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Abstract. We consider number of limit cycles of perturbed quintic Hamil-
tonian system with perturbation in the form of (2n+2m) or (2n+2m+1)
degree polynomials. We show that the perturbed system has at most
n + 2m limit cycles. For m = 1 and n = 1 we showed that the per-
turbed system can have at most one limit cycles. If m = 1 and n = 2 we
give some general conditions based on coefficients of the perturbed terms
for the number of existing limit cycles.

M.S.C. 2000: 34C07, 34C08, 37G15, 34M50.
Key words: Zeros of Abelian integrals, Hilbert’s 16th problem, Limit cycles.

1 Introduction

The second part of Hilbert’s 16th problem concerned with the existence, number and
distribution of the limit cycles of planar polynomial differential equations of degree
n. This problem is still unsolved even for n = 2. Therefore several similar problems
which appear to be simpler proposed by Smale [8]. One of such problems is:

Weakened Hilbert’s 16th problem: Let H(x, y) be a real polynomial of degree
n and let P (x, y) and Q(x, y) be real polynomials of degree m. Now consider the
perturbed Hamiltonian system in form

ẋ = Hy + εP (x, y),(1.1)
ẏ = −Hx + εQ(x, y),

where 0 < ε ¿ 1 and the level curves H(x, y) = h of the Hamiltonian system (1.1)|ε=0

contain at least a family Γh of closed orbits for h ∈ (h1, h2), where h1 and h2 are real
numbers and H(x, y) is the hamiltonian of the unperturbed system (1.1)|ε=0. Let

(1.2) A(h) =
∫

Γh

Pdy −Qdx =
∫ ∫

H≤h

(
∂P

∂x
+

∂Q

∂y

)
dxdy.

The function A(h) is called Abelian integral in [11]. There is a close relation between
number of zeros of Abelian integral A(h) and number of limit cycles of system (1.1).
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For a fixed H of degree n ≥ 3, taking P and Q in (1.1) as arbitrary polynomials
of degree m many authors [1, 3, 4, 5, 7] showed that the upper bound for number of
isolated zeros of A(h) is a linear function in n and m. Yang and Wang [10] showed
that the system

(1.3)
dx

dt
= y + ε

l∑

k=0

akxk,
dy

dt
= −x

has at most n limit cycle when 0 < ε ¿ 1, where l = 2n + 1 or 2n + 2. For n = 2
and n = 3, for the bifurcation, location and stability of limit cycles, they obtained the
conditions depending on the coefficients of the polynomials . Zhao [12] investigated
the perturbed cubic Hamiltonian system

(1.4)
dx

dt
= y + εPn(x, y),

dy

dt
= −x− x3 + εQn(x, y),

where Pn(x, y), Qn(x, y) are polynomials of degree n, and proved that the upper bound
for the number of isolated zeros of the Abelian integral corresponding to (1.4) is
3[(n− 1)/2], n ≥ 3. Han [2] proved that the system

(1.5) x′ = y, y′ = −(x3 + bx− x)− ε(a1 + a2x + a3x
2)y

has four limit cycles for 0 < ε ¿ 1. Cheng-qiang Wu, Yonghui Xia [9] considered the
system

(1.6)
dx

dt
= y + ε

l∑

j=0

ajx
j | y |2m−1

,
dy

dt
= −x− x3,

where 0 < ε ¿ 1, l = 2n + 1 or 2n + 2, n and m are arbitrarily positive integers
and a0, a1, ..., al are real, and showed that this system has at most n+m limit cycles.
They proved that system (1.6) has at most n limit cycles when m = 1.

In this paper, we consider the following perturbed Hamiltonian system

(1.7)
dx

dt
= y + εP (x, y),

dy

dt
= −x− x5,

where P (x, y) =
∑l

j=0 ajx
j | y |2m−1, 0 < ε ¿ 1, l = 2n + 1 or l = 2n + 2, n and m

are arbitrarily positive integers and a0, a1, ..., al are real. In §2 we derive a formula for
A(h) and show that an upper bound for number of zeros of A(h) is n + 2m. Also by
considering behavior of (1.7) about its equilibrium at infinity we show that (1.7) has
at most n+2m limit cycles. In §3 we consider number of zeros of A(h) for n = m = 1
and n = 1, m = 2 and show that in the first case (1.7) can have at most one limit
cycle and in the latter (1.7) can have at most two limit cycles in a parameter region
Ω.

2 Abelian integral computation and main result

We calculate the Abelian integrals A(h) corresponding to system (1.7) using equation
(2). Clearly the unperturbed system of (1.7)|ε=0 has the first integral
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(2.1) Γh : H(x, y) =
x2

2
+

x6

6
+

y2

2
= h, h > 0,

Which extends as h increases. Therefore from (2) we have

(2.2) A(h) =
∫ ∫

Dh

l∑

j=1

ajjx
j−1 | y |2m−1 dydx,

where Dh is the area surrounded by Γh, and l = 2n + 1 or 2n + 1. First we notice

that from (2.1), we have y1,2 = ±
√

2h− x2 − x6

3 . By symmetry of Dh with respect
to x = 0 and simple calculation, For l = 2n + 1, we have

A(h) =
∫ ∫

Dh

(
l∑

j=1

jajx
j−1) | y |2m−1 dydx = 2

∫ x2

x1

∫ y2

0

l∑

j=1

jajx
j−1y2m−1dydx

=
1
m

∫ x2

x1




n+1∑

j=1

(2j − 1)a2j−1x
2j−2 +

n+1∑

j=1

(2j)a2jx
2j−1


 y2m

2 dx,

where x1, x2, are zeros of 3x2 + x6 − 6h = 0. Now by Cardano’s formulae for roots of
cubic equation , we have

x1 = −

√√√√ 3

√
(3h +

√
9h2 + 1)2 − 1

3
√

3h +
√

9h2 + 1
, x2 = −x1.

Therefore by symmetry of Dh with respect to y = 0,
∫ x2

x1
y2m
2

∑n+1
j=1 (2j)a2jx

2j−1dx =
0, therefore

(2.3) A(h) =
2
m

n+1∑

j=1

a2j−1(2j − 1)
∫ x2

0

x2j−2(2h− x2 − x6

3
)mdx.

To write A(h) as a polynomial in h, first we notice that

(2h− x2 − x6

3
)m =

m∑
s=0

Cs
m(−1)s(2h)m−sx2s(1 +

x4

3
)s, (1 +

x4

3
)s =

s∑

i=0

Ci
s(

1
3i

)x4i,

where Cm
n = m!

n!(m−n)! . Therefore (2.3) becomes

A(h) =
2
m

n+1∑

j=1

a2j−1(2j − 1)

[
m∑

s=0

(−1)sCs
mB(j, s, x2)(2h)m−sx2s+2j−1

2

]

=
2x−1

2

m

n+1∑

j=1

a2j−1(2j − 1)x2j
2

[
m∑

s=0

(−1)sCs
mB(j, s, x2)(2h)m−sx2s

2

]
,(2.4)

where
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B(j, s, x2) =
s∑

i=0

Ci
s

3i

x4i
2

4i + 2s + 2j − 1
.

To simplify A(h), let λ3 = 3h+
√

9h2 + 1, then h = 1
6 (λ3− 1

λ3 ) and x2 =
√

λ− 1
λ . To

simplify equation (2.4) more we set µ = λ − 1
λ . It is clear for every positive µ there

exist a unique λ > 1 and x2
2 = µ, h = 1

6µ(µ2 +3). Therefore for every positive h there
correspond a unique µ > 0. Using this change of variable equation (2.4) becomes
(2.5)

A(h) =
2x−1

2 µm+1

m

n+1∑

j=1

a2j−1(2j − 1)µj−1[
m∑

s=0

Cs
m(−1)s(

1
3
)m−s(µ2 + 3)m−sB(j, s,

√
µ)]

︸ ︷︷ ︸
I(µ)

,

which I(µ) is a polynomial of degree (n + 2m) in µ. Since h = 1
6µ(µ2 + 3), we have

dh
dµ = 1

2 + 1
2µ2 > 0, therefore dµ

dh > 0. On the other hand let h∗ ∈ (0,∞) be a zero of
A(h) = 0, then it is clear that I(µ∗) = 0 where h∗ = 1

6µ∗(µ2
∗ + 3) and

A′(h∗) =
2
m

((µm+1/2
∗ )I ′(µ∗))

2
1 + µ2∗

,

Therefore we obtain:

Lemma 1. (i) A(h) has at most n + 2m zero for all h ∈ (0,∞).
(ii) There is a h∗ ∈ (0,+∞) such that A(h∗) = 0 if and only if there is a µ∗ ∈ (0,+∞)
such that I(µ∗) = 0, where h∗ = 1

6µ∗(µ2
∗ + 3)

(iii) A(h∗) = 0 and A′(h∗) > 0(< 0) if and only if I(µ∗) = 0 and I ′(µ∗) > 0(< 0).

From (2.5) lemma 1 and lemma 1 in [9], we know that (1.7) has at most n + 2m
limit cycle in the finite plane.

Remark 1. From the above discussion we see that even power terms in (1.7) has no
effect on number of limit cycles of system (1.7). So we may assume they are zero.

2.1 Behavior at infinity

In this part we prove that system (1.7) has no limit cycle about equilibrium points at
infinity. First let us denote

y + ε

l∑

j=0

ajx
j |y|2m−1 := P1(x, y) + P2(x, y) + · · ·+ PN (x, y),

−x− x5 := Q1(x, y) + Q2(x, y) + · · ·+ QN (x, y),

where Pj and Qj are homogeneous polynomial of degree j. Then equilibrium point of
(1.7) at infinity satisfy the following equation [6]

(2.6) G(X,Y ) := XQN (X, Y )− Y PN (X, Y ) = 0, X2 + Y 2 = 1, Z = 0,

where (X, Y ) denotes the coordinate on the equator of the Poincaré sphere S2 =
{(X,Y, Z) : X2 +Y 2 + Z2 = 1} and x = X

Z , y = Y
Z gives the relation between a point
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in xy-plane and a point on the sphere S2. Flow on the equator of S2 will be determined
by the sign of G(X,Y ). It will be clockwise if G < 0 and it is counterclockwise if G > 0.
Now we consider the following case separately.

(i) m=n=1. If l = 2n + 1 then N = 5 and from (2.6) we get

G(X, Y ) = X(−X5) = 0, X2 + Y 2 = 1.

Therefore (1.7) have two equilibrium (0,±1, 0) on the equator of S2. In this case
G < 0 the flow on the equator is clockwise, and since (±1, 0, 0) is not a critical points
of (1.7), by ([6]) the behavior of the flow about the equilibrium of (1.7) at infinity is
topologically equivalent to

ẋ = z4(1 + x2) + x6 + ε

3∑

j=0

ajx
jz4−jsgnz, ż = xz(z4 + x4).

If l = 2n + 2, again N = 5 and equilibrium points of (1.7) on the equator of S2 are

(0,±1, 0) and (±
√

εa4

1 + εa4
,−

√
1

1 + εa4
, 0), if a4 > 0,

(0,±1, 0) and (±
√ −εa4

1− εa4
,

√
1

1− εa4
, 0), if a4 < 0.

Since (±1, 0, 0) is not a critical point of (1.7) on the equator of S2, the flow about the
equilibrium of (1.7) at infinity is topologically equivalent to

ẋ = z4(1 + x2) + x6 + ε

4∑

j=0

ajx
jz4−jsgnz, ż = xz(z4 + x4).

We notice that z = 0 is a trajectory of (18) and therefore along two characteristic
directions θ = 0 and π, there are orbits of (18) approaching, (0, 0), the unique singular
point of (18) on the x-axis. Moreover the behavior at the antipodal points on the
equator of the Poincaré sphere will be topologically equivalent. Therefore (1.7) has
no limit cycle at infinity.
Similarly, if l = 2n+2 the behavior of the flow about the equilibrium of (1.7) at infinity
is given by (2.7) A similar proof shows that, in this case also, (1.7) has no limit cycle at
infinity. Now we consider the case m+n > 2. In this case the critical points of (1.7) at
infinity are zeros of equation −εalY

2mX lsgn(Y ) = 0 on the equator of the Poincaré
sphere. If al 6= 0, then the zeros are (0,±1, 0), (±1, 0, 0). Let l = 2n + 1, al > 0 (the
other cases can be done similarly). Therefore according to [6] the flow on the equator
about (0,±1, 0), (±1, 0, 0) are topologically equivalent to
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ẋ = z2m+l−2(x2 + 1) + x6z2m+l−6 + ε

l∑

j=0

ajx
jzl−jsgnz,(2.7)

ż = xz2m+l−5(x4 + z4), and

ẏ = −y2z2m+l−2 − z2m+l−6(1 + z4)− ε

l∑

j=0

ajy
2mzl−jsgnzsgny,(2.8)

ż = −yz2m+l−1 − ε

l∑

j=0

ajz
l−j |z||y|2m−1,

respectively. However, since ż = 0 on the x-axis or y-axis in (2.7)and (2.8), respec-
tively. Similar to the case m + n = 2, (1.7) has no limit cycle at infinity. If al = 0,
then z = 0 is the singular line of (2.7) and (2.8), respectively. But this implies that
(1.7) has no limit cycle about equilibrium at infinity. Therefore by Lemma 2 and the
above discussion, we have proved

Theorem 1. The perturbed system (1.7) has at most n + 2m limit cycles.

3 The number of limit cycles of (1.7) when m = 1

Consider the perturbed system (1.7) with m = 1

(3.1)
dx

dt
= y + ε

l∑

j=0

ajx
j | y |, dy

dt
= −x− x5,

where l = 2n + 1 or 2n + 2. From (2.4), and by direct calculation, we have

(3.2) A(h) = 2x−1
2

n+1∑

j=1

a2j−1(2j − 1)

(
2hx2j

2

2j − 1
− x2j+2

2

2j + 1
− x2j+6

2

3(2j + 5)

)
.

Now, by replacing x2
2 = µ, h = 1

6µ(µ2 + 3), in equation (3.2)and after little simplifi-
cation, we have

A(h) = 4µ3/2
n+1∑

j=1

a2j−1

(
µj+1

2j + 5
+

µj−1

2j + 1

)
,

Therefore A(h) = 4x−1
2 µ2In+2(µ), where

(3.3) In+2(µ) =
a2n+1

2n + 7
µn+2 +

a2n−1

2n + 5
µn+1 +

(a2n−3 + a2n+1)
2n + 3

µn + ... +
a3

5
µ +

a1

3
.

To consider number of zeros of A(h) we may consider two special cases:
(i) n is even and a1

a2n+1
< 0, (ii) n is odd and a1

a2n+1
> 0.

It is clear that in this two cases In+2(µ) has at least one negative zero and therefore
A(µ) has at most n + 1 zeros.
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3.1 The number of limit cycles of (8) when m = 1, n = 1

For n = 1 and m = 1 the perturbed system (8) is

(3.4)
dx

dt
= y + ε(a0 + a1x + a2x

2 + a3x
3) | y |, dy

dt
= −x− x5.

Theorem 2. Consider the perturbed system (3.4),
(1) If a3a1 > 0, then system (3.4) has no limit cycle.
(2) If a3a1 ≤ 0, then system (3.4) has a unique limit cycle, which is stable (unstable)
when a3 < 0 (a3 > 0).

Proof. From (3.3) we have

I3(µ) =
1
9
a3µ

3 +
1
7
a1µ

2 +
1
5
a3µ +

1
3
a1,(3.5)

I ′3(µ) =
1
3
a3µ

2 +
2
7
a1µ +

1
5
a3.

Number of positive zeros of I3(µ) will be determined by position of its critical points
and sign of I ′3(µ) at these points. But I3(µ) = 0 if and only if

Î3(µ) = µ3 +
9a1

7a3
µ2 +

9
5
µ +

3a1

a3
= 0.

Critical points of Î3(µ) are

µ± == −3a1

7a3
±∆1, if ∆1 > 0, where ∆1 =

√
9a2

1

49a2
3

− 3
5
.

From the previous expression, it is clear that µ− < 0 < µ+. Also µ+ is local mini-
mum and µ− is local maximum of (3.5). Now we consider cases a1

a3
> 0 and a1

a3
≤ 0

separately.
i) a1

a3
> 0, in this case

Î ′3(µ) = 3µ2 +
18a1

7a3
µ +

9
5

which is positive for all µ ≥ 0. On the other hand Î3(0) = 3a1
a3

> 0, therefore Î3(µ) >

Î(0) > 0 for all µ ≥ 0. Therefore Î3(µ) has no positive root and system (3.4) has no
limit cycle.
ii) a1

a3
≤ 0, it is clear that Î3(µ) has at least one positive zero, since Î(0) = 3a1

a3
< 0

and limµ→∞ Î3(µ) = ∞. We notice that Î ′(µ) have no zero if ∆1 < 0 and therefore
Î3(µ) has a unique zero. In case ∆1 ≥ 0, Î3(µ) has no zero in (0, µ+), since Î3(0) < 0
and it is decreasing in this interval and since it is increasing in (µ+,∞), Î3(µ) has at
most one zero in (µ+,∞) . Now let µ∗ be a zero of Î3(µ) = 0. By above discussion
it is clear that Î ′3(µ∗) > 0. Therefore I ′3(µ

∗) is negative when a3 is negative and it
positive when a3 is positive. So the stability of the corresponding limit cycle follows
Theorem 1 and Lemma 1.
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3.2 The number of limit cycles of (1.7) when m = 1, n = 2

For m = 1 and n = 2 the perturbed system (1.7) becomes

dx

dt
= y + ε(a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5) | y |,(3.6)

dy

dt
= −x− x5,

where 0 < ε ¿ 1. In this case (3.3) becomes

I4(µ) =
1
11

a5µ
4 +

1
9
a3µ

3 +
1
7
(a1 + a5)µ2 +

1
5
a3µ +

1
3
a1.

To simplify our notation let B = 11
42 (a1

a5
+ 1) and A = − 11a3

36a5
. It is easy to see that

I4(µ) = 0 if and only if

(3.7) Î4(µ) = µ4 − 4Aµ3 + 6Bµ2 − (36/5)Aµ + 14B − 11/3 = 0.

To consider number of zeros of Î4(µ), first we consider critical points of

(3.8) Î ′4(µ) = 4µ3 − 12Aµ2 + 12Bµ− (36/5)A.

The critical points of Î ′4(µ) are µ± = A±∆, where ∆ =
√

A2 −B if ∆ > 0. Number of
positive zeros of Î ′4(µ) and the values of Î ′4(µ±) play an important role in determining
number of zeros of I4(µ). After some computations we have

(3.9) Î ′4(µ±) = 4(−2A3 ∓ 2∆3 + 3AB − 9/5A) := I±(A,B).

Let µ∗ be a positive zero of Î ′4(µ) = 0. For our purpose it is also necessary to find
Î4(µ∗). First we notice that

µ3
∗ = 3Aµ2

∗ − 3Bµ∗ + 9/5A,(3.10)
µ3
∗ − 3Aµ2

∗ = −3Bµ∗ + 9/5A,(3.11)

Using (3.7) and above relations we have

Î4(µ∗) = µ∗(µ3
∗ − 3Aµ2

∗)−Aµ3
∗ + 6Bµ2

∗ − (36/5)Aµ∗ + 14B − 11/3
= αµ2

∗ + βµ∗ + γ := P2(µ∗),(3.12)

where α = −3∆2, β = 3A(B− 9/5) and γ = −9/5A2 +14B− 11/3. Now let us define
the discriminant of the cubic equation Î ′4(µ) = 0

(3.13) ∆2 =: 16(12)3[B3 − 3
4
B2A2 +

9
5
A4 − 27

10
A2B +

81
100

A2].

By Cardano’s method, if ∆2 > 0, the above cubic equation have a unique real zero
µ∗ defined by
(3.14)

µ∗ = A− (
∆2

u
+ u) where u = 3

√
q/2 +

√
q2/4−∆6 and q = A(−2A2 + 3B− 9/5).
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Therefore P2(µ∗) is a function of A and B and we denote it by

(3.15) P2(µ∗) =: ζ(A,B).

To consider number of limit cycles that can bifurcate from period annulus of (3.6) we
partition A-B parametric region as follows:

Ω1 := {(A,B) : B ≥ 11/42, A ≤ 0}, Ω2 := {(A,B) : B < 0, A > 0},
Ω3 := {(A,B) : 0 ≤ B ≤ 11/42, A < 0}, Ω4 := {(A,B) : 0 < B < 11/42, A ≥ 0},
Ω′5 := {(A,B) : B > 11/42, A > 0}, Ω′6 := {(A, B) : B < 0, A < 0}.

Now we prove the following lemmas:

Lemma 2. (3.6) has no limit cycle in Ω1.

Proof. By equation (3.9), it is clear that Î4(µ) > 0 for µ > 0.

Lemma 3. (3.6) has a unique limit cycle in
⋃i=4

i=2 Ωi.

Proof. We consider (3.6) in Ωi, i = 2, 3, 4 separately:
In Ω2. In this case µ− ≤ 0 < µ+. Since µ+ is a local minimum of Î ′4(µ) and

Î ′4(0) < 0. This implies that Î ′4(µ) has a unique positive zero which is a local minimum
of Î4(µ). But Î

(
40) < 0 therefore Î4(µ) has exactly one positive zero.

In Ω3. By equation (3.8) it is easy to see that Î ′4(µ) > 0 for µ > 0. Therefore Î4(µ)
can have at most one zero. But Î4(0) < 0 and limµ→∞ Î4(µ) = ∞. Therefore Î4(µ)
have unique positive zero.

In Ω4. If B > A2 then Î ′4(µ) has no critical point and has a unique positive zero.
Therefore Î4(µ) has unique positive local minimum. But Î4(0) = 14B − 11/3 < 0,
therefore Î4(µ) will have unique positive zero. If B < A2 then 0 < µ− < µ+ and by
(3.9)

Î ′4(µ−) < 4(−2(A3 −∆3)− 71
70

A) < 0,

since 0 < B < 11
42 and A ≥ 0. But Î ′4(0) < 0, therefore Î ′4(µ) has unique positive zero

and Î4(µ) has a unique positive local minimum. Therefore as previous case Î4(µ) has
unique positive zero.

Now let us define the following region:

Ω5 := {(A,B) ∈ Ω′5 : ∆2 > 0}

We notice that Graph of ∆2 = 0 and B = A2 intersect each other at a unique point
(A,B) = ( 3√

5
, 9

5 ) and the region {(A, B) ∈ Ω′5 : B > A2} included in Ω5.

Lemma 4. System (3.6)has at most two limit cycles in Ω5.

Proof. In Ω5, Î ′4(µ) = 0 has a unique zero. Since Î ′4(0) = − 36A
5 < 0, This zero is

positive and therefore Î4(µ) = 0 has at most two positive zero. Now Let us denote
this point by µ∗. By above discussion it is clear that if ζ(A,B) defined by (3.15)
is negative then Î4(µ) will have two positive zero and system (3.6) will have two
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hyperbolic limit cycles and if it is positive then Î4(µ) will be positive for all positive
µ and system (3.6) will not have any limit cycle. Therefore we expect saddle node
bifurcation of limit cycle when ζ(A,B) = 0. Also B = 11/42 (a1 = 0) is a Hopf line
and as we change a1 from negative to positive a periodic orbit bifurcated from origin
in system (3.6).

In all cases in Lemma 4, Î ′4(µ) has unique zero. Now let us define

Ω61 := {(A,B) ∈ Ω′6 : A > −
√

168
3

or B > B∗ where B∗ % −30.96},
Ω62 := {(A,B) ∈ Ω′6 : ∆2 > 0}, Ω6 := Ω61 ∪ Ω62.

Lemma 5. (3.6) has unique limit cycle in Ω6.

Proof. We consider (3.6) in regions Ω61 and Ω62 separately.
In Ω61. Let µ∗ be a zero of Î ′4(µ) = 0 and consider P2(µ∗) defined by (3.12). It is

clear that in this case α < 0, β > 0, γ < 0 and the discriminant of P2(µ∗) is

∆P2 = B2(9A2 − 168) + (786/5A2 + 43)B − 371/25A2 − 108/5A4(3.16)
= −108/5A4 + A2(−371/25 + 786/5B + 9B2)− 168b2 + 43B.

But A2 ≤ 168/9 and B < 0. From first equation of (3.16) it is clear that ∆P2 < 0
since all involving terms are negative. Also using the second equation of (3.16) it is
easy to check that ∆P2 < 0 for all A < 0 and B∗ < B < 0. Since α < 0 this implies
that P2(µ∗) < 0, and Î4(µ) has exactly one positive zero.

In Ω62 In this region Î ′4(µ) has a unique zero. But this zero is negative, since
Î ′(0) = − 36A

5 > 0. This implies that Î ′4(µ) has no positive zero and therefore Î4(µ)
has at most one positive zero in this region. On the other hand Î4(µ) has at least one
zero in Ω6, since Î4(0) = 14B − 11/3 < 0.

Remark 2. With more detailed approximation it is possible to enlarge the parameter
region where Lemmas 4 and 5 holds. Numerical computation indicates that results of
these lemmas 4 and 5 holds in Ω′5 and Ω′6 respectively.

Now let us define Ω =
⋃i=6

i=1 Ωi. Using above lemmas we have the following theorem

Theorem 3. For n = 1 and m = 2 and system (3.6) has at most two limit cycles
in Ω. Further more if it has two limit cycles, smaller one is stable (unstable) and the
larger one is unstable(stable) if a5 > 0(a5 < 0).

Proof. The first part of theorem is clear from lemmas 2− 5. Now let 0 < µ∗,1 < µ∗,2
are the positive zeros of Î4(µ). From the proof of these lemmas it clear that in all
cases Î ′4(µ∗,1) is negative while Î ′4(µ∗,2) is positive, therefore I ′4(µ∗,1) (I ′4(µ∗,2)) is
positive (negative) if a5 > 0 and is negative (positive) if a5 < 0. Now stability of
bifurcated limit cycles from period annulus at h = h∗,1 = 1

6µ∗,1(µ2
∗,1 + 3) and h =

h∗,2 = 1
6µ∗,2(µ2

∗,2 +3) follows from lemma 1 and theorem 1. Also let µ∗ be the unique
positive zero of Î4(µ) = 0 where Î ′4(µ∗) 6= 0. Again from the proof of above lemma
it is clear that in all cases Î ′4(µ∗) > 0. Therefore I ′4(µ∗) is positive if a5 > 0 and it
is negative if a5 < 0. Now stability of the unique limit cycle which is bifurcated at
h = h∗ = 1

6µ∗(µ2
∗ + 3) from the periodic annulus follows from lemma 1 and theorem

1.
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Example 4. Consider system (3.6) with B = 3.5 and change the value of A between
2.2187377 and 2.2187378. Then number of zeros of I4(µ) will change between zero and
two. This shows that system (3.6) has two hyperbolic limit cycles close to level curves
H(x, y) = h∗,1 = 17.81125878 and H(x, y) = h∗,2 = 17.81589918. The smaller limit
cycles is stable while the larger one is unstable. Also we expect to have a non-hyperbolic
limit cycle for a h∗ ∈ (h∗,1, h∗,2).
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