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Abstract. On the tangent bundle of a Riemannian manifold (M, g) we
consider a pseudo-Riemannian metric defined by a symmetric tensor field c
on M and four real valued smooth functions defined on [0,∞). We study
the conditions under which the above pseudo-Riemannian manifold has
constant sectional curvature.
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1 Necessary facts about the tangent bundle TM

Let (M, g) be a smooth n-dimensional Riemannian manifold and let π : TM → M
be its tangent bundle. Then TM has a structure of a 2n-dimensional smooth mani-
fold induced from the structure of smooth n-dimensional manifold of M as follows:
every local chart (U, φ) = (U, x1, ..., xn) on M induced a local chart (π−1(U),Φ) =
(π−1(U), x1, ..., xn, y1, ..., yn) on TM , where we made an abuse of notation,identifying
xi with π∗xi = xi ◦ π and yi being the vector space coordinates of y ∈ π−1(U) with
respect to the natural local frame (( ∂

∂x1 )π(y), ..., ( ∂
∂xn )π(y)) i.e. y = yi( ∂

∂xi )π(y)

This special structure of TM allows us to introduce the notion of M -tensor fields
on it (see [3]). An M -tensor field of type (p, q) on TM is defined by sets of np+q

functions depending on xi and yi, assigned to induced local charts (π−1(U), Φ) on
TM , thus the change rule is that of the components of a tensor field of type (p, q) on
M , when a change of local charts on the base manifold is performed. Remark that the
components yi define an M -tensor field of type (1, 0) on TM . It is also obvious that
a usual tensor field of type (p, q) on M may be thought as an M -tensor field of type
(p, q) on TM . In the case of a covariant tensor field, the corresponding M -tensor field
on the tangent bundle TM is nothing else but the pullback of the initial tensor field by
the submersion π : TM → M . Other useful M -tensor fields on TM may be obtained
as follows. Let a : [0,∞) → R be a smooth function and let ‖ y ‖2= gπ(y)(y, y) be the
square of the norm of the tangent vector y. Then the components a(‖ y ‖2)δi

j define
a M -tensor field of type (1, 1) on TM . Similarly, if gij(x) are the local coordinate
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components of the metric tensor field g on M , then the components a(‖ y ‖2)gij

define a symmetric M -tensor field of type (0, 2) on TM . The components g0i = yjgji

define an M -tensor field of type (0, 1) on TM .
Recall that the Levi-Civita connection ∇̇ of the Riemannian metric g defines the

direct sum decomposition
TTM = V TM ⊕HTM

of the tangent bundle to TM into the vertical distribution V TM = ker π∗ and the
horizontal distribution HTM . The vector fields ( ∂

∂y1 , ..., ∂
∂yn ) define a local frame

field for V TM and for the horizontal distribution HTM we have the local frame field
( δ

δx1 , ..., δ
δxn ), where

δ

δxi
=

∂

∂xi
− Γh

i0

∂

∂yh
; Γh

i0 = Γh
ikyk

and Γh
ij are the Christoffel symbols defined by the Riemannian metric g. In [5] the

author proves the following

Lemma 1. If n > 1 and u, v are smooth function on TM such that

ugij + vg0ig0j = 0, g0i = yjgji, y ∈ π−1(U)

on the domain of any induced local chart on TM , then u = v = 0.

In a similar way we can obtain

Lemma 2. If n > 1 and u, v are smooth function on TM such that

ugjkδh
i − ugijδ

h
k + vg0ig0jδ

h
k − vg0jg0kδh

i = 0, g0i = yjgji, y ∈ π−1(U)

on the domain of any induced local chart on TM , then u = v = 0.

Remark. From the relation

ugjkyiy
h − ugikyjy

h = 0, y ∈ π−1(U),

we obtain u = 0.

Since we work in a fixed local chart (U, φ) on M and in the corresponding induced
local chart (π−1(U),Φ) on TM , we shall use the following simpler notations

∂

∂yi
= ∂i,

δ

δxi
= δi

We also denote by

t =
1
2
‖ y ‖2= 1

2
gπ(y)(y, y) =

1
2
gij(x)yiyj , y ∈ π−1(U).
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2 A pseudo-Riemannian metric on TM

Let c be a symmetric tensor field of type (0, 2) on M , and let a1, b1, a2, b2 : [0,∞) → R
be smooth functions. Consider the following symmetric tensor field of type (0, 2) on
TM (see [6],[7],[4])

(2.1)





Gy(XV , Y V ) = 0,

Gy(XH , Y V ) = a1(t)gπ(y)(X,Y ) + b1(t)gπ(y)(y,X)gπ(y)(y, Y ),

Gy(XH , Y H) = a2(t)cπ(y)(X,Y ) + b2(t)gπ(y)(y, X)gπ(y)(y, Y ).

The expression of G in local adapted frames is defined by the following M -tensor
fields

G1
ij = G(δi, ∂j) = a1gij + b1g0ig0j ,

G2
ij = G(δi, δj) = a2cij + b2g0ig0j .

The associated matrix of G with respect to the adapted local frame is



0 G1
ij

G1
ij G2

ij




The conditions for G to be nondegenerate are ensured if

a1(a1 + 2tb1) 6= 0.

Under these conditions the matrix (G1
ij) has the inverse with the entries

Hij
1 =

1
a1

gij +
b1

a1 + 2tb1
yiyj

We shall denote by

∂hG1
ij =

∂G1
ij

∂yh
, ∂hG2

ij =
∂G2

ij

∂yh
, δhG1

ij =
δG1

ij

δxh
, δhG2

ij =
δG2

ij

δxh
.

The following formulae can be easily checked and will be useful in our next compu-
tation:

(2.2)





∇̇iG
1
jk = δiG

1
jk − Γh

ijG
1
hk − Γh

ikG1
jh = 0,

∇̇iG
2
jk = δiG

2
jk − Γh

ijG
2
hk − Γh

ikG2
jh = a2∇̇icjk,

∇̇iH
jk
1 = δiH

jk
1 + Γj

ihHhk
1 + Γk

ihHjh
1 = 0,

∇̇i∂jG
1
kl = δi∂jG

1
kl − Γh

ij∂hG1
kl − Γh

ik∂jG
1
hl − Γh

il∂jG
1
kh = 0,

∇̇i∂jG
2
kl = δi∂jG

2
kl − Γh

ij∂hG2
kl − Γh

ik∂jG
2
hl − Γh

il∂jG
2
kh = a

′
2g0j∇̇ickl.
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Proposition 3. The Levi-Civita connection ∇ of the pseudo-Riemannian manifold
(TM, G) has the following expression in the local adapted frame (∂1, ..., ∂n,
δ1, ..., δn)

∇∂i
∂j = Qh

ij∂h, ∇δi
∂j = (Γh

ij + P̃h
ji)∂h + Ph

jiδh,

∇∂i
δj = Ph

ijδh + P̃h
ij∂h, ∇δi

δj = (Γh
ij + S̃h

ij)δh + Sh
ij∂h,

where the M -tensor fields Qh
ij, Ph

ij, P̃h
ij, Sh

ij, S̃h
ij are given by:

Qh
ij =

1
2
Hhk

1 (∂iG
1
jk + ∂jG

1
ik),

Ph
ij =

1
2
Hhk

1 (∂iG
1
jk − ∂kG1

ij),

P̃h
ij =

1
2
Hhk

1 ∂iG
2
jk −

1
2
Hrl

1 (∂iG
1
jl − ∂lG

1
ij)G

2
rkHkh

1 ,

Sh
ij =

a2

2
(∇̇icjk + ∇̇jcki − ∇̇kcij)Hkh

1 −

−a1R0ijkHkh
1 +

1
2
Hsl

1 (∂lG
2
ij)G

2
skHkh

1 ,

S̃h
ij = −1

2
Hhk

1 ∂kG2
ij ,

Rlijk denoting the local coordinate components of the Riemann-Christoffel tensor of
the Levi-Civita connection ∇̇ on M and R0ijk = ylRlijk

Remark. Replacing the expressions of G1
ij, G2

ij, Hij
1 , ∂iG

1
jk, ∂iG

2
jk by their local

coordinate components we obtain some quite complicated expressions.

The curvature tensor field K of the connection ∇ is defined by the well-known
formula

K(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM)

Proposition 4. The local coordinate expression of the curvature tensor field in
the adapted local frame (∂1, ..., ∂n, δ1, ..., δn) is given by

K(∂i, ∂j)∂k = Y Y Y Y h
kij∂h,

K(∂i, ∂j)δk = Y Y XY h
kij∂h + Y Y XXh

kijδh,

K(∂i, δj)∂k = Y XY Y h
kij∂h + Y XY Xh

kijδh,

K(∂i, δj)δk = Y XXY h
kij∂h + Y XXXh

kijδh,

K(δi, δj)∂k = XXY Y h
kij∂h + XXY Xh

kijδh,

K(δi, δj)δk = XXXY h
kij∂h + XXXXh

kijδh,

where we have denoted
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Y Y Y Y h
kij = ∂iQ

h
jk + Ql

jkQh
il − ∂jQ

h
ik −Ql

ikQh
jl

Y Y XY h
kij = ∂iP̃

h
jk + P̃h

ilP
l
jk + P̃ l

jkQh
il − ∂jP̃

h
ik − P̃h

jlP
l
ik − P̃ l

ikQh
jl

Y Y XXh
kij = ∂iP

h
jk + P l

jkPh
il − ∂jP

h
ik − P l

ikPh
jl

Y XY Y h
kij = ∂iP̃

h
kj + P̃ l

kjQ
h
il + P̃h

ilP
l
kj − P̃h

ljQ
l
ik

Y XY Xh
kij = ∂iP

h
kj + P l

kjP
h
il − Ph

ljQ
l
ik

Y XXY h
kij = ∂iS

h
jk + Sl

jkQh
il + S̃l

jkP̃h
il − Sh

jlP
l
ik − P̃ l

ikP̃h
lj − ∇̇jP̃

h
ik

Y XXXh
kij = ∂iS̃

h
jk + S̃l

jkPh
il − S̃h

jlP
l
ik − P̃ l

ikPh
lj

XXY Y h
kij = ∇̇iP̃

h
kj + P̃ l

kjP̃
h
li + P l

kjS
h
il − ∇̇jP̃

h
ki − P̃ l

kiP̃
h
lj − P l

kiS
h
jl+

+Rh
kij + Rl

0ijQ
h
lk

XXY Xh
kij = P̃ l

kjP
h
li + P l

kjS̃
h
il − P̃ l

kiP
h
lj − P l

kiS̃
h
jl

XXXY h
kij = ∇̇iS

h
jk + Sh

ilS̃
l
jk + Sl

jkP̃h
li − ∇̇jS

h
ik − Sh

jlS̃
l
ik − Sl

ikP̃h
lj + Rl

0ijP̃
h
lk

XXXXh
kij = ∇̇iS̃

h
jk + S̃l

jkS̃h
il + Sl

jkPh
li − ∇̇jS̃

h
ik − S̃l

ikS̃h
jl − Sl

ikPh
lj+

+Rh
kij + Rl

0ijP
h
lk

Remark. Note that, as a first step, the formulae for the local expression of K also
contain some other terms involving the Christoffel symbols Γh

ij. However, all of these
terms are involved in the derivative ∇̇. For example

∇̇iP̃
h
jk = δiP̃

h
jk − Γl

ijP̃
h
lk − Γl

ikP̃h
jl + Γh

ilP̃
l
jk,

but using the expression of P̃h
ij and taking account of relations (2.2) we obtain after

a straightforward computation that

∇̇iP̃
h
jk =

a
′
2

2
Hhl

1 g0j∇̇ickl − a2

2
Hsl

1 (∂jG
1
kl − ∂lG

1
jk)(∇̇icsr)Hrh

1

Remark also that the terms ∇̇iQ
h
jk and ∇̇iP

h
jk do not appear because they are zero as

follows from the formulae (2.2).

Now, we have to replace the expression of the M tensor fields Qh
ij , Ph

ij , P̃h
ij , Sh

ij ,
S̃h

ij in order to obtain the explicit expression of the components of K. However, the
final expressions are quite complicated, but they may be obtained after some long
and hard computation made by using the Mathematica package RICCI.

Recall that the pseudo-Riemannian manifold (TM,G) has constant sectional cur-
vature k if its curvature tensor field K is given by

K(X, Y )Z = K0(X, Y )Z = k(G(Y,Z)X −G(X, Z)Y ), ∀X, Y, Z ∈ Γ(TM).

In order to find under which conditions (TM,G) has constant sectional curvature we
shall consider the differences between the components of the tensor fields K and K0

and we shall denote them by Diff . For example

Diff Y Y Y Y h
kij = Y Y Y Y h

kij − Y Y Y Y h
0kij .

The explicit expression of Diff Y Y Y Y h
kij is

Diff Y Y Y Y h
kij =

a
′
1 − b1

2(a1 + 2tb1)
(gjkδh

i − gijδ
h
k )+
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+
1

4a2
1(a1 + 2tb1)

(3a1a
′2
1 − 2a2

1a
′′
1 − 3a1b

2
1 + 2a2

1b
′
1 + 2a

′2
1 b1t− 4a1a

′′
1 b1t−

−2b3
1t + 4a1a

′
1b
′
1t)(δ

h
kg0ig0j − δh

i g0jg0k).

From Lemma 2 it follows that Diff Y Y Y Y h
kij = 0 if and only if b1 = a

′
1. By replacing

b1 = a
′
1 in the expression of Diff Y Y XY h

kij we obtain

Diff Y Y XY h
kij = −ka1gjkδh

i + ka1gikδh
j + ka

′
1δ

h
j g0ig0k − ka

′
1δ

h
i g0jg0k.

Using again Lemma 2 and taking account that a1 6= 0 it follows that
Diff Y Y XY h

kij = 0 if and only if k = 0. Under the conditions b1 = a
′
1 and k = 0 we

have
Diff Y Y XXh

kij = Diff Y XY Xh
kij = Diff XXY Xh

kij = 0.

Computing Diff XXXXh
kij and taking y = 0 it follows that R = 0, so (M, g) is flat.

Taking y = 0 in the formulae Diff Y XXXh
kij = 0 we obtain





na
′
2(0)cjk = −2b2(0)gjk

a
′
2(0)cjk = −(n + 1)b2(0)gjk

from which we have
(n2 + n− 2)b2(0)gjk = 0

Assuming that n > 1 it follows that b2(0) = 0, so a
′
2(0)cjk = 0.

Now we may consider the following cases:

(i) a
′
2 = 0, b2 = 0 so the pseudo-Riemannian metric G is given by

(2.3)





G(∂i, ∂j) = 0,

G(δi, ∂j) = a1gij + a
′
1g0ig0j ,

G(δi, δj) = a2cij ,

where a1 : [0,∞) → R is a smooth function and a2 is a nonzero constant. Computing
the remaining differences we have

Diff Y XY Y h
kij = Diff Y XXY h

kij = Diff Y XXXh
kij =

= Diff XXY Y h
kij = Diff XXXXh

kij = 0,

and

Diff XXXY h
kij =

a2

2a1
(∇̇i∇̇kch

j − ∇̇j∇̇kch
i + ∇̇j∇̇hcik − ∇̇i∇̇hcjk)+

+
a
′
1a2

2a1(a1 + 2ta
′
1)

(∇̇i∇̇lcjk − ∇̇i∇̇kclj + ∇̇j∇̇kcli − ∇̇j∇̇lcik)yhyl.

Taking y = 0 in Diff XXXY h
kij = 0 it follows that
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∇̇i∇̇kch
j − ∇̇j∇̇kch

i + ∇̇j∇̇hcik − ∇̇i∇̇hcjk = 0.

Observing that the first bracket of the expression of Diff XXXY h
kij is zero if and

only if the second bracket of it is zero we may state:

Theorem 5. If the tangent bundle (TM, G) has constant sectional curvature,
where G has the entries given by (2.3), then it must be flat. Moreover, (TM, G) is
flat if and only if (M, g) is flat and the tensor field c satisfies the condition

(2.4) ∇̇i∇̇lcjk − ∇̇i∇̇kclj + ∇̇j∇̇kcli − ∇̇j∇̇lcik = 0.

A symmetric tensor field c of type (0, 2) on M is Codazzi tensor field if

(∇̇Xc)(Y, Z) = (∇̇Y c)(X,Z), X, Y, Z ∈ Γ(M)

Note that the condition (2.4) is fulfilled if c is parallel with respect to ∇ or it is a
Codazzi tensor field on M .

(ii) a2 = 0, b2 = 0 so the pseudo-Riemannian metric G is given by

(2.5)





G(∂i, ∂j) = 0,

G(δi, ∂j) = a1gij + a
′
1g0ig0j ,

G(δi, δj) = 0,

where a1 : [0,∞) → R is a smooth function. In this case all the differences Diff are
zero, so we have the following

Theorem 6. If the tangent bundle (TM, G) has constant sectional curvature,
where G has the entries given by (2.5), then it must be flat. Moreover, (TM, G) is
flat if and only if (M, g) is flat.

(iii) a2 = 0, so the pseudo-Riemannian metric G is given by

(2.6)





G(∂i, ∂j) = 0,

G(δi, ∂j) = a1gij + a
′
1g0ig0j ,

G(δi, δj) = b2g0ig0j ,

where a1, b2 : [0,∞) → R are smooth functions, b2(0) = 0. In this case we have

Diff XXY Y h
kij = ugjkyiy

h − ugikyjy
h,

where u = b2(a1b2−2a
′
1b2t+2a1b

′
2t)

4a1(a1+2a
′
1t)2

. From Diff XXY Y h
kij = 0 we have, using the remark

made in the first section,
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b2(a1b2 − 2a
′
1b2t + 2a1b

′
2t) = 0.

Remark that b2 = 0 is a solution of this equation. Next we shall prove that b2 = 0 is
the unique solution of this equation. First of all let us observe that

( tb2
2

a2
1

)′
=

a1b
2
2 + 2ta1b2b

′
2 − 2a

′
1b

2
2t

a3
1

= 0,∀t ≥ 0

It follows that tb2
2a
−2
1 is a constant function, but since b2(0) = 0, we must have

tb2
2(t)a

−2
1 (t) = 0, ∀t ≥ 0, so b2(t) = 0, for all t ≥ 0. As a consequence of Theorem 6

we obtain:

Theorem 7. If the tangent bundle (TM, G) has constant sectional curvature,
where G has the entries given by (2.6), then it must be flat. Moreover, (TM, G) is
flat if and only if (M, g) is flat and b2 = 0.
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