
Clifford-Kähler manifolds

Ilie Burdujan

Abstract. We consider the Clifford-Kähler manifolds defined by means of
a representation of the Clifford algebra with three generators, C3 = C`03,
on its (1, 1)-tensor bundle, compatible with a Riemannian structure having
a special group of holonomy. Such manifolds are necessarily Einstein. It
is proved that its structural bundle is locally paralelizable if and only if
the Ricci tensor vanishes identically.
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1 Introduction

A smooth 8n-dimensional real manifold M equipped with an action of the Clifford
algebra C`03 on its tangent bundle is called an almost Cliffordian manifold.

A Clifford Kähler manifold is a Riemannian manifold (M8n, g), whose holonomy
group Hol (g) is isomorphic to a subgroup of Op(n) ·Op(1) ⊂ SO(8n). Recall that the
enlarged Clifford unitary group Op(n) · Op(1) may be presented as the group of R-
linear transformations T : On → On (here O = C`03) of the numerical n-dimensional
(right) octonic space On which have the form

T : ξ → ξ′ = Aξq, ξ, ξ′ ∈ On

where A ∈ Op(n) is a Clifford unitary transformation (with respect to the quasi-
Hermitian product η · ξ = 1

2

∑
α(ηαξα + ξ

α
η

α
)) and q is a unitary octon which multi-

plies on the right. Note that for any element p ∈ C`03 one has T (ξp) = (Tξ)(p′) with
p′ = qpq; moreover, the Euclidean scalar product is preserved.

In this paper we shall study the Clifford Kähler manifold by using tensor calculus.
In order to do this, it is rather convenient to define a Clifford-like manifold as being
a manifold which admits a vector subbundle V of the bundle End (TM) of the (1,1)-
tensors, having some special properties: V is 6-dimensional as a vector bundle and
admits an algebraic structure which is closely connected with Clifford algebra C`03.

In Section 2 we recall some notions and results on the Clifford algebra C`03. §3
is devoted to proving some formulae required in the last section for proving the main
results of this paper.
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Manifolds, mappings and geometric objects under consideration in this paper are
supposed to be of class C∞. Further, all manifold in use will be paracompact.

2 Clifford algebra C`03

Recall that C`03 denotes the Clifford algebra with three generators {e1, e2, e3}. It is
a real unital associative 8-dimensional algebra for which there exists a special basis
(e0, e1, e2, e3, e4, e5, e6, e7) such that

e0ei = eie0 = ei, i = 0, 1, ..., 7,
e2
i = −e0, e2

7 = e0, i = 1, 2, ..., 6,
eiej + ejei = 0, i 6= j, i, j = 1, 2, ..., 6, i + j 6= 7,
eiej = ejei, i = 0, 1, ..., 7, i 6= j, i + j = 7,
e1e2 = e4, e1e3 = e5, e2e3 = e6, e1e6 = e7.

For our comfort, we denote O = C`03 and name their elements octons. The before
introduced basis B = (e0, e1, e2, e3, e4, e5, e6, e7) is called the canonical (or, natural)
basis of O. In [7], it was proved that the center of O is C(O) = Re0 ⊕ Re7. It must
be remarked that C(O) ' D where D denotes the real (associative and commutative)
algebra of the so-called double numbers. Moreover, O ∼= H⊗RD because every element
a = a0e0 + a1e1 + ... + a7e7 ∈ O has the form

(2.1) a = (a0e0 + a7e7)e0 + (a1e0 − a6e7)e1 + (a2e0 + a5e7)e2 + (a3e0 − a4e7)e3;

consequently, O is a left D-module. The conjugation of H suggests us to introduce a
conjugation on O by

a = (a0e0 + a7e7)e0 − (a1e0 − a6e7)e1 − (a2e0 + a5e7)e2 − (a3e0 − a4e7)e3,

i.e.

(2.2) a = a0e0 − a1e1 − ...− a6e6 + a7e7.

Since

(2.3) aa =

(
7∑

i=0

a2
i

)
e0 + (a0a7 − a1a6 + a2a5 − a3a4) e7 ∈ D,

the following two quadratic forms h1, h2 : O → R are naturally defined by

h1(a) =
7∑

i=0

a2
i , h2(a) = a0a7 − a1a6 + a2a5 − a3a4, ∀a ∈ O.

The linear group preserving both these quadratic forms is isomorphic to O(4,R)×
O(4,R).

The presence of a natural conjugation on O suggests the possibility to define an
(quasi-)inner product on it. We define now a quasi-inner product on O by

(2.4) 〈a, b〉 =
1
2
(a· b +b· a) ∈ D, ∀a, b ∈ O.
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The set GO = O \ {L1 ∪ L2} is consisting only in regular elements and it is a group.
The group GO is the product of two subgroups, namely GO = O(1) · D∗, where
O(1) = {a ∈ O|a · a = e0} and D∗ is the set of all invertible elements from C(O) ∼= D
(O(1) and D∗ are normal subgroups of GO with O(1) ∩ D∗ = {±e0,±e7}).

Moreover, the D-module On can be endowed with an quasi-inner product defined
by

(2.5) 〈p, q〉 = 1
2

∑n
i=1

(
pi· qi +qi· pi

) ∈ D,
∀p = (p1, p2, ..., pn), q = (q1, q2, ..., qn) ∈ On.

As it is usual, we define the group of ”isometries” Op(n) as being the group consisting
in all matrices σ ∈Mn(O) such that

〈σp, σq〉 = 〈p, q〉, ∀p, q ∈ On.

It is easily to prove that O(1) can be identified, via an isomorphism, with Op(1).
The Lie algebra O− associated to the associative algebra O (by means of the usual

bracket) is isomorphic to su(2)⊕ su(2)⊕D− ∼= sp(1)⊕ sp(1)⊕D−.
It is proved in [3] that GLn(O) can be isomorphically identified with a subgroup

of GL(8n,R), namely

GLn(O) = {τ ∈ GL(8n,R)| τFi = Fiτ, i = 1, 2, ..., 6};

here Fi (i = 1, 2, ..., 6) is the matrix of linear transformation On → On, q =
(q1, q2, ..., qn) → qei = (q1ei, q2ei, ..., qnei) where ei is an element of canonical ba-
sis of C`0,3 in an admissible frame of On. The Lie algebra gln(O) of GLn(O) can be
isomorphically identified with a subalgebra of gl(8n,R), namely

gln(O) = {θ ∈ gl(8n,R)| θFi = Fiθ, i = 1, 2, ..., 6}.

On the other hand, the Lie algebra g of Op1 ·GLn(O) can be isomorphically identified
with a subalgebra of gl(8n,R), namely

g =





θ ∈ gl(8n,R)

∣∣∣∣∣∣∣∣∣∣∣∣

θF1 − F1θ = dF2 +eF3 −bF4 −cF5,
θF2 − F2θ = −dF1 +fF3 +aF4 −cF6,
θF3 − F3θ = −eF1 −fF2 +aF5 +bF6,
θF4 − F4θ = bF1 −aF2 +fF5 −eF6,
θF5 − F5θ = cF1 −aF3 −fF4 +dF6,
θF6 − F6θ = cF2 −bF3 +eF4 −dF5.





.

3 Almost Cliffordian manifolds

Let M be a real smooth manifold of dimension m, and let assume that there is a
6-dimensional vector bundle V consisting of tensors of type (1, 1) over M such that in
any coordinate neighborhood U of M , there exists a local basis (F1, F2, ..., F6) of V
whose elements behave under the usual composition like the similar labelled elements
of the natural basis of the Clifford algebra C`03.

Such a local basis (F1, F2, ..., F6) is called a canonical basis of the bundle V in
U . Then the bundle V is called an almost Cliffordinan structure on M and (M, V )
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is called an almost Cliffordian manifold. Thus, any almost Cliffordian manifold is
necessarily of dimension m = 8n.

An almost Cliffordian structure on M is given by a reduction of the structural
group of the principal frame bundle of M to Op(n)·Op(1). That is why the tensor fields
(F1, F2, ..., F6) can be defined only locally. In the almost Cliffordian manifold (M, V )
we take the intersecting coordinate neighborhoods U and U ′ and let (F1, F2, ..., F6)
and (F ′1, F

′
2, ..., F

′
6) be the canonical local bases of V in U and U ′, respectively. Then

F ′1, F
′
2, ..., F

′
6 are linear combinations of F1, F2, ..., F6 on U ∩ U ′, that is

(3.1) F ′i =
6∑

j=1

sijFj , i = 1, 2, ..., 6,

where sij (i, j = 1, 2, ..., 6) are functions defined on U ∩ U ′. The coefficients sij ap-
pearing in (3.1) form an element sUU ′ = (sij) of a proper subgroup, of dimension 6, of
the special orthogonal group SO(6). Consequently, any almost Cliffordian manifold
is orientable.

If there exists on (M, V ) a global basis (F1, F2, ..., F6), then (M, V ) is called an
almost Clifford manifold; the basis (F1, F2, ..., F6) is named a global canonical basis
for V .

Example 3.1. The Clifford module On is naturally identified with R8n. It sup-
plies the simplest example of Clifford manifold. Indeed, if we consider the Cartesian
coordinate map with the coordinates (x1, x2, ..., xn, xn+1, xn+2, ..., x2n, ..., x7n+1, ...,
x8n), then the standard almost Clifford structure on R8n is defined by means of the
three anticommuting operators J1, J2, J3 defined by:

J1
∂

∂xi
= ∂

∂xn+i
, J2

∂
∂xi

= ∂
∂x2n+i

, J3
∂

∂xi
= ∂

∂x3n+i
,

J1
∂

∂xn+i
= − ∂

∂xi
, J2

∂
∂xn+i

= − ∂
∂x4n+i

, J3
∂

∂xn+i
= − ∂

∂x5n+i
,

J1
∂

∂x2n+i
= ∂

∂x4n+i
, J2

∂
∂x2n+i

= − ∂
∂xi

, J3
∂

∂x2n+i
= − ∂

∂x6n+i
,

J1
∂

∂x3n+i
= ∂

∂x5n+i
, J2

∂
∂x3n+i

= ∂
∂x6n+i

, J3
∂

∂x3n+i
= − ∂

∂xi
,

J1
∂

∂x4n+i
= − ∂

∂x2n+i
, J2

∂
∂x4n+i

= ∂
∂xn+i

, J3
∂

∂x4n+i
= ∂

∂xn+i
,

J1
∂

∂x5n+i
= − ∂

∂x3n+i
, J2

∂
∂x5n+i

= − ∂
∂x7n+i

, J3
∂

∂x5n+i
= ∂

∂xn+i
,

J1
∂

∂x6n+i
= ∂

∂x7n+i
, J2

∂
∂x6n+i

= − ∂
∂x3n+i

, J3
∂

∂x6n+i
= ∂

∂x2n+i
,

J1
∂

∂x7n+i
= − ∂

∂x6n+i
, J2

∂
∂x7n+i

= ∂
∂x5n+i

, J3
∂

∂x7n+i
= − ∂

∂x4n+i
.

Example 3.2. The tangent bundle of any quaternionic-like manifold endowed with
a linear connection can be naturally endowed with an almost Cliffordian structure [5].

4 Connections on almost Cliffordian manifolds

An almost Cliffordian connection on the almost Cliffordian manifold (M, V ) is a linear
connection on M which preserves by parallel transport the vector bundle V . This
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means that if Φ is a cross-section (local or global) of the bundle V , then ∇XΦ is also
a cross-section (local or global, respectively) of V , X being an arbitrary vector field
of M . The following result was proved in [5].

Proposition 4.1. The linear connection ∇ on the almost Cliffordian manifold
(M, V ) is an almost Cliffordian connection on M if and only if the covariant deriva-
tives of the local canonical base are expressed as follows

(4.1)





∇J1 = η4 ⊗ J2 + η5 ⊗ J3 − η2 ⊗ J4 − η3 ⊗ J5

∇J2 = −η4 ⊗ J1 + η6 ⊗ J3 + η1 ⊗ J4 − η3 ⊗ J6

∇J3 = −η5 ⊗ J1 − η6 ⊗ J2 + η1 ⊗ J5 + η2 ⊗ J6

∇J4 = η2 ⊗ J1 − η1 ⊗ J2 + η6 ⊗ J5 − η5 ⊗ J6

∇J5 = η3 ⊗ J1 − η1 ⊗ J3 − η6 ⊗ J4 + η4 ⊗ J6

∇J6 = η3 ⊗ J2 − η2 ⊗ J3 + η5 ⊗ J4 − η4 ⊗ J5

where η1, η2, ..., η6 are locally 1-forms defined on the domain of J1, J2, ..., J6.

Let η1, η2, ..., η6 be the 1-forms defined by the connection ∇ with respect to the
canonical base J1, J2, ..., J6. Then, using the relations (3.1) we get the following change
formulae

η′a =
6∑

b=1

sabηb + λa, a = 1, 2, ..., 6

where λa are linear combinations of sab and dsab.

Clifford Hermitian manifolds

The triple (M, g, V ), where (M, V ) is an almost Cliffordian manifold endowed with
the Riemannian structure g, is called an almost Cliffordian Hermitian manifold or a
metric Cliffordian manifold if for any canonical basis J1, J2, ..., J6 of V in a coordinate
neighborhood U , the identities

g(JkX,JkY ) = g(X,Y ) ∀X,Y ∈ X (M)

hold. Since each Ji (i = 1, 2, ..., 6) is almost Hermitian with respect to g, putting

(4.2) Φi(X,Y ) = g(JiX, Y ), ∀X, Y ∈ X (M), i = 1, 2, ..., 6,

one gets 6 local 2-forms on U . However, by means of (3.1), it results that the 4-form

(4.3) Ω = Φ1 ∧ Φ1 + Φ2 ∧ Φ2 + Φ3 ∧ Φ3 + Φ4 ∧ Φ4 + Φ5 ∧ Φ5 + Φ6 ∧ Φ6

is globally defined on M .
By using (3.1) we easily see that

(4.4) Λ = J1 ⊗ J1 + J2 ⊗ J2 + J3 ⊗ J3 + J4 ⊗ J4 + J5 ⊗ J5 + J6 ⊗ J6

is also a global tensor field of type (2, 2) on M .
If the Levi-Civita-connection ∇ = ∇g on (M, g, V ) preserves the vector bundle

V by parallel transport, then (M, g, V ) is called a Clifford-Kähler manifold. Conse-
quently, for any Clifford-Kähler manifold, the formulae (4.1) hold (with ∇ = ∇g).
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Actually, a Riemannian manifold is a Clifford-Kähler manifold if and only if its
holonomy group is a subgroup of Op(n) ·Op(1). Then, one can prove the formulae

(4.5) ∇Ω = 0, ∇Λ = 0.

Conversely, if one of the equations (4.5) hold, then (M, g, V ) is a Clifford-Kähler
manifold. Thus we get the following result.

Theorem 4.2. An almost Clifford Hermitian manifold is a Clifford-Kähler
manifold if and only if either ∇Ω = 0 or ∇Λ = 0.

5 Some formulae

Let (M, V, g) be a Clifford-Kähler manifold with dim M = 8n. In a coordinate

neighborhood (U, xh) of M we denote by gij the components of g and by
k

Jj
i the

components of
k

J , with k = 1, 2, ..., 6 (here and in what follows we shall put the label

of any element of a local basis in V above it, i.e. (
1

J,
2

J, ...,
6

J) is a canonical local basis
of V in U). Then formulae (4.1) become

(5.1)





∇
1

Ji

h

=
4
ηj

2

Ji

h

+
5
ηj

3

Ji

h

− 2
ηj

4

Ji

h

− 3
ηj

5

Ji

h

∇
2

Ji

h

= −4
ηj

1

Ji

h

+
6
ηj

3

Ji

h

+
1
ηj

4

Ji

h

− 3
ηj

6

Ji

h

∇
3

Ji

h

= −5
ηj

1

Ji

h

− 6
ηj

2

Ji

h

+
1
ηj

5

Ji

h

+
2
ηj

6

Ji

h

∇
4

Ji

h

=
2
ηj

1

Ji

h

− 1
ηj

2

Ji

h

+
6
ηj

5

Ji

h

− 5
ηj

6

Ji

h

∇
5

Ji

h

=
3
ηj

1

Ji

h

− 1
ηj

3

Jh
i −

6
ηj

4

Ji

h

+
4
ηj

6

Ji

h

∇
6

Ji

h

=
3
ηj

2

Ji

h

− 2
ηj

3

Ji

h

+
4
ηj

4

Ji

h

− 4
ηj

5

Ji

h

,

where
i
ηj are the components of

i
η (i = 1, 2, ..., 6) in (U, xh).

Using Ricci formula, from (5.1) one gets:

(5.2)





Kkjs
h

1

Ji

s

−Kkji
s

1

Js

h

=
4
ωkj

2

Ji

h

+
5
ωkj

3

Ji

h

− 2
ωkj

4

Ji

h

− 3
ωkj

5

Ji

h

Kkjs
h

2

Ji

s

−Kkji
s

2

Js

h

= − 4
ωkj

1

Ji

h

+
6
ωkj

3

Ji

h

+
1
ωkj

4

Ji

h

− 3
ωkj

6

Ji

h

Kkjs
h

3

Ji

s

−Kkji
s

3

Js

h

= − 5
ωkj

1

Ji

h

− 6
ωkj

2

Ji

h

+
1
ωkj

5

Ji

h

+
2
ωkj

6

Ji

h

Kkjs
h

4

Ji

s

−Kkji
s

4

Js

h

=
2
ωkj

1

Ji

h

− 1
ωkj

2

Ji

h

+
6
ωkj

5

Ji

h

− 5
ωkj

6

Ji

h

Kkjs
h

5

Ji

s

−Kkji
s

5

Js

h

=
3
ωkj

1

Ji

h

− 1
ωkj

3

Ji

h

− 6
ωkj

4

Ji

h

+
4
ωkj

6

Ji

h

Kkjs
h

6

Ji

s

−Kkji
s

6

Js

h

=
3
ωkj

2

Ji

h

− 2
ωkj

3

Ji

h

+
4
ωkj

4

Ji

h

− 4
ωkj

5

Ji

h

,

where Kkjs
h are the components of the curvature tensor K of the Clifford-Kähler

manifold (M,V, g) and
1
ω,

2
ω, ...,

6
ω are defined by
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(5.3)





1
ω = d

1
η +

2
η ∧ 6

η +
3
η ∧ 5

η
2
ω = d

2
η +

4
η ∧ 1

η +
6
η ∧ 3

η
3
ω = d

3
η +

5
η ∧ 1

η +
6
η ∧ 2

η
4
ω = d

4
η +

1
η ∧ 2

η +
5
η ∧ 6

η
5
ω = d

5
η +

1
η ∧ 3

η +
6
η ∧ 4

η
6
ω = d

6
η +

2
η ∧ 3

η +
4
η ∧ 5

η,

and

(5.4)
k
ωij = −k

ωji
k
ω =

1
2

k
ωijdxi ∧ dxj , k = 1, 2, ..., 6.

Thus
i
ω, i = 1, 2, ..., 6, are local 2-forms defined on U .

From (5.2) we get

(5.5)





[K(X,Y ),
1

J ] =
4
ω(X,Y )

2

J +
5
ω(X,Y )

3

J − 2
ω(X, Y )

4

J − 3
ω(X, Y )

5

J

[K(X,Y ),
2

J ] = − 4
ω(X, Y )

1

J +
6
ω(X, Y )

3

J +
1
ω(X, Y )

4

J − 3
ω(X, Y )

6

J

[K(X,Y ),
3

J ] = − 5
ω(X, Y )

1

J − 6
ω(X, Y )

2

J +
1
ω(X, Y )

5

J +
2
ω(X, Y )

6

J

[K(X,Y ),
4

J ] =
2
ω(X,Y )

1

J − 1
ω(X,Y )

2

J +
6
ω(X, Y )

5

J − 5
ω(X, Y )

6

J

[K(X,Y ),
5

J ] =
3
ω(X,Y )

1

J − 1
ω(X,Y )

3

J − 6
ω(X, Y )

4

J +
4
ω(X, Y )

6

J

[K(X,Y ),
6

J ] =
3
ω(X,Y )

2

J − 2
ω(X,Y )

3

J +
5
ω(X, Y )

4

J − 4
ω(X, Y )

5

J,

in a coordinate neighborhood (U, xh), X and Y being arbitrary vector fields in M . In
another coordinate neighborhood (U ′, x′h) we get

(5.6)





[K ′(X,Y ),
1

J ′] =
4

ω′(X,Y )
2

J ′ +
5

ω′(X,Y )
3

J ′ −
2

ω′(X, Y )
4

J ′ −
3

ω′(X, Y )
5

J ′

[K ′(X,Y ),
2

J ′] = −
4

ω′(X, Y )
1

J ′ +
6

ω′(X, Y )
3

J ′ +
1

ω′(X,Y )
4

J ′ −
3

ω′(X,Y )
6

J ′

[K ′(X,Y ),
3

J ′] = −
5

ω′(X, Y )
1

J ′ −
6

ω′(X, Y )
2

J ′ +
1

ω′(X,Y )
5

J ′ +
2

ω′(X,Y )
6

J ′

[K ′(X,Y ),
4

J ′] =
2

ω′(X,Y )
1

J ′ −
1

ω′(X,Y )
2

J ′ +
6

ω′(X, Y )
5

J ′ −
5

ω′(X, Y )
6

J ′

[K ′(X,Y ),
5

J ′] =
3

ω′(X,Y )
1

J ′ −
1

ω′(X,Y )
3

J ′ −
6

ω′(X, Y )
4

J ′ +
4

ω′(X, Y )
6

J ′

[K ′(X,Y ),
6

J ′] =
3

ω′(X,Y )
2

J ′ −
2

ω′(X,Y )
3

J ′ +
5

ω′(X, Y )
4

J ′ −
4

ω′(X, Y )
5

J ′,

where (
1

J ′,
2

J ′, ...,
6

J ′) form a canonical local basis of V in U ′. Since SU,U ′ = (sij) ∈
SO(6,R), by means of (3.1) we find in U ∩ U ′

(5.7)
i

ω′ = si1
1
ω + si2

2
ω + ... + si6

6
ω, i = 1, 2, ..., 6.

Using (5.7) we see that the local 4-form

(5.8) Σ =
1
ω ∧ 1

ω +
2
ω ∧ 2

ω +
3
ω ∧ 3

ω +
4
ω ∧ 4

ω +
5
ω ∧ 5

ω +
6
ω ∧ 6

ω
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determines in M a global 4-form, which is denoted also by Σ. This Σ is, in some sense,
the curvature tensor of a linear connection defined in the bundle V by means of (4.1).
Now, using (5.3) we can prove

Lemma 5.1. Let (M,V,g) be a Clifford-Kähler 8n-dimensional real manifold. A
necessary and sufficient condition for the 4-form Σ to vanish on M, is that in each

coordinate neighborhood U to exist a canonical local basis (
1

J,
2

J, ...,
6

J) of V satisfying

∇
i

J = 0, i = 1, 2, ..., 6

i.e., that the bundle V be locally paralelizable.

Assuming that a Clifford-Kähler manifold satisfies the conditions stated in Lemma
5.1, we see that the functions sij appearing in (3.1) are constant in a connected

component of U∩U ′, U and U ′ being coordinate neighborhoods, if we take (
1

J,
2

J, ...,
6

J)

such that ∇
i

J = 0, i = 1, 2, ..., 6 in each U . In a Clifford-Kähler manifold with M
a simply connected manifold and the bundle V is locally paralelizable, then V has a
canonical global basis.

Transvecting the 6 equations of (5.2) by
i

Jhu =
i

J t
hgtu (i = 1, 2, ..., 6) and changing

indices, we find respectively

(5.9)





−Kkjts

1

J t
i

1

Js
h + Kkjih =

4
ωkj

4

J ih +
5
ωkj

5

J ih +
2
ωkj

2

J ih +
3
ωkj

3

J ih

−Kkjts

2

J t
i

2

Js
h + Kkjih =

4
ωkj

4

J ih +
6
ωkj

6

J ih +
1
ωkj

1

J ih +
3
ωkj

3

J ih

−Kkjts

3

J t
i

3

Js
h + Kkjih =

5
ωkj

5

J ih +
6
ωkj

6

J ih +
1
ωkj

1

J ih +
2
ωkj

2

J ih

−Kkjts

4

J t
i

4

Js
h + Kkjih =

2
ωkj

2

J ih +
1
ωkj

1

J ih +
6
ωkj

6

J ih +
5
ωkj

5

J ih

−Kkjts

5

J t
i

5

Js
h + Kkjih =

3
ωkj

3

J ih +
1
ωkj

1

J ih +
6
ωkj

6

J ih +
4
ωkj

4

J ih

−Kkjts

6

J t
i

6

Js
h + Kkjih =

3
ωkj

3

J ih +
2
ωkj

2

J ih +
5
ωkj

5

J ih +
4
ωkj

4

J ih,

where Kkjih = Ks
kjigsh and

k

Jih =
k

Js
i gsh (k = 1, 2, ..., 6) are the components of

k

Φ
defined by (4.2).

Transvecting the second equation (5.9) with
1

J
ih

= gip
1

J
h

p we get

−Kkjts

2

J
t

i

2

J
s

h

1

J
ih

+ Kkjih

1

J
ih

=
4
ωkj

4

J ih

1

J
ih

+
5
ωkj

5

J ih

1

J
ih

+
2
ωkj

2

J ih

1

J
ih

+
3
ωkj

3

J ih

1

J
ih

.

But

−Kkjts

2

J
t

i

2

J
s

hgip
1

J
h

p = Kkjts

2

J
t

ig
ip

4

J
s

p = −Kkjts

2

J
t

ig
sp

4

J
i

p = −Kkjts

1

J
t

pg
sp =

= Kkjts

1

J
s

pg
tp = Kkjts

1

J
ts

so that
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2Kkjih

1

J
ih

= 8m
1
ωkj ⇐⇒ 1

ωkj =
1

4m
Kkjih

1

J
ih

.

Similarly we obtain

(5.10)
s
ωkj =

1
4n

Kkjih

s

J
ih

s = 1, 2, ..., 6.

Using (5.10) and identity Kkjth + Kjtkh + Ktkjh = 0, one gets

(5.11) Kktsh

i

J ts = −n
i

ωkh i = 1, 2, ..., 6.

On the other hand, taking into account of (5.11) and transvecting succesively (5.9)
with gij it results:

(5.12)





Kkh = −2n
1
ωks

1

J
s

h −
2
ωks

2

J
s

h −
3
ωks

3

J
s

h −
4
ωks

4

J
s

h −
5
ωks

5

J
s

h

Kkh = − 1
ωks

1

J
s

h − 2n
2
ωks

2

J
s

h −
3
ωks

3

J
s

h −
4
ωks

4

J
s

h −
6
ωks

6

J
s

h

Kkh = − 1
ωks

1

J
s

h −
2
ωks

2

J
s

h − 2n
3
ωks

3

J
s

h −
5
ωks

5

J
s

h −
6
ωks

6

J
s

h

Kkh = − 1
ωks

1

J
s

h −
2
ωks

2

J
s

h − 2n
4
ωks

4

J
s

h −
5
ωks

5

J
s

h −
6
ωks

6

J
s

h

Kkh = − 1
ωks

1

J
s

h −
3
ωks

3

J
s

h −
4
ωks

4

J
s

h − 2n
5
ωks

5

J
s

h −
6
ωks

6

J
s

h

Kkh = − 2
ωks

2

J
s

h −
3
ωks

3

J
s

h −
4
ωks

4

J
s

h −
5
ωks

5

J
s

h − 2n
6
ωks

6

J
s

h.

Here, Kkh = Kkjihgji are the components of the Ricci tensor S of (M, V, g).
From these equations it follows that

(5.13) Kkh = −2(n + 2)
i
ωks

i

Js
h i = 1, 2, ..., 6.

Formulae (5.13) give

(5.14)
i
ωkh =

1
2(n + 2)

Kks

i

Js
h i = 1, 2, ..., 6.

Substituting (5.14) in (5.9) we get

(5.15)





−Kkjts

1

J t
i

1

Js
h + Kkjih = 1

2(m + 2)

(
2

J t
j

2

Jih +
3

J t
j

3

Jih +
4

J t
j

4

Jih +
5

J t
j

5

Jih

)

−Kkjts

2

J t
i

2

Js
h + Kkjih = 1

2(m + 2)

(
1

J t
j

1

Jih +
3

J t
j

3

Jih +
4

J t
j

4

Jih +
6

J t
j

6

Jih

)

−Kkjts

3

J t
i

3

Js
h + Kkjih = 1

2(m + 2)

(
1

J t
j

1

Jih +
2

J t
j

2

Jih +
5

J t
j

5

Jih +
6

J t
j

6

Jih

)

−Kkjts

4

J t
i

4

Js
h + Kkjih = 1

2(m + 2)

(
1

J t
j

1

Jih +
2

J t
j

2

Jih +
5

J t
j

5

Jih +
6

J t
j

6

Jih

)

−Kkjts

5

J t
i

5

Js
h + Kkjih = 1

2(m + 2)

(
1

J t
j

1

Jih +
3

J t
j

3

Jih +
4

J t
j

4

Jih +
6

J t
j

6

Jih

)

−Kkjts

6

J t
i

6

Js
h + Kkjih = 1

2(m + 2)

(
2

J t
j

2

Jih +
3

J t
j

3

Jih +
4

J t
j

4

Jih +
5

J t
j

5

Jih

)
.



Clifford-Kähler manifolds 21

Since
i

ωks (i = 1, 2, ..., 6) are all skew-symmetric, using (5.15) we find

(5.16) Kts

i

J t
k

i

Js
j = Kkj i = 1, 2, ..., 6.

Using (5.3) we get the identities

(5.17)





d
1
ω =

4
η ∧ 2

ω +
5
η ∧ 3

ω − 2
η ∧ 4

ω − 3
η ∧ 5

ω

d
2
ω = −4

η ∧ 1
ω +

6
η ∧ 3

ω +
1
η ∧ 4

ω − 3
η ∧ 6

ω

d
3
ω = −5

η ∧ 1
ω − 6

η ∧ 2
ω +

1
η ∧ 5

ω +
2
η ∧ 6

ω

d
4
ω =

2
η ∧ 1

ω1
1
η ∧ 2

ω +
6
η ∧ 5

ω − 5
η ∧ 6

ω

d
5
ω =

5
η ∧ 1

ω − 1
η ∧ 3

ω − 6
η ∧ 4

ω +
4
η ∧ 6

ω

d
6
ω =

3
η ∧ 2

ω − 2
η ∧ 3

ω +
5
η ∧ 4

ω − 4
η ∧ 5

ω.

(5.1) gives

∇k

(
Kjs

1

Js
i

)
= (∇kKjs)

1

Js
i + Kjs

(
4
ηk

2

Js
i +

5
ηk

3

Js
i −

2
ηk

4

Js
i −

3
ηk

5

Js
i

)
;

taking into account that (∇kKjs)
1

Js
i + (∇kKis)

1

Js
j = 0, one gets

∇kKij = (∇kKts)
1

J t
i

1

Js
j .

The following identity holds:

(5.18) ∇kKij = (∇kKts)
p

J t
i

p

Js
j . p = 1, 2, ..., 6.

6 Some Theorems

Lemma 6.1. For any Clifford-Kähler manifold (M,V,g) the Ricci tensor is
parallel.

Proof. By means of formulae (4.1) and (5.14) and the first identity (5.17) it follows

(6.1) (∇kKjs)
p

J
s

i + (∇jKis)
p

J
s

k + (∇iKks)
p

J
s

j = 0, p = 1, 2, ..., 6.

Transvecting (4.1) with
1

J
i

h one gets

(∇kKjs)
1

J
s

i

1

J
i

h + (∇jKis)
1

J
s

k

1

J
i

h + (∇iKks)
1

J
s

j

1

J
i

h = 0,

i.e.

−∇kKjh + (∇jKts)
1

J
s

k

1

J
t

h + (∇tKks)
1

J
t

h

1

J
s

j = 0.

Substituting in this equation (∇jKts)
1

J
t

h

1

J
s

k = ∇jKkh (which is a consequence of
(5.18)), one obtains
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−∇kKjh +∇jKkh = −(∇tKks)
1

J
t

h

1

J
s

j .

If we substitute in this equation∇tKks = (∇tKba)
2

J
b

k

2

J
a

s (which is obtained in a similar
way as (5.18)), then we find

∇jKkh −∇kKjh = (∇cKba)
1

J
c

h

2

J
b

k

4

J
a

j .

Similarly, we get

∇jKkh −∇kKjh = −(∇cKba)
2

J
c

h

4

J
b

k

1

J
a

j = −(∇cKba)
4

J
c

h

1

J
b

k

2

J
a

j .

Combining the last two equations gives

(6.2) (∇cKba)
1

J
c

k

2

J
b

j

4

J
a

i = (∇cKba)
2

J
c

k

4

J
b

j

1

J
a

i = (∇cKba)
4

J
c

k

1

J
b

j

2

J
a

i .

In particular, one gets

(∇cKba)
1

J
c

k

2

J
b

j

4

J
a

i = (∇cKba)
2

J
c

k

4

J
b

j

1

J
a

i

from which, by transvecting with
4

J
k

r

1

J
j

q

2

J
i

p it follows

(6.3) −(∇cKba)
2

J
c

r

4

J
b

q

1

J
a

p = (∇cKba)
1

J
c

r

2

J
b

q

4

J
a

p.

Thus, by combining (6.2) and (6.3) it follows

(∇cKba)
1

J
c

k

2

J
b

j

4

J
a

i = 0,

which implies

(6.4) ∇cKba = 0.

2

Lemma 6.1 allow us to prove:

Theorem 6.2. Any Clifford-Kähler manifold is an Einstein space.

Theorem 6.3. The restricted holonomy group of a Clifford-Kähler 8m-dimensi-
onal manifold is a subgroup of Op(m) if and only if the Ricci tensor vanishes iden-
tically.

Proof. From (5.10) and (5.14) we get

(6.5) Kkjih

p

J
ih

=
4m

2(m + 2)
Kks

p

J
s

j , p = 1, 2, ..., 6.

If Ricci tensor vanish identically, then we obtain for successive covariant derivatives
of the curvature tensor the identities
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(6.6)

Kkjih

p

J
ih

= 0, p = 1, 2, ..., 6,

(∇`Kkjih)
p

J
ih

= 0, p = 1, 2, ..., 6,
.....................................................

(∇s...∇`Kkjih)
p

J
ih

= 0, p = 1, 2, ..., 6,
.............................................................

Therefore, by Ambrose-Singer theorem, the restricted holonomy group of (M, g, V )
is a subgroup of Op(m). Conversely, if the restricted holonomy group is a subgroup of
Op(m), then (6.6) hold and hence Kij = 0 (by taking account of (6.4)). 2

Taking into account of Lemma 5.1, we have:

Theorem 6.4. For a Clifford-Kähler manifold (M,V,g) the bundle V is locally
paralelizable if and only if the Ricci tensor vanishes identically.
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