,−1)−structure P. The later
kind of structures have origin in the paper [6] by K. Yano. Then we show
that P restricted to a submanifold that is similar to the indicatrix bundle
in Finsler geometry, provides a Riemannian almost paracontact structure
on the said submanifold. The present results extend to the framework of
tangent manifold our previous results on framed structures of the tangent
bundles of Finsler or Lagrange manifolds, see [2], [1].
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1 Bundle-type tangent manifolds

Let M be a smooth i.e. C∞ manifold. We denote by F(M) the ring of smooth functions
M , by TM the tangent bundle and by X (M) = ΓTM the F(M)−module of vector
fields on M (sections in tangent bundle).

Definition 1.1. An almost tangent structure on M is a tensor field J of type (1, 1)
on M i.e. J ∈ ΓEnd(TM) such that

(1.1) J2 = 0, im J = ker J.

It follows that the dimension of M must be even, say 2n and rankJ = n.
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Definition 1.2. An almost tangent structure J is called a tangent structure if
there exists an atlas on M with local coordinates (xi, yi), i, j, k... = 1, 2, ..., n, such
that

(1.2) J =
(

∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

A pair (M, J) is called a tangent manifold. For the geometry of tangent manifolds
we refer to [5]. The basic example is the tangent bundle TM , [3].

Let (M, J) be a tangent manifold. The distribution imJ is integrable. It defines
a vertical foliation V with TV =imJ . Let us choose and fix a complement bundle
HM called also the horizontal bundle such that

(1.3) TM = HM ⊕ TV.

In the following we shall use bases adapted to the decomposition (1.3):(
δi = ∂i −N j

i (x, y)∂̇j , ∂̇i =
∂

∂yi

)
, ∂i :=

∂

∂xi
, such that TV = span{∂̇j}, HM =

span{δi}.
The dual cobase is (dxi, δyi = dyi + N i

j(x, y)dxj), that is (HM)∗ =span{dxi}
and (TV )∗ =span{δyi}. Here (N j

i (x, y)) are local functions. Notice that J(δi) = ∂̇i,
J(∂̇i) = 0.

Let be another atlas on M with local coordinates (x̃i, ỹi) in which (1.2) also holds.
Then necessarily one has

(1.4) x̃i = x̃i(x), ỹi =
∂x̃i

∂xj
(x)yj + bi(x),

(1.4’)
∂

∂xi
=

∂

∂x̃j

∂x̃j

∂xi
+

∂

∂ỹj

(
∂2x̃j

∂xk∂xi
yk +

∂bj

∂xi

)
,

∂

∂yi
=

∂x̃j

∂xi

∂

∂ỹj

(1.4”) δi =
∂x̃j

∂xi
δj .

By (1.4”) the functions (N i
j(x, y)) change to the functions (Ñk

h (x̂, ŷ)) given by

(1.5) Ñh
k

∂x̃k

∂xi
=

∂x̃h

∂xk
Nk

i − (
∂bh

∂xi
+

∂2x̃h

∂xk∂xi
yk).

The projections on the two terms in (1.3) will be denoted by h and v, respectively.
Then P = h − v is an almost product tensor structure that has the horizontal and
vertical distribution as +1 (-1)-eigen distributions, respectively.

It is obvious that J |HM is an isomorphism j : HM → TV and J = j ⊕ 0. Then
J ′ = 0⊕j−1 is an almost tangent structure, Q = J ′+J is an almost product structure
and F = J ′ − J is an almost complex structure.

In the adapted bases (δi, ∂̇i) we have:

(1.61) J(δi) = ∂̇i, J(∂̇i) = 0,
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(1.62) J ′(δi) = 0, J ′(∂̇i) = δi,

(1.63) P (δi) = δi, P (∂̇i) = −∂̇i,

(1.64) Q(δi) = ∂̇i, Q(δi) = ∂̇i,

(1.65) F (δi) = −∂̇i, F (∂̇i) = δi.

Moreover, we have

(1.7) PF = −FP = Q.

Definition 1.3. A pseudo-Riemannian metric G on M is said to be compatible
metric if the subbundles HM and TV are orthogonal with respect to G and

(1.8) G(JX, JY ) = G(X, Y ), ∀X, Y ∈ ΓHM.

In the adapted cobases (dxi, δyi) we have

(1.9) G(x, y) = aij(x, y)dxidxj + aij(x, y)δyiδyj ,

where aij := G(δi, δj).

2 GL-tangent manifolds

Let (M,J) be a tangent manifold.

Definition 2.1. A pseudo-Riemannian structure g in the vertical subbundle TV =
imJ will be called a generalized Lagrange (GL)−structure on M. We will say that g
is a GL−metric and (M, J, g) will be called a GL−tangent manifold.

Remark 2.1. The notion of GL-metric for tangent bundle TM was defined by
R. Miron. Properties of various classes of GL-metrics have been established in the
monograph [3].

The GL-metric g is determined by the local coefficients gij(x, y) = g(∂̇i, ∂̇j) with
det(gij) 6= 0 and the quadratic form gijξ

iξj , (ξ ∈ Rn), of constant signature. It is
obvious that there exists a compatible metric G on M such that G|TV = g. In the
adapted cobase (dxi, δyi) it has the form

(2.1) G(x, y) = gij(x, y)dxidxj + gij(x, y)δyiδyj .

From now on we assume that the GL-tangent manifold (M, J, g) is of bundle-
type, that is C = yi∂̇i is a global vector field called Liouville or Euler vector field.
Then in (1.4) we must have bi ≡ 0.
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3 A framed f(3,−1)−structure on a GL-tangent man-
ifold of bundle-type

Let (M, J, g) be a GL-tangent manifold of bundle-type such that g is a Riemannian
metric in TV =imS.

We set L = gij(x, y)yiyj and we get a positive function on M .

We call L a Lagrangian on M and if the matrix with the entries
(

1
2
∂̇i∂̇jL

)
is

nonsingular, L will be called a regular Lagrangian.
The condition “bundle-type” assures that the subset O = {(xi, yi) | yi = 0} is a

closed submanifold of M .We restrict our considerations to the open submanifold M̃ =
M \ 0 of M and we keep the same notations for the geometrical objects involved.We
notice that (M̃, J, g) is a GL-tangent manifold of bundle-type.

On M̃ we have L > 0 and so we may consider the vector fields

(3.1) ξ =
1
L

yiδi, ζ =
1
L

yi∂̇i,

as well as the 1-forms

(3.2) ω =
1
L

yidxi, η =
1
L

yiδy
i,

where yi = gij(x, y)yj .
It is immediately that

(3.3)
ω(ξ) = 1, ω(ζ) = 0,

η(ξ) = 0, η(ζ) = 1.

Moreover, if G is the compatible metric given by (2.1), then

(3.4) G(ξ, ξ) = 1, G(ξ, ζ) = 0, G(ζ, ζ) = 1.

Recall that on M̃ we have the almost product structure P .
From (1.63) it follows

(3.5) P (ξ) = ξ, P (ζ) = −ζ,

and one checks
Lemma 3.1. ω ◦ P = ω, η ◦ P = −η.
Then (3.3) and (3.4) yield
Lemma 3.2. ω(X) = G(X, ξ), η(X) = G(X, ζ), ∀X ∈ X (M̃).
Now we set

(3.6) P = P − ω ⊗ ξ + η ⊗ ζ.

Theorem 3.1. The triple F = (P, (ξ, ζ), (ω, η)) is a framed f(3,−1)− structure,
that is
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(3.7)
P(ξ) = P(ζ) = 0, ω ◦ P = η ◦ P = 0,

P2 = I − ω ⊗ ξ − η ⊗ ζ,

where I is the Krönecker tensor field.
Proof. A direct calculation using (3.3), (3.5) and Lemma 3.1.

Theorem 3.2. The tensor field P is of rank 2n− 2 and satisfies

(3.8) P3 − P = 0.

Proof. The equation (3.8) easily follows from (3.7). We show that kerP is spanned
by ξ and ζ, that is kerP =span{ξ, ζ}. The inclusion “⊃” follows from (3.7). For proving
the inclusion “⊂” let be Z = Xiδi+Y i∂̇i ∈kerP. Then by (3.6), P(Z) = Xiδi−Y i∂̇i−
(ωiX

i)ξ + (ηiY
i)ζ and P(Z) = 0 gives Xi =

1
L

(ωiX
i)yi and Y i =

1
L

(ηiY
i)yi and so

Z = (ωiX
i)ξ + (ηiY

i)ζ. Hence Z ∈span{ξ, ζ}, q.e.d.
The study of structures on manifold defined by tensor field f satisfying f3±f = 0

has the origin in a paper by K. Yano, [6]. Later on, these structures have generically
called f−structures. They have been extended and can be encountered under various
names. We refer to the book [4].

Theorem 3.3. The Riemannian metric G defined by (2.1) satisfies

(3.9) G(PX,PY ) = G(X,Y )− ω(X)ω(Y )− η(X)η(Y ), ∀X, Y ∈ X (M̃).

Proof. First, we notice that from Lemma 3.2 it follows G(PX, ξ) = ω(X) and
G(PX, ζ) = −η(X) for all X ∈ X (M̃). Then we have

G(PX − ω(X)ξ + η(X)ζ, PY − ω(Y )ξ + η(Y )ζ) =

= G(PX, PX)− ω(Y )G(PX, ξ) + η(Y )G(PX, ζ)− ω(X)G(PY, ξ)+

+ω(X)ω(Y ) + η(X)G(PY, ζ) + η(X)η(Y ) = G(X,Y )− ω(X)ω(Y )− η(X)η(Y ),

because of G(PX, PY ) = G(X,Y ), q.e.d.
Theorem 3.3 says that (P, G) is a Riemannian framed f(3,−1)− structure on M̃ .

4 A Riemannian almost paracontact structure

Let be IL = {(x, y) ∈ M̃ | L(x, y) = 1}. This set is a (2n − 1)− dimensional sub-
manifold of M̃ . It will be called the indicatrix of L. We are interested to study the
restriction of the Riemannian framed f(3,−1)− structure to IL.

We shall see that in certain hypothesis on L, the said restriction is a Riemannian
almost paracontact structure.

We consider M̃ endowed with the Riemannian metric G given by (2.1) and we try
to find a unit normal vector field to IL.

Let be

(4.1)
xi = xi(uα),

yi = yi(uα),
rank

(
∂xi

∂uα
,

∂yi

∂uα

)
= 2n− 1, α = 1, 2, ..., 2n− 1,
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a parametrization of the submanifold IL.

The local vector fields
(

∂

∂uα

)
that form a base of the tangent space to IL, take

the form

(4.2)
∂

∂uα
=

∂xi

∂uα
δi +

(
∂yi

∂uα
+ N i

j

∂xj

∂uα

)
∂̇i

and it comes out that ζ is normal to IL if and only if

(4.3) G

(
∂

∂uα
, ζ

)
=

1
L

(
∂yi

∂uα
+ N i

j

∂xj

∂uα

)
yi = 0.

We derive the identity L2(x(uα), y(uα)) ≡ 1 with respect to uα and we obtain

(4.4) (δiL
2)

∂xi

∂uα
+

(
∂yi

∂uα
+ N i

j

∂xi

∂uα

)
(∂̇iL

2) ≡ 0.

Looking at (4.4) and (4.3) it comes out that (4.3) holds if L satisfies the following
two conditions:

(H1) δiL
2 = 0,

(H2) ∂̇iL
2 = fyi, for f 6= 0 any smooth function on M̃ .

If (H1) and (H2) hold, then ζ is the unit normal vector to IL. We restrict to IL
the element from F and we point out this by a bar over those elements. Thus we have:

• ξ̄ = ξ since ξ is tangent to IL,

• η̄ = 0 since η(X) = G(X, ξ) = 0 for any vector field tangent to IL

• P̄ = P − ω ⊗ ξ, because of G(P̄X, ξ) = G(PX, ζ) = η(PX) = −η(X) = 0.

for any vector field X tangent to IL. Now we state

Theorem 4.1. The triple (P̄, ξ̄, ω̄) defines a Riemannian almost paracontact struc-
ture on IL, that is

(i) ω̄(ξ̄) = 1, P̄(ξ̄) = 0, ω̄ ◦ P̄ = 0,
(ii) P̄2 = I − ω̄ ⊗ ξ̄ on IL,
(iii) G(P̄X, P̄Y ) = G(X, Y ) − ω̄(X)ω̄(Y ) for any vector fields tangent to IL.

Moreover, we have
(iv) P̃2 − P̃ = 0 and rankP̃ = 2n− 1.
Proof. All assertions easily follow from Theorems 3.1 - 3.3.
We end with a discussion on the hypothesis (H1) and (H2). More precisely we

show that these hypothesis can be replaced with a weaker one (H) that is referring
to (gij) only.

(H) The functions gij(x, y) are 0-homogeneous in (yi) and the functions Cijk =
1
2
∂̇kgij are symmetrical in the indices i, j, k.

First, (H) implies Cijkyk = Cijkyi = Cijkyj = 0. Using these we compute: ∂̇jL
2 =

2Cijkyiyj + 2gjkyk = 2yj . Thus (H) implies (H2). A new derivation with respect to

(yi) gives
1
2
∂̇i∂̇jL

2 = gij . This says that L is a regular Lagrangian.
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In order to show that (H) implies also (H1) we need to find a set of local coefficients
(N i

j(x, y) depending only on (gij).
We denote by (gjk) the inverse of the matrix (gij) and consider the functions

Gi(x, y) given by

(4.5) 4Gi(x, y) = gik[(∂̇k∂hL2)yh − ∂kL2],

and define the local coefficients N i
j(x, y) as

(4.6) N i
j(x, y) =

∂Gi

∂yj
.

When we replace the adapted coordinates (xi, yi) with the adapted coordinates
(x̃i, ỹi), a direct calculation says that the new functions G̃i are related to Gi by

(4.7) G̃i(x̃, ỹ) = Gi(x, y)− 1
2

∂x̃i

∂xk∂xh
ykyh.

And as a consequence of (4.7) easily follows that the functions (N i
j) are related to

(Ñ i
j) by (1.5) with bi ≡ 0. We recall that M̃ is a tangent manifold of bundle-type.
Now we are preparing for the computation of δiL

2.
First, we write (4.5) in the form

4gjkGk = ∂h(2yj)yh − ∂jL
2 = 2(∂hgjk)ykyh − ∂jL

2 =

= (2∂hgjk − ∂jgkh)ykyh

and derive the both members with respect to (yi).
We get the equation

8CjkiG
k + 4gjkNk

i = 2(∂kgij + ∂igjk − ∂jgik)yk.

Equivalently,

Nh
i =

1
2
ghj(∂kgij + ∂igkj − ∂jgik)yk

which, by a contraction with (yj) yields

(4.8) 2ykNk
i = (∂igjk)yjyk.

We continue computing

δiL
2 = ∂iL

2 −Nk
i ∂̇kL2 = ∂i(gjk)yjyk − 2Nk

i yk (4.8)
= ∂i(gjk)yjyk − (∂igjk)yjyk = 0.

Thus (H) implies (H1), too.
A simple case when the hypothesis (H) holds is when the functions (gij) depend

on x only. Then gij are homogeneous of any degree in (yi) and Cijk ≡ 0.

Conclusions

It is well-known that a tangent bundle is a bundle-type tangent manifold. The re-
sults of this paper generalize those from our papers [2], [1] first from Finsler setting
to GL−metrics and then from tangent bundles framework to bundle-type tangent
manifolds.
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