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Abstract. A transversely projective codimension one foliation F on a
manifold M is defined by a triplet of 1-forms (ω, ω1, ω2) such that ω define
F , dω = 2ω ∧ ω1, dω1 = ω ∧ ω2 and dω2 = 2ω2 ∧ ω1. The cohomology
class gv(F) of the 3-form ω ∧ ω1 ∧ ω2 is independent of the choice of the
triplet (ω, ω1, ω2), it’s called the Godbillon-Vey invariant of the foliation F .
Moreover, the same triplet defines a homomorphism group, h : π1(M) →
PSL(2,R) whose the conjugacy class of its image Γ(F), called the global
holonomy of the foliation F , depends only on F . In the present paper we
prove that when gv(F) is non zero then the orbits of Γ(F) are dense in RP1

and Γ(F) is either discrete uniform or dense in PSL(2,R). In addition we
prove the existence of transversely projective codimension one foliations
with non zero Godbillon-Vey invariant and a dense global holonomy.
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1 Introduction

In [1], C.Godbillon and J.Vey introduced a characteristic class associated to codi-
mension one foliations which lies in the third real cohomology group of the ambient
manifold. Several authors studied the relation between this invariant and the structure
of leaves.

In the present paper we study the relation between the Godbillon-Vey invariant
and the global holonomy of a transversely projective codimension one foliations (or
RP1- foliations)(i.e. foliations which are modelled on the projective real line RP1

with coordinate changes lying in the group PSL(2,R) of projective transformations
of RP1). See section 2 for more detailed discussion.

It is interesting to note that the first example of a foliation with non zero
Godbillon-Vey invariant (due to Roussarie) is an RP1- foliation with global holon-
omy a discrete uniform subgroup of PSL(2,R).

Our main results are the following:
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Theorem 3.4. Let F be a transversely projective foliation on a manifold M . If
the Godbillon-Vey invariant gv(F) is non zero, then the orbits of Γ(F) in RP1 are
everywhere dense in RP1. In particular, if the foliation is transverse to a fibration by
circles, then every leaf of F is dense in M

Theorem 3.5. Let F be a transversely projective foliation on a manifold M . If
gv(F) is non zero, then Γ(F) is discrete or everywhere dense in PSL(2,R).

Theorem 4.2. There exists a transversely projective foliations on a manifolds M
( dimM ≥ 5), having an invariant different from zero and a global holonomy dense
in PSL(2,R).

This paper is organized as follows: In section 1, we review the notion of transverse
structures on foliations and recall some known results and definitions concerning RP1-
foliations. Section 3 is occupied by the proofs of the theorems (3.4) and (3.5) listed
previously. In section 4, we expose a manner to construct RP1-foliations with non
zero GodbillonVey invariant and global holonomy dense in PSL(2,R) provided that
the dimension of the ambient manifold is at least equal to five, this is Theorem 4.2.

2 Transverse structures on foliations

Recall that, a smooth codimension-k foliation on a smooth manifold M , can be defined
by an open cover {Uα}α∈I of M and a family of maps {ϕα}α∈I , where ϕα : Uα → Rk

is a submersion, with the following property: For each α, β ∈ I, there exist a transition
functions gαβ : Uα∩Uβ → diff(Rk), locally constant, such that ϕα = gαβ ◦ϕβ . When
the family {(Uα, ϕα), α ∈ I} is maximal, we call it a transverse structure.

We can obtain finer transverse structures, if we put a special conditions on the
transition functions gαβ . Suppose that X is a manifold of dimension k, and G a group
of diffeomorphisms of X, then F has a transverse structure (G,X) if the submer-
sions ϕα can be defined from Uα to an open set Vα of X, and gαβ can be chosen
belonging in G. More precisely, a transverse (G,X)-structure on F is a maximal atlas
{(Uα, ϕα), α ∈ I} where {Uα}α∈I is an open cover of M , and ϕα : Uα → X, are sub-
mersions with transition functions gαβ belonging in G. When G is a Lie-group and X
is an homogeneous space of G, then the foliation obtained is said transversely homo-
geneous foliation. For k = 1, we have as examples, the following transverse structures:

1 - If G is the group of translations of R, F is called transversely euclidian.

2 - If G is the group of the affine transformations of R, F is called transversely
affine.

3 - If G is the group of projective transformations PSL(2,R) of RP1, F is called
transversely projective or RP1- foliation(for more details see [3]).

In terms of differential forms, a codimension-k foliation can be locally defined by
a k differential 1-forms ω1, ω2, ..., ωk linearly independent in each point, such that
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dωi =
∑

ωij ∧ ωj

for some 1-forms ωij . In particular, when k = 1, a transversely oriented codimension-1
foliation F is defined by a 1-form ω, without singularity, such that for some 1-form
ω1 we have

dω = ω ∧ ω1.

It was shown, in this case, that the real cohomology class [Ω] of the closed form Ω =
ω1∧dω1 in H3(M,R) depends only on the given foliation. It is called the Godbillon-Vey
invariant of the foliation and denoted by gv(F) (for more details see [1]).

Now we are going to give some well known results.

Theorem 2.1. Let G be a connected Lie group, g the Lie algebra of G and π its
Maurer-Cartan’s form. Then,

a) dπ + 1
2 [π, π] = 0.

b) If Ω : T (M) → g is a g- valued 1-form defined on M such that

dΩ +
1
2
[Ω, Ω] = 0,

then each point x ∈ M has a neighborhood U on which is defined a map h : U → G
verifying h∗π = Ω|U . Moreover, any map k : U → G verifying k∗π = Ω|U , is of the
form: k = γh where γ ∈ G. In addition if M is simply connected, then there exists a
map F : M → G, globally defined, such that F ∗π = Ω.

The Lie algebra G of the Lie group PSL(2,R) has a basis (X, Y,Z) such that
[X,Z] = Y, [Z, Y] = 2Z, [Y,X] = 2X, and in this basis every G-valued 1-form:

Ω : T (M) → G

can be written of the form
Ω = ωX + ω1Y + ω2Z

where ω, ω1, ω2 are real valued 1-forms called the components of Ω. Moreover the
identity

dΩ +
1
2
[Ω,Ω] = 0

is verified, if and only if, we have

dω = 2ω ∧ ω1

dω1 = ω ∧ ω2

dω2 = 2ω2 ∧ ω1.

These equalities are called the Maurer-cartan’s equations.

Corollary 2.2. A codimension one foliation is transversely projective, if and only if,
it is defined by a 1-form, ω, such that, for some tow 1-forms ω1 and ω2, the triplet
(ω, ω1, ω2) satisfies the Maurer-cartan’s equations.
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We say that the foliation is defined by the triplet (ω, ω1, ω2). Clearly if F is an
RP1- foliation defined by a triplet (ω, ω1, ω2), then gv(F) = 4[ω1 ∧ ω ∧ ω2].

Corollary 2.3. Let F be an RP1- foliation on a manifold M defined by a triplet
(ω, ω1, ω2), and let p̃ : M̃ → Mbe the universal covering of M . Then there exist a
homomorphism group

Φ : Aut(M̃) → PSL(2,R)

and a smooth function
F : M̃ → PSL(2,R)

such that for every g ∈ Aut(M̃), F ◦ g = Φ(g)F .

The homomorphism Φ induces, via the natural isomorphism π1(M)
∼=→ Aut(M̃),

a homomorphism group
h : π1(M) → PSL(2,R)

called the homomorphism of global holonomy . The subgroup

Γ(F) = h(π1(M))

of PSL(2,R) is called the global holonomy group of the foliation F . Let

M̂ = M̃/ker(Φ)

and p : M̂ → M the canonical projection. Then we have the following basic result:

Proposition 2.4. Let F be a transversely projective foliation on a manifold M .
Then there exists a galoisian covering p : M̂ → M, an injective homomorphism
ϕ : Aut(M̂) → PSL(2,R) and a submersion f : M̂ → RP1, satisfying the following
properties

a) p∗F is the foliation defined by the submersion f .
b) f is equivariant with respect to ϕ :

f(g(x)) = ϕ(g)(f(x))), x ∈ M̂, g ∈ Aut(M̂).

c) The holonomy group of a leaf L of F is isomorphic to the subgroup of the Aut(M̂)
living L̂ invariant, where L̂ is any connected component of p−1(L).

It follows from Proposition 2.4 that to each leaf L of F correspond an orbit O(L) =
f(p−1(L)) of Γ(F) in RP1 and,

Corollary 2.5. a)If L is dense in M , then O(L) is dense in f(M̂) and, if O(L) is
proper, then L is proper.

b)Let θ ∈ f(M̂), then the holonomy group of a leaf of p(f−1(θ)) is a subgroup of
the isotropy group of θ.

If the foliation is transverse to a fibration by circles, then L is proper if and only
if O(L) is proper and, L is dense if and only if O(L) is dense in RP1.

Concerning transverse structures, an RP1- foliation can admits several transverse
projective structures and the triplet (ω, ω1, ω2) which defines F is not necessarily
unique. On the other hand, it was shown that if M is compact, then every RP1-
foliation having holonomy has a unique transverse projective structure. In the general
case we have the following
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Proposition 2.6. Let F be an RP1- foliation on a manifold M . Then
a)Any transverse projective structure on F is defined by a triplet (ω, ω1, ω2) of

1-forms satisfying the Maurer-cartan’s equations.
b)Tow triplets (ω, ω1, ω2) and ($, $1, $2) define the same transverse projective

structure on F , if and only if, there exist tow functions f, g : M → R with f > 0 and
i)$ = fω.
ii)$1 = ω1 + gω + df

2f .
iii)$2 = 1

f (g2ω − 2gω1 + ω2 − dg).

Tow triplets (ω, ω1, ω2) and ($, $1, $2) satisfying the relations i), ii), iii) of
Proposition 2.6 are said equivalent.

Now we are going to close this section by giving tow examples in order to illustrate
Proposition 2.4.

Examples

1- Example of Roussarie

Let (α, α1, α2) be the components of the Maurer-Cartan’s form of PSL(2,R) and
H a discrete uniform subgroup of PSL(2,R) (see 3.1). The triplet of 1-forms (α, α1, α2)
verifies the Maurer-Cartan’s equations, it is left-invariant, (so invariant by the nat-
ural action of H on V = PSL(2,R)/H ) and consequently gives a triplet (β, β1, β2)
verifying the same equations on the quotient V and therefore defines a transversely
projective foliation R on V . Note that the canonical projections p : PSL(2,R) → V ,
and q : PSL(2,R) → RP1, are, respectively, a galoisian covering and a submersion
satisfying the conditions of Proposition 2.4. The global holonomy group of R being,
precisely, the subgroup H. On the other hand, the form β ∧ β1 ∧ β2 is a volume form
on the compact manifold V is not be exact. This implies that gv(F) is non zero.

2- Transversely projective foliation transverse to a fibration by circles

Let M be a manifold and ϕ : π1(M) → PSL(2,R) be an homomorphism group.
Consider the universal covering M̃ of M . Then the group π1(M) acts on the product

Ṽ = M̃ × RP1

by γ : (x, t) → (γ(x), ϕ(γ)(t)). The foliation {M̃×{t}, t ∈ RP1} is invariant under this
action, and consequently gives, by dropping down, a transversely projective foliation
F(ϕ) on the quotient manifold V = Ṽ /π1(M) . The galoisian covering p : (M̃/kerϕ)×
RP1 → V and the canonical projection p2 : Ṽ → RP1 are satisfying the conditions of
Proposition 2.4. The global holonomy of F(ϕ) is the group ϕ(π1(M)).

3 The Godbillon-Vey invariant and the global holon-
omy

In this section we identify PSL(2,R) with SL(2,R)/{±id} and RP1 with R ∪ {∞}.
Under this identification, a projective transformation of RP1 is of the form
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t → at + b

ct + d
, ad− bc = 1.

We denote it by

ε
( a b

c d

)

where ε means ±. The projective transformations which are fixing ∞ are of the form

ε
( a b

0 1
a

)
.

Their set is a subgroup of PSL(2,R) called the affine group, and denoted by A. The
projective transformations which, globally, fixe the pair {0,∞} are of the form

ε
( a 0

0 1
a

)
or ε

( 0 b
1
b 0

)
.

Their set is a subgroup of PSL(2,R). We denote it by P. The projective transforma-
tions of the form

ε
(

a −b
b a

)

are without fixed point and called rotations. Their set is a subgroup denoted by R.
The elements

ε
( 1 b

0 1

)

fixe only the point ∞ and called translations. Their set is a subgroup denoted by T .
The elements

ε
( a 0

0 1
a

)

of PSL(2,R) admit exactly tow fixed points, 0 and ∞, are called homotheties. Their
set is a subgroup denoted by H.

Remark 3.1. A projective transformation different from the identity can not have
more than tow distinct fixed points.

Definition. A discrete subgroup H of PSL(2,R) is said uniform if the quotient
PSL(2,R)/H is a compact manifold.

Lemma 3.2. Let α, α1, α2 be the components of the Maurer-Cartan’s form of PSL(2,R).
If H is one of the subgroups A, P or a non uniform discrete subgroup of PSL(2,R),
then there exists a 2-form $ on PSL(2,R) invariant by the group H and such that:

d$ = α ∧ α1 ∧ α2

Proof. Let PSL(2,R) = SL(2,R)/{±id} and denote by X = ε
( x u

y v

)
its generic

element. Then we have

α = xdy − ydx, α1 = xdv − ydu = udy − vdx, α2 = vdu− udv.
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On the other hand, by a simple calculation, we prove that the 2-form

β = (vdy − ydv) ∧ d

(
xy + uv

y2 + v2

)

is invariant by the affine group A and verifies the equality

dβ = α ∧ α1 ∧ α2.

In this case we take $ = β. If H = P we consider the matrix σ =
( 0 −1

1 0

)
and

the left translation
τσ : PSL(2,R) → PSL(2,R)

defined by τσ(X) = σX. Because τ2
σ = id, the 2-form

β′ =
1
2
(β + τ∗σβ)

is invariant by the subgroup P and verifies the equality

dβ
′
= α ∧ α1 ∧ α2.

In this case we take $ = β′.
Now Suppose that H is a discrete non uniform subgroup of PSL(2,R), and consider

the canonical projection

q : PSL(2,R) → PSL(2,R)/H.

The volume form α ∧ α1 ∧ α2 is left-invariant on PSL(2,R). Then it drops down to
the quotient giving a volume form ν on PSL(2,R)/H. Because this quotient is not
compact, ν is exact. Let η be a 2-form on PSL(2,R)/H such that

dη = ν,

then the 2-form $ = q∗η is invariant under H on PSL(2,R) and satisfies

d$ = α ∧ α1 ∧ α2.

Theorem 3.3. Let F be a transversely projective foliation with global holonomy group
Γ(F). Each of the flowing conditions implies that the GodbillonVey invariant gv(F)
of F is zero.

i) Γ(F) is conjugated to a subgroup of the affine group A.

ii) Γ(F) is conjugated to a subgroup of the group P.

iii) Γ(F) is a non uniform discrete subgroup of PSL(2,R).

iv) Γ(F) is conjugated to a subgroup of the group R.
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Proof. If Γ(F) verifies i), ii) or iii) then there exist, by Lemma.3.2, a 2-form $ on
PSL(2,R) invariant by Γ(F) with d$ = α∧α1 ∧α2. Let p̃ : M̃ → M be the universal
covering of M . Then by Corollary 2.3, there exists a map F : M̃ → PSL(2,R), such
that F ∗(α, α1, α2) = p̃∗(ω, ω1, ω2) and for every g ∈ Aut(M̃), F ◦ g = ϕ(g)F. It
follows that, the 2-form F ∗$ is invariant by the group of Aut(M̃) and d(F ∗$) =
p̃∗(ω ∧ ω1 ∧ ω2). Consequently the 2-form F ∗$ drops down to M giving a 2-form λ
such that dλ = ω ∧ ω1 ∧ ω2. This means that the GodbillonVey invariant gv(F) is
zero. This proves the parts i), ii) and iii) of the Theorem.

In the case iv), the elements of Γ are without fixed point and consequently, by
Corollary 2.5, F is without holonomy, therefore gv(F) is zero.

Theorem 3.4. Let F be a transversely projective foliation on a manifold M . If the
GodbillonVey invariant gv(F) is non zero, then the orbits of Γ(F) in RP1 are ev-
erywhere dense in RP1. In particular, if the foliation is transverse to a fibration by
circles, then every leaf of F is dense in M.

Proof. Let Γ(F) = Γ be the global holonomy group of F . Suppose at first that Γ
has a proper orbit O. Then:

a)If O is reduced to a single point {θ0}, Γ is conjugated to a subgroup of the affine
group A.

b)If O is reduced to a pair {θ1, θ2}, then Γ is conjugated to a subgroup of the
group P.

c) If O contains more than two points, then for any point θ0 ∈ O, and any
γ ∈ Γ− {id} we have γ(θ0) 6= θ0. Indeed, suppose that γ 6= id and γ(θ0) = θ0. Then
there exists θ ∈ O such that γ(θ) 6= θ and therefore the sequence γn(θ) (or γ−n(θ))
converges to the fixed point θ0, this implies that O is not proper which is a contradic-
tion. So γ(θ0) is an other point of O. It follows that if θ0, θ1 are tow consecutive points
in O and A =]θ0, θ1[, then γ(A)∩A = f¡ hence A dos not contain two distinct points
equivalent by Γ, and so q−1(A) (q : PSL(2,R) → RP1 is the canonical projection) is
a non relatively compact open set of PSL(2,R) having no distinct points equivalent
by Γ . Consequently, Γ is a non uniform discrete subgroup of PSL(2,R).

Now suppose that Γ has an exceptional minimal set M, and let ]θ1, θ2[ be an
interval(i.e: a connected component) of RP1 − M. If γ is an element of Γ which
fixes θ1, it fixes also θ2, because otherwise one of the sequences γn(θ2) or γ−n(θ2)
converges to θ1 and so the interval ]θ1, θ2[ would contain points of the orbit of θ2

which are points of M. On the other hand the isotropy group of θ1 is cyclic, because
otherwise, the orbits would be locally dense in a neighborhood of θ1. Consequently,
an element which does not fixe θ1, sends ]θ1, θ2[ to another connected component of
RP1−M, this implies that the orbit of any point of ]θ1, θ2[ is proper and infinite. We
conclude as previously that Γ is a non uniform discrete subgroup of PSL(2,R). Now
the proof is an immediate consequence of Theorem 3.3.

Theorem 3.5. Let F be a transversely projective foliation on a manifold M . If gv(F)
is non zero then Γ(F) is discrete uniform or everywhere dense in PSL(2,R).
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Proof. If Γ is neither discrete nor everywhere dense in PSL(2,R), then the closure
Γ of Γ in PSL(2,R) is a Lie-subgroup of dimension one or tow of PSL(2,R).

If Γ is of dimension one, the connected component Γ0 of Γ̄ containing the identity
element, is a normal subgroup of Γ, so only the three following cases are possible.
i) Γ0 is conjugated to R, and in this case Γ = Γ0.
ii) Γ0 is conjugated to the group T of translations, also in this case Γ = Γ0 .
iii) Γ0 is conjugated to the group H of homotheties, and therefore Γ is conjugated to
a subgroup of P.

If Γ is of dimension tow, then Γ0 is conjugated to the affine group A. Consequently,
Γ is conjugated to a subgroup of the affine group A. Now the conclusion is an easy
consequence of Theorem 3.2.

4 An existence theorem

The example of Roussarie is a transversely projective foliation with a discrete uniform
global holonomy and non zero GodbillonVey invariant. In this section we are going to
construct a transversely projective foliation with a dense global holonomy, and a non
zero GodbillonVey invariant. For this we need the next Proposition where S1 = R/Z.

Proposition 4.1. Let F be a transversely projective foliation on a manifold M . Then
there exists a transversely projective foliation H on M × S1 transverse to the factor
S1 and H |M×{0} = F .

Proof. Let (ω, ω1, ω2) be a triplet of 1-forms defining the foliation F on M and
denote by dθ the canonical volume form of S1. Then the triplet ($, $1, $2) given by

$ = (cos2 θ)ω − (sin 2θ)ω1 − (sin2 θ)ω2 + dθ

$1 =
1
2
(sin 2θ)ω +

1
2
(sin 2θ)ω2 + (cos 2θ)ω1

$2 = (cos2 θ)ω2 − (sin2 θ)ω − (sin 2θ)ω1 − dθ

where θ is the generic element of S1, defines a transversely projective foliation H on
M × S1 verifying the intended conditions.

Observe that Γ(H) = Γ(F) and gv(H) is non zero if and only if gv(F) is non zero.
In addition, the projective structure induced by the foliation H on the factor S1 is
the canonical projective structure of S1 defined by the triplet (dθ, 0, −dθ).

Theorem 4.2. There exists a transversely projective foliation on a manifold M
(dim M ≥ 5), having an invariant different from zero, and a dense global holonomy
in PSL(2,R).

Proof. By Proposition 4.1, we can easily construct two transversely projective
foliations F0 and F1 on manifolds M0 and M1, respectively, having the following
properties

1)The invariant gv(F0) is different from zero.
2)Γ(F1) is not discrete.
3)There exists two closed transversal τ0 and τ1 to F0 and F1, respectively, such

that the projective structures induced by F0 on τ0 and by F1 on τ1 are identical.
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Denote by Vα, α = 1, 2 a tubular foliated neighborhood of τα diffeomorphic to S1 ×
Rn−1, and by M ′

α the manifold Mα − S1 ×Dn−1 with boundary ∂M ′
α = S1 × Sn−2

and by F ′α the restriction of Fα to M ′
α. We can suppose, by changing if necessary

the triplets defining F0 and F1 by equivalent triplets, that the two foliations F0

and F1 define the same structures on a neighborhood of ∂M ′
0 = ∂M ′

1 = S1 × Sn−2.
Consequently, by sticking the two foliations F ′0 and F ′1 , we obtain a transversely
projective foliation F on the manifold

M = M ′
0

⋃

S1×Sn−2

M ′
1.

Now the proof is a immediate consequence of the next lemmas.

Lemma 4.3. The global holonomy Γ(F) of F is everywhere dense in PSL(2,R).

Proof. - We prove by the Van-Kampen’s theorem that Γ(F ′α) = Γ(Fα), α = 0, 1
and Γ(F) is generated by Γ(F ′0) and Γ(F ′1). Since gv(F0) 6= 0 , then Γ(F0) is either
discrete uniform or dense in PSL(2,R). Now Γ(F1) is not discrete, so in both cases,
Γ(F) is everywhere dense in PSL(2,R).

Lemma 4.4. If the dimension of M0 is superior or equal to 5, then gv(F) 6= 0.

Proof. - Let i : M ′
0 → M0 be the canonical injection, then

i∗ : H3(M0) → H3(M ′
0)

is injective. Indeed, we have

M0 = M ′
0

⋃

S1×Sn−2

S1 ×Dn−1

and an exact sequence

H2(S1 × Sn−2) → H3(M0) → H3(M ′
0)⊕H3(S1 ×Dn−1).

Since n ≥ 5, we have H2(S1×Sn−2) = 0 and so i∗ is injective. Consider the canonical
injection

j : M ′
0 → M ′

0

⋃

S1×Sn−2

M ′
1 = M,

we have that
j∗gv(F) = gv(F ′0) = i∗gv(F0).

Since i∗ is injective and gv(F0) is non zero, it follows that gv(F) 6= 0. This proves
Lemma 4.4.
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Département de Mathématiques,
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Département de Mathématiques,
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