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Abstract. In this paper we present new forms of the classical separation
axioms on topological spaces. Our constructions generate a method to
refine separation properties when passing to the quotient space and our
results may be useful in the study of algebraic topological structures, such
as topological groups and topological vector spaces.
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1 Introduction

The classical separation axioms have been generalized in several directions. In this
work, we will investigate the R-separated spaces, introduced in [3]. There, the author
introduced the so called R-separation properties on a topological space X on which
a binary relation R is defined. The main idea is to replace the identity relation in the
classical separation properties with the relation R. So, for instance, X is said to be
R-Hausdorff iff given two R-unrelated elements, say a and b, there exist R-disjoint
neighborhoods of a and b respectively (see [3]).
In Section 2, we briefly describe the main constructions and results in [3].
In Section 3 we present Kolmogorov’s first relation on a topological space X, which
is an order relation on T0 (Kolmogorov) spaces. The main result in this section is
Theorem 3.3, which shows that classical separability can be expressed in terms of
separability with respect to Kolmogorov’s relation.
In Section 4 we study separability with respect to Kolmogorov’s second relation on a
topological space, which as it turns out, is an equivalence relation. The central result
in this section is Theorem 4.6. This theorem is actually the main result of the paper.
It refines the separation properties of certain classes of topological spaces.We also
show that the quotient space of Kolmogorov’s second relation satisfies supplementary
separation properties. We present concrete applications to topological groups and
topological vector spaces.
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2 Notation and terminology

In consistency with the notation in [3], given a topological space (X, τ) together with
a binary relation R on X we will denote by Vx the filter of neighborhoods of the
element x ∈ X. For a set A ⊆ X, VA will stand for an open subset of X containing
A. As usual, the inverse of R will be written as R−1, whereas for x ∈ X and y ∈ X
the notation xRy will indicate that the pair (x, y) does not belong to the graph of R.
Analogously, for A ⊆ X and B ⊆ X, we will write ARB to indicate that the cross
product A×B is contained in the complement of the graph of R. We will abbreviate
{x}RA as xRA. For x ∈ X, the set {y : xRy} will be written as R(x). More generally,
if Y ⊆ X, R(Y ) =

⋃
x∈Y R(x).

The space X will be said to be:

• TR0 iff whenever x1 ∈ X, x2 ∈ X and x1Rx2, there exists V ∈ Vxj for j = 1 or
j = 2 such that xiRV for i 6= j.

• TR1 iff whenever x1 ∈ X, x2 ∈ X and x1Rx2, there exist Vi ∈ Vxi
, i = 1, 2 such

that xiRVj for i 6= j.

• TR2 iff for x1 ∈ X, x2 ∈ X and x1Rx2, there exist Vi ∈ Vxi , i = 1, 2 such that
V1RV2.

• TR3 or R-regular iff for any closed subset F ⊂ X and x ∈ X, xRF implies
the existence of neighborhoods Vx and VF such that VxRVF , and FRx implies
VFRVx for some neighborhoods Vx and VF .

• TR4 orR-normal iff for each A ⊂ X and B ⊂ X such that ARB, there are
neighborhoods VA and VB such that VARVB .

In [3], characterization theorems for the above separation properties were shown,
that reduce to classical equivalent properties of separation when the relation under
consideration is the identity on X. For example, X is TR1 if and only if the sets R(x)
and R−1(x) are closed.

3 Kolmogorov’s first relation

In this section we investigate the previous ideas in the particular case of the relation

(3.1) xRy iff y ∈ {x},
called Kolmogorov’s (first) relation (here M denotes the closure of the set M). Notice
that the above condition is equivalent to

(3.2) {y} ⊆ {x}.
More precisely (see Theorem 3.6 below), we show that R-separation properties are
equivalent to classical ones (i.e, separation corresponding to the identity relation on
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X).
We start by pointing out the trivial facts that R is reflexive and transitive and that
for x ∈ X, one has

R(x) = {x} and R−1(x) =
⋂

A∈V(x)

A

where V(x) denotes the filter of neighborhoods of x. Moreover, it is not hard to verify
that for any subset A of X and any open subset Ω, it holds that R(A) = R(A) = A
and R−1(Ω) = Ω. Notice also that any two closed (respectively, open) sets are disjoint
if and only if they are R-disjoint.

Lemma 3.1. The separation axiom TR0 holds for the Kolmogorov relation R on X.
Moreover, X is T0 if and only if R is an order relation.

Proof. The first part is an immediate consequence of the definition of R. Next,
observe that R is an order relation if and only if it is antisymmetric. In that case, if a
and b are two different elements of X, then the fact that at least one of the statements
aRb or bRa is false, yields the validity of the T0 axiom immediately. The converse
follows easily. 2

Lemma 3.2. If the space X is TR1 , then R is symmetric.

Proof. If X is TR1 and a ∈ X, b ∈ X with aRb, then the assumption bRa yields
the existence of a neighborhood Vb of b with VbRa. This is impossible, since a ∈ Vb.
2

Theorem 3.3. Let X be a topological space and R stand for Kolmogorov’s first
relation. Then the following statements are equivalent:

(i) X is TR1 ;

(ii) R is the identity relation on X;

(iii) X is T1.

Proof. The implication (i) ⇒ (ii) follows directly from Lemma 3.2 and the fact
that, being TR1 , X is also TR0 , and hence antisymmetric.
The statement (ii) ⇒ (iii) is an immediate consequence of the definition of R.
Finally, if X is T1 and x1Rx2, then by definition of R, there is an open neighborhood
V2 of x2 such that x1 /∈ V2. It is clear that no element of V2 is in the closure of
x1, which yields x1RV2. On the other hand, since x1 6= x2, we infer from (iii) the
existence of a neighborhood V1 of x1 not containing x2, which immediately yields the
statement x2RV1. By definition, X is TR1 . 2

Lemma 3.4. A topological space X is regular if and only if it is R-regular
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Proof. If X is regular, x ∈ X and F ⊂ X is closed with xRF , it follows that x /∈ F .
Accordingly, there are disjoint open sets Vx and VF containing x and F respectively.
It follows now by definition of R that VxRVF . A similar reasoning shows that if FRx,
one can find R-disjoint open neighborhoods of F and x.
Conversely, assuming that X is R-regular, given a closed subset F ⊆ X and x /∈ F ,
we consider an open neighborhood of x, Vx, disjoint with F . Clearly, FRx. Let Wx

and WF be open neighborhoods of x and F respectively such that WFRWx. Then it
is clear that Wx ∩WF = f¡ . 2

Lemma 3.5. A topological space X is normal if and only if it is R-normal.

Proof. If X is normal and F and G are R-disjoint closed subsets of X, then
F ∩G = f¡ . Let VF and VG be disjoint open neighborhoods of F and G respectively.
It is clear that VF and VG are R-disjoint.
Conversely, assume that X is R-normal and consider disjoint closed subsets F and
G. It is clear that FRG. There are then R-disjoint (hence , also disjoint) open neigh-
borhoods VF and VG of F and G respectively.

2

Theorem 3.6. For each i, 1 ≤ i ≤ 4, the separation axioms Ti and TRi are equivalent.

Proof. The proof follows immediately from the above Lemmas. 2

4 Kolmogorov’s second relation

Let X be a topological space. We define the relation ρ on X as follows:

(4.1) xρy if and only if {x} = {y}

Notice that ρ is an equivalence relation on X and that xρy ⇔ xRy and yRx, where
R stands for Kolmogorov’s First Relation defined in the previous section.
We also point out the fact that X is T0 if and only if ρ is the identity on X. Therefore,
setting x̂ to be the equivalence class of x ∈ X, we have

(4.2) x̂ = R(x) ∩R−1(x)

for each x ∈ X. It is also clear that any topological space is T ρ
0 and that ρ(Ω) = Ω

for any open set Ω.
Therefore (see [3]) the following statement holds:

Theorem 4.1. If X is T ρ
i , 1 ≤ i ≤ 4, then the quotient space X̂ is Ti.

From the previous observations it follows the well known result that the quotient
topology on X̂ is T0.
We now present some basic characterizations of the axioms T ρ

i , 1 ≤ i ≤ 4.

Theorem 4.2. The following conditions on any topological space X are equivalent:
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(i) X is T ρ
1 ;

(ii)
⋂

Vx∈Vx
Vx = {x}.

Proof. If we assume (i), it is easy to see that {x} ⊆ ⋂
Vx∈Vx

Vx. Otherwise, there
would exist z ∈ {x}\(⋂

Vx∈Vx
Vx

)
. In particular, xρz, since x /∈ {z}. This would yield

the existence of an open neighborhood of z, Wz such that xρWz. But this contradicts
the fact that z ∈ {x}. Conversely, if z ∈ (⋂

Vx∈Vx
Vx

)\{x}, then zρx, from which there
must exist a neighoborhood Ux of x not containing z, which is again a contradiction.
Conversely, consider x and y in X with xρy. Then either y /∈ {x} or x /∈ {y}. In the
first case, there is an open neighborhood Wy of y, disjoint with {x}. It follows Wyρx.
Assuming (ii) we obtain an open neighborhood Ux of x, not containing y, so that
Uxρy. Te same argument applies to the case x /∈ {y}. Hence, X is T ρ

1 . 2

Theorem 4.3. The following statements are equivalent:

(i) X is TR2 .

(ii)
⋂

Vx∈Vx
Vx = {x}.

Proof. Clearly, {x} ⊆ ⋂
Vx∈Vx

Vx. If X is TR2 , then the equality in (ii) must hold;
in fact, if z ∈ (⋂

Vx∈Vx
Vx

) \ {x}, then let Wz and Wx be neighborhoods of z and z
respectively such that

(4.3) WzρWx.

It follows that z /∈ Wx, otherwise Wz and Wx would have non-empty intersection,
which contradicts (4.3).
On the other hand, if (ii) holds and x and y are elements in X such that xρy, then
either x /∈ {y} or y /∈ {x}. Obviously, it is necessary to handle only one case, say the
first. From (ii), we conclude that there exists a neighborhood Vy of y such that

(4.4) x /∈ Vy

and therefore, there exists an open set Vx ∈ Vx with Vx ∩ Vy = f¡ . It is now clear
that

VxρVy.

This completes the proof. 2

Lemma 4.4. The topological space X is regular if and only if it is ρ-regular.

Let X be a regular topological space, choose x ∈ X and a closed set F ⊂ X such
that xρF . Then {x} ∩F = f¡ and there exists open sets Ω and Vx such that F ⊂ Ω,
x ∈ Vx and Ω ∩ Vx = f¡ , which implies ΩρVx.
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Assuming now that x is ρ-regular, if x ∈ X and F is a closed subset of X with
{x} ∩ F = f¡ , one can find a neighborhood Vx of x with Vx ∩ F = f¡ . Therefore,
VxρF , from which one obtains xρF . Let x ∈ Ux and F ⊆ Ω where Vx and Ω are open
sets such that UxρΩ. It is easy to see that Ux ∩ Ω = f¡ . The proof is now complete.
2

Lemma 4.5. A topological space X is normal if and only if it is ρ-normal.

Proof. The proof is an immediate consequence of the fact that any two open subsets
of X (respectively, any two closed subsets of X) are disjoint if and only if they are
ρ-disjoint. 2

We are now in a position to prove the main Theorem of this Section, which is an
immediate consequence of the above Lemmas:

Theorem 4.6. Let X be a topological space such that for each x ∈ X, the equality

(4.5) {x} =
⋂

Vx∈Vx

Vx

holds. Let X̂ = X/ρ be the quotient space, where ρ stands for Kolmogorov’s Second
Equivalence Relation.
Then any two of the following statements are equivalent:

(i) X̂ is a T1 space;

(ii) If X is regular, then X̂ is T3;

(iii) If X is normal, then X̂ is T4;

(iv) If {x} =
⋂

Vx∈Vx
Vx, then X̂ is T2.

2

The following Remark shows that Theorem 4.6 provides a unifying framework for
several otherwise isolated results in the theory of topological vector spaces and topo-
logical groups.

Remark 4.7. (i) Condition (4.4) in Theorem 4.6 holds true in any topological group
or topological vector space.

This is a consequence of the well known equality:

{0} =
⋂

V ∈V0

V,

where V0 stands for the filter of neighborhoods of the origin (see [4], Prop. 3.2, p. 32.)
(ii) Notice that, in the notation of this section, we have xρy if and only if x ≡
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y(mod{0})s. This results from the fact that {0} is a normal subroup of X if X is a
topological group or a closed subspace of X, if X is a topological vector space (see
[B], Proposition 1, p. 226). Therefore,

xρy ⇔ {x} = {y} ⇔ x + {0} = y + {0} ⇔ x− y ∈ {0}.

The previous Remark allows us to state the following:

Corollary 4.8. If X is a topological group, the quotient space X̂ = X/{0} is T1. If
X is a topological vector space, then X̂ is T3.

Proof. The proof of the first assertion follows directly from part (i) of Theorem
4.6 and the previous Remark. The second proposition is a consequence of Theorem
8 (p.42) in [5] and (iii) in our Theorem 4.6. We underline the fact that Corollary 4.8
improves the corollary to Proposition 4.5 on page 34 of [4].
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