Conformal connections on Lyra manifolds

I.E.Hirică and L. Nicolescu

Abstract. We give an algebraic characterization of the case when conformal Weyl and conformal Lyra connections have the same curvature tensor. It is determined a (1,3)-tensor field invariant to certain transformation of semi-symmetric connections, compatible with Weyl structures on conformal manifolds. It is studied the case when this tensor is vanishing.

M.S.C. 2000: 53B05, 53B20, 53B21.

Key words: Lyra manifolds, Weyl manifolds, conformal class, semi-symmetric connection, deformation algebra.

Introduction

The invariance of curvature type tensors under conformal transformation of metrics plays a central role in conformal geometry and has deep geometric significance.

The conformal Weyl curvature tensor

$$C(X, Y, Z, W) = R(X, Y, Z, W) - \frac{1}{2}[g(X, W)S(Y, Z) - g(Y, W)S(X, Z) + g(Y, Z)S(X, W) - g(X, Z)S(Y, W)] + \frac{k}{(n-1)(n-2)}[g(X, W)g(Y, Z) - g(Y, W)g(X, Z)]$$

is invariant under conformal transformation of metrics $g \to \overline{g} = e^{2\xi}g$. The conharmonic curvature tensor

$$\begin{split} K(X,Y,Z,W) &= R(X,Y,Z,W) - \frac{1}{n-2} [S(X,W)g(Y,Z) - S(Y,W)g(X,Z) + \\ &+ S(Y,Z)g(X,W) - S(X,Z)g(Y,W)] \end{split}$$

is invariant under conharmonic transformation of metrics $g\to \overline{g}=e^{2\xi}g,$ where $\xi_p^p=$ $g^{ij}\xi_{ij} = 0, \xi_{hk} = \xi_{h,k} - \xi_h\xi_k + \frac{1}{2}\xi_i\xi^ig_{hk}, \xi_i = \frac{\partial\xi}{\partial x^i}.$ The concircular curvature tensor

$$L(X, Y, Z, W) = R(X, Y, Z, W) - \frac{k}{n(n-1)} [g(X, W)g(Y, Z) - g(Y, W)g(X, Z)]$$

is invariant under concircular transformation of metrics $g \to \overline{g} = e^{2\xi}g$, where $T_{rs} =$ $\xi_{r,s} - \xi_r \xi_s, T = \frac{1}{2} Tr(T)g, S$ is the Ricci tensor and k is the scalar curvature.

Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 43-49.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

1 Semi-symmetric connections on Lyra manifolds

Let $\pi \in \Lambda^1(M)$. A linear connection ∇ is called π -semi-symmetric if

$$T(X,Y) = \pi(X)Y - \pi(Y)X, \quad \forall X,Y \in \mathcal{X}(M).$$

If, moreover, ∇ is metric ($\nabla_X g = 0$), then the triple (M, g, ∇) is called Lyra manifold associated to π .

A. Friedman, J.A. Schouten introduced the notion of semi-symmetric connection. The research is continued by H.A. Hayden. The subject was developed from different perspectives. The main directions of study are:

a) The geometrical significance of semi-symmetric connection:

Theorem A [12] The necessary and sufficient condition such that a Riemannian manifold admits a metric semi-symmetric connection with vanishing curvature tensor is that the space is conformally flat (i.e. C = 0).

Theorem B [12] The necessary and sufficient condition such that a Riemannian manifold admits a metric semi-symmetric connection ∇ such that M is a group manifold (i.e. $R(X,Y)Z = 0, (\nabla_X T)(Y,Z) = 0$) is that the space (M,g) has constant curvature.

Along the same line T. Imai got the following results

Theorem C [3] If a Riemannian manifold (M, g) admits a metric semi-symmetric connection ∇ such that $S^{\nabla} = 0$, then:

a) $R^{\nabla} = C$ (the curvature tensor associated to this connection coincides with the conformal Weyl curvature tensor of the Riemann space).

b) There exists $\overline{g} \in \hat{g}$ such that $\overline{R} = C$ (the curvature tensor of the Levi-Civita connection associated to \overline{g} coincides with the conformal Weyl curvature tensor of the Riemann space).

If the 1-form π is closed one can introduce the notion of sectional curvature.

Theorem D [3] If a Riemannian manifold (M, g) admits π -semi-symmetric connection ∇ such that π is closed and the sectional curvature corresponding to ∇ is constant, then the Riemann space is conformally flat.

In [13] P. Zhao, H. Song, X. Yang studied semi-symmetric recurrent connections. They considered ∇ and $\overline{\nabla}$ two semi-symmetric metric recurrent connections on a Riemannian space such that $\nabla \to \overline{\nabla}$ is a projective transformation and determined an invariant of this transformation.

b). Properties of semi-symmetric connections on manifolds endowed with special structures:

Let $M(\varphi, \xi, \eta, g)$ be a Sasaki manifold. A metric connection is called S-connection if $(\nabla_X \varphi)(Y) = \eta(Y)X - g(X, Y)\xi$.

If, moreover, $T(X,Y) = \eta(Y)\varphi(X) - \eta(X)\varphi(Y)$, then ∇ is called metric semisymmetric S-connection and is given by

 $\nabla_X Y = \stackrel{\circ}{\nabla}_X Y - \eta(X)\varphi(Y),$

where $\stackrel{\circ}{\nabla}$ is the Levi-Civita connection.

Conformal connections on Lyra manifolds

Theorem E [7] If a Sasaki manifold $M(\varphi, \xi, \eta, g)$ admits a metric semi-symmetric S- connection, whose curvature tensor is vanishing, then:

a) the conformal Weyl curvature tensor coincides with the conharmonic curvature tensor;

b) the concircular curvature tensor coincides with the Riemann curvature tensor.

R.N. Singh and K.P. Pandey [9] gave the relativististic significance of a semisymmetric metric S- connection whose curvature tensor is vanishing. S.D.Singh, A.K. Pandey [8] studied semi-symmetric metric connections in an almost Norden metric manifolds. P.N. Pandey and B.B. Chaturvedi [6] considered semi-symmetric connections on Kähler manifolds. F. Ünal and A. Uysal [10] studied semi-symmetric connections on Weyl manifolds.

2 Weyl manifolds

Let M be a connected paracompact differentiable manifold of dimension $n \geq 3$.

Let g be a pseudo-Riemannian metric on M and $\hat{g} = \{e^{2\xi}g \mid \xi \in \mathcal{F}(M)\}$ the conformal class defined by g.

A Weyl structure on the conformal manifold (M, \hat{g}) is a mapping

 $W: \hat{g} \mapsto \Lambda^1(M), W(e^{2\xi}g) = W(g) - 2d\xi, \forall \xi \in \mathcal{F}(M).$

We call the triple (M, \hat{g}, W) a Weyl manifold.

Remark 2.1. There exists an unique torsion free connection ∇ on M, compatible with the Weyl structure W:

 $\nabla g + W(g) \otimes g = 0,$

called the conformal Weyl connection. This is required to be invariant under the transformation $g\mapsto e^{2\xi}g.$

H.Weyl introduced the 2-form $\psi(M) = dW(g), g \in \hat{g}$ (a gauge invariant). If $\psi(M) = 0$, then the cohomology class $ch(W) = [W(g)] \in H^1(M, d)$ does not depend on the choice of the metric $g \in \hat{g}$.

 $\psi(M)$ and ch(M) are obstructions for a Weyl structure to be a Riemannian structure.

Theorem F [2] Let (M, \hat{g}, W) be a Weyl manifold and ∇ the conformal Weyl connection. The following assertions are equivalent:

1) $\psi(M) = 0, ch(M) = 0;$

2) There is a Riemannian metric $\overline{g} \in \hat{g}$ such that $\nabla \overline{g} = 0$.

Let (M, \hat{g}, W) be Weyl manifold and ∇ be the conformal Weyl connection.

Let $\overline{\nabla}$ be the π semi-symmetric connection compatible with the Weyl structure W i.e.

 $\overline{\nabla}g + W(g) \otimes g = 0,$

called conformal π semi-symmetric connection or the conformal Lyra connection.

Let $E \in \mathcal{T}^{1,2}(M)$. The $\mathcal{F}(M)$ -module $\mathcal{X}(M)$ becomes an algebra, denoted $\mathcal{U}(M, E)$ if $X \circ Y = E(X, Y), \forall X, Y \in \mathcal{X}(M)$.

If ∇ and ∇' are linear connections on M and $E = \nabla - \nabla'$, then $\mathcal{U}(M, E)$ is called the deformation algebra associated to the pair (∇, ∇') .

Our purpose is to study properties of semi-symmetric connections on Weyl manifolds.

Theorem 2.1. Let (M, \hat{g}, W) be a Weyl manifold, $n \geq 4$ and $\mathcal{U}(M,\overline{\nabla}-\nabla)$ be the Weyl-Lyra deformation algebra associated to the 1-form π . Let \overline{R}, R be the curvature tensors associated to the connections $\overline{\nabla}, \nabla$.

Then $\overline{R} = R$, if $\psi(M) = 0$ and $R_p : T_p \times T_p \times T_p M \longrightarrow T_p M$ is surjective, $\forall p \in M$, if and only if the Weyl-Lyra algebra is associative.

Proof. " \Rightarrow " Let $\overline{A} = \overline{\nabla} - \nabla$. One has

$$g\left(\overline{A}\left(X,Y\right),Z\right) = \pi\left(Y\right)g\left(X,Z\right) - \pi\left(Z\right)g\left(X,Y\right), \forall X,Y,Z \in \mathcal{X}\left(M\right).$$

Using the second Bianci identities and $\overline{\nabla}_X \overline{R} = \overline{\nabla}_X R$ we have

$$(\delta_i^s R_{ljk}^r + \delta_j^s R_{lki}^r + \delta_k^s R_{lij}^r)\pi_r + (g_{il} R_{rjk}^s + g_{jl} R_{rki}^s + g_{kr} R_{rij}^s)\pi^r = 0.$$

This relation leads to

$$(n-3) g_{rh} R^{h}_{lik} \pi_r + (g_{kl} S_{rj} - g_{jl} S_{rk}) \pi^r = 0$$

and

$$(n-2)\,S_{rk}\pi^r=0.$$

Therefore

$$(n-3)\,g_{rh}R^h_{ljk}\pi^r=0$$

Since R_p is surjective, one has $\overline{A} = 0$. " \Leftarrow "

The condition $(X \circ Y) \circ Z = X \circ (Y \circ Z), \forall X, Y, Z \in \mathcal{X}(M)$, implies

$$g_{jk}\pi_s\pi^s\delta_i^r = \left(g_{ik}\pi_j + g_{jk}\pi_i - g_{ij}\pi_k\right)\pi^r.$$

This becomes

$$\left(g_{ik}\pi_j + g_{jk}\pi_i - g_{ij}\pi_k\right)\pi^r = 0.$$

Hence $\pi = 0$ and $\overline{A} = 0$. Therefore $R = \overline{R}$.

A linear connection ∇ is compatible with the Weyl structure W and is associated to the 1-form ω if

 $(\star)(\nabla_X g)(Y,Z) + W(g)(X)g(Y,Z) + \omega(Y)g(X,Z) + \omega(Z)g(X,Y) = 0.$

There exists an unique connection $\nabla \sigma$ -semi-symmetric satisfying (*): $\nabla_X Y = \stackrel{\circ}{\nabla}_X Y + \frac{1}{2} W(g)(X) Y + (\frac{1}{2} W(g) + \sigma)(Y) X - g(X, Y) (\frac{1}{2} W(g) + \sigma - \omega)^{\#},$ where $\overset{\circ}{\nabla}$ is the Levi-Civita connection associated to q.

Proposition 2.2. Let (M, \hat{g}, W) and $(M, \hat{g}, \overline{W})$ be Weyl manifolds. Let ∇ (resp. $\overline{\nabla}$) be the σ (resp. $\overline{\sigma}$)-semi-symmetric connection compatible with the Weyl structure W (resp. \overline{W}), associated to the 1-form ω (resp. $\overline{\omega}$). Then

Conformal connections on Lyra manifolds

$$(\star\star) \qquad \overline{\nabla}_X Y = \nabla_X Y + p(X)Y + q(Y)X - g(X,Y)r^{\#},$$

holds, where $p = \frac{1}{2}(\overline{W}(g) - W(g)), q = p + \overline{\sigma} - \sigma, r = q - \overline{\omega} + \omega$.

Theorem 2.3 Let (M, \hat{g}) be a conformal manifold, $n \geq 3$. The tensor

$$B_{jsl}^{i} = A_{jsl}^{i} + \frac{2}{n-2} \{ \Omega_{js}^{mi} (A_{ml} - \frac{k}{2(n-1)}g_{ml}) - \Omega_{jl}^{mi} (A_{ms} - \frac{k}{2(n-1)}g_{ms}) \}$$

is invariant under the transformation $(\star\star)$, where $\Omega = \frac{1}{2}(I \otimes I - g \otimes \tilde{g})$ is the Obata operator, $(g.\tilde{g})(X,\sigma) = g(X,\sigma^{\#})$, $A_{jsl}^{i} = R_{jsl}^{i} - \frac{1}{n}\delta_{j}^{i}R_{psl}^{p}$, $A_{ij} = A_{ijs}^{s}$ and k is the scalar curvature. *Proof.* From $(\star\star)$ we find

$$\overline{R}_{jrl}^{i} = R_{jrl}^{i} + \delta_{j}^{i}(p_{rl} - p_{lr}) + 2\Omega_{jr}^{mi}q_{ml} - 2\Omega_{jl}^{mi}q_{mr}$$

where $p_{rl} = p_{r/l} + p_r \sigma_l$, $q_{rl} = q_{r/l} - q_r q_l + \frac{1}{2}g_{rl}\rho + q_r \sigma_l$ and $\rho = g^{ij}q_iq_j$. We get

$$\overline{A}^i_{jrl} = A^i_{jrl} + 2\Omega^{mi}_{jr}q_{ml} - 2\Omega^{mi}_{jl}q_{mr} \,.$$

The previous relation leads to

$$\overline{A}_{jr} = A_{jr} - (n-2)q_{jr} - g_{jr}\widetilde{q},$$

where $\widetilde{q}=Trq.$ Therefore $\widetilde{q}=-\frac{\overline{k}-k}{2(n-1)}$ and we get

$$q_{jr} = -\frac{1}{n-2} \left\{ \overline{A}_{jr} - A_{jr} - g_{jr} \frac{\overline{r} - k}{2(n-1)} \right\} \,. \label{eq:qjr}$$

Hence $B_{jrl}^{\ i} = \overline{B}_{jrl}^{\ i}$.

Theorem 2.4. Let (M, \hat{g}, W) be a Weyl manifold, n > 3 and ∇ the conformal Weyl connection. Then there exist the 1-forms p and q such that the semi-symmetric connection

$$(\star\star\star) \qquad \overline{\nabla}_X Y = \nabla_X Y + q(Y)X + p(X)Y - g(X,Y)q^{\#}$$

has vanishing curvature tensor if and only if the tensor B is zero.

Proof. "
$$\Rightarrow$$
 " is obvious

" \Leftarrow " If $B^i_{jkl} = 0$, one considers the following two systems of equations

$$\begin{cases} p_{r/l} = p_{rl} \\ p_{rl} - p_{lr} = -\frac{1}{n} R_{srl}^{s} , \end{cases}$$
$$\begin{cases} q_{r/l} = q_{rl} + q_{r}q_{l} - \frac{1}{2}g_{rl}\rho \\ q_{rl} = \frac{1}{n-2} \left[A_{rl} - \frac{k}{2(n-1)}g_{rl} \right] \end{cases}$$

We prove that if $B_{jrl}^i = 0$, n > 3, then the previous systems have solutions. From $p_{r/l} - p_{l/r} = \Phi_{r/l} - \Phi_{l/r} = -\frac{1}{n}R_{srl}^s$, where $\Phi_r = -\frac{1}{2}(W(g))_r$, one has

$$p_r = -\Phi_r + \frac{\partial h}{\partial x^r}$$

where h is arbitrary smooth mapping.

Since $B_{jrl}^i = 0$, using $\sum_{r,l,h} c^c A_{jrl/h}^i = 0$, we get $\Omega_{jl}^{mi} q_{mr/h} - \Omega_{jr}^{mi} q_{ml/h} + \Omega_{jh}^{mi} q_{ml/r} - - \Omega_{jl}^{mi} q_{mh/r} + \Omega_{jr}^{mi} q_{mh/l} - \Omega_{jh}^{mi} q_{mr/l} = 0.$

Hence $(n-3)(q_{jr/l}-q_{jl/r})=0$. Because n>3 the integrability conditions

$$q_{jr/l} - q_{jl/r} = 0$$

are satisfied.

Remark 2.5. The previous result remains valid when replace ∇ by a semisymmetric conection, compatible with the Weyl structure W.

Open problems. Let (M, \hat{g}, W) , $(M, \hat{g}, \overline{W})$ be Weyl manifolds and $\pi, \overline{\pi}$ be closed 1-forms.

Let ∇ and $\overline{\nabla}$ be conformal π (resp. $\overline{\pi}$) -semi-symmetric connections.

1) The characterisation of the invariance of sectionale curvature.

2) The study of properties of the deformation algebra $\mathcal{U}(M, \overline{\nabla} - \nabla)$.

References

- B. Alexandrov, S. Ivanov, Weyl structures with positive Ricci tensor, Diff. Geom.Appl., 18 (2003), 3, 343-350.
- [2] T. Higa, Weyl manifolds and Einstein-Weyl manifolds, Comm. Math. Univ. Sancti Pauli, 12, 2 (1993), 143-159.
- [3] T. Imai, Notes on semi-symmetric metric connection, Tensor N.S., 24 (1972), 293-296.
- [4] H. Matsuzoe, Geometry of semi-Weyl and Weyl manifolds, Kyushu J. Math, 1 (2001), 107-117.
- [5] L. Nicolescu, G. Pripoae, R. Gogu, Two theorems on semi-symmetric metric connection, An. Univ. Bucureşti, 54, 1 (2005), 111-122.
- [6] P.N. Pandey, B.B. Chaturvedi, Semi-symmetric metric connections on a Kähler manifold, Bull. Allahabad Math. Soc., 22 (2007), 51-57.
- [7] S. Prasad, R.H. Ojha, On semi-symmetric S-connection, Mathematica, 35, (58) (1993), 201-206.
- [8] S.D. Singh, A.K. Pandey, Semi-symmetric metric connections in an almost Norden metric manifold, Acta Cienc. Indica Math., 27, 1 (2001), 43-54.

48

- R.N. Singh, K.P. Pandey, Semi-symmetric metric S-connections, Varāhmihir J. Math.Sci., 4, 2 (2004), 365-379.
- [10] F. Ünal, A. Uysal, Weyl manifolds with semi-symmetric connection, Math. Comput. Appl., 10, 3 (2005), 351-358.
- [11] P. Zhao, H. Song, Some invariant properties of semi-symmetric metric recurrent connections and curvature tensor expressions, Chinese Quart. J. Math., 19 (2004), 4, 355-361.
- [12] M.P. Wojtkowski, On some Weyl manifolds with nonpositive sectional curvature, Proc. Amer.Math.Soc, 133, 11 (2005), 3395-3402.
- [13] K. Yano, On semi-symmetric connections, 15 (1970), 1579-1586.

I.E.Hirică, L. Nicolescu University of Bucharest, Faculty of Mathematics and Informatics, Department of Geometry, 14 Academiei Str., RO-010014, Bucharest 1, Romania. E-mail: ihirica@fmi.unibuc.ro